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Abstract

Many belief change formalisms employ plausibility or-
derings over the set of possible worlds to determine how
the beliefs of an agent ought to be modified after the
receipt of a new epistemic input. While most such pos-
sible world semantics rely on a single ordering, we look
at using an extra ordering to aid in guiding the process
of belief change. We show that this provides a unifying
semantics for a wide variety of belief change operators.
By varying the conditions placed on the second order-
ing, different families of known belief change operators
can be captured, including AGM belief contraction and
revision (Alchourrón, Gärdenfors, & Makinson 1985),
severe withdrawal (Rott & Pagnucco 1999), systematic
withdrawal (Meyer et al. 2002), and the linear liberation
and σ-liberation operators of (Booth et al. 2003). Our
approach also identifies novel classes of belief change
operators that are worth further investigation.

Introduction
Current formalisms in belief change (Gärdenfors 1988;
Hansson 1999) typically employ a plausibility ordering
(Grove 1988; Katsuno & Mendelzon 1991) over the set
of possible worlds or an epistemic entrenchment order-
ing over the set of sentences in an agent’s belief set.
Operators for change are then defined by manipulation
of these orderings after receipt of a new epistemic input.
There are many advantages to these approaches – fore-
most amongst them the guarantee that change will be
effected in a principled manner, the provision of an intu-
itively plausible construction, and a formalism flexible
enough to accommodate alternative change strategies
and iteration. However there are some nuances that are
not captured in such an approach. For instance, agents
do not usually employ one fixed ordering throughout –
often, different orderings might be used in different con-
texts such as those requiring greater caution or skepti-
cism. Or different orderings might be used based on the
source of the epistemic inputs. Such a critique is im-
plicit in (Cantwell 2003) where the notion of eligibility
adds an extra dimension to belief change. A technical
framework that provides tools for belief change opera-
tions based on multiple orderings appears in (Andreka,
Ryan, & Schobbens 2002) where combination opera-

tions for a class of preference relations P are studied in
terms of an additional guiding preference relation. In
this study, the formalism for belief change – in particu-
lar for belief removal – that we will present can be con-
sidered a special case of (Andreka, Ryan, & Schobbens
2002) with ≤ – over the set of interpretations – being
the single preference relation in P , and � – our addi-
tional dimension – being the guiding relation.

An intuitive way to understand the second ordering
on the set of worlds is to think of it as representing a
more stringent assessment of the plausibility of states of
affairs. Most rational agents are aware of certain con-
texts within which their reasoning plays out – certain
contexts call for a different assessment of plausibility.
For example, I enforce a certain amount of skepticism
on verifying news reports – but will probably fall back
on a more critical assessment when I’m trying to assess
news reports in a different situation, say the impending
declaration of a war. Such a treatment is reminiscent
of contextualist assessments of epistemic statements –
it is understood that the agent makes any knowledge
claim relative to some implicit standard for assessing
that claim and that different standards will induce dif-
fering assessments of the truth of epistemic claims. The
contribution of the paper is the unification, in a sin-
gle formal framework, of a large class of belief change
operators by this method. It enables us to view belief
change as the manipulation by the agent of assessments
of plausibility of epistemic states of affairs in different
contexts.

The plan of the paper is as follows. After laying down
some technical preliminaries, in the first section we es-
tablish the foundations of our framework for removal
with a semantic definition and an axiomatic characteri-
sation. We then study the class of belief removal opera-
tors obtained when the second ordering � is transitive.
The following section builds up to a characterisation of
AGM contraction (Alchourrón, Gärdenfors, & Makin-
son 1985) via sub-classes of belief removal operators
satisfying the standard properties known as Vacuity, In-
clusion and Recovery. Next we show that important
classes of belief liberation operators (Booth et al. 2003)
can be captured in our framework. This is followed by



a section that isolates various classes of removal oper-
ators related to, and including, systematic withdrawal
(Meyer et al. 2002). Finally we show that the lim-
iting cases correspond to AGM revision (Alchourrón,
Gärdenfors, & Makinson 1985) and severe withdrawal
(Rott & Pagnucco 1999). We conclude with some point-
ers to future work.

We assume a finitely generated propositional lan-
guage L equipped with the usual constants, boolean
operators and a classical Tarskian consequence rela-
tion Cn. We take W to denote the set of possible
worlds/interpretations of L. Logical entailment is de-
noted by |=. For any set of sentences A ⊆ L, [A]
denotes the set of worlds satisfying all members of A
(writing [φ] rather than [{φ}] for the singleton case).
For a set S ⊆ W , Th(S) is the set of sentences true in
all worlds in S. The object which undergoes change
will be K, a consistent belief set (i.e., a deductively
closed, consistent set of sentences). We take K to be
arbitrary but fixed throughout. We assume that for all
removal operators m, K m φ is only defined for non-
tautologous propositions and refer to the set of non-
tautologous members of L as L∗. The limiting case re-
quires only a minor emendation. We make this choice
for ease of technical presentation. Finally, given a to-
tal pre-order (i.e., a transitive, connected relation) ≤ on
W and S ⊆ W , min(S,≤) will denote the set of ≤-
minimal elements of S.

Basic removal
We now set up our most general semantic construction
of belief change operators. We refer to these as removal
operators because the nett effect after being presented
with an input φ is that φ is removed from the belief set.
However, as we shall see, the extreme case where the
removal of a belief φ results in the addition of ¬φ is
included in the framework.

Assume a total pre-order ≤ anchored on [K]. That is
to say, [K] = min(W,≤). As usual we take ≤ to be
an ordering of plausibility on the worlds, with worlds
lower down in the ordering seen as more plausible. In
what follows, ∼ will always denote the symmetric clo-
sure of ≤, i.e.,w1 ∼ w2 iff bothw1 ≤ w2 andw2 ≤ w1.
Now we assume that we are given a second binary re-
lation � on W , which we require to be a reflexive sub-
relation of ≤. These two orderings provide the context
in which an agent makes changes to its current beliefs.
Definition 1 (≤,�) is a K-context iff ≤ is a total pre-
order (on W) anchored on [K], and � is a reflexive
sub-relation of ≤.
Given a belief set K and a K-context (≤,�), we use
(≤,�) to define a removal operator m(≤,�) for K by
setting, for all φ ∈ L∗,

K m(≤,�) φ = Th({w | w � w′ for some

w′ ∈ min([¬φ],≤)})

That is, the models of the belief set resulting from a re-
moval of φ are obtained by locating all the ≤-best mod-

els of ¬φ, and adding to those, all worlds that are at
least as �-plausible.

Definition 2 m is a basic removal operator (for K) iff
m=m(≤,�) for some K-context (≤,�).

Basic removal is characterised by the following postu-
lates:

(B1) K m φ = Cn(K m φ)

(B2) φ 6∈ K m φ

(B3) If |= φ1 ↔ φ2 then K m φ1 = K m φ2

(B4) K m ⊥ = K

(B5) K m φ ⊆ Cn(K ∪ {¬φ})

(B6) If θ ∈ K m (θ ∧ φ) then θ ∈ K m (θ ∧ φ ∧ ψ)

(B7) If θ ∈ K m (θ ∧ φ) then K m φ ⊆ K m (θ ∧ φ)

(B8) (K m θ) ∩ (K m φ) ⊆ K m (θ ∧ φ)

(B9) If φ 6∈ K m (θ ∧ φ) then K m (θ ∧ φ) ⊆ K m φ

Theorem 1 Let K be a belief set and m an operator
for K. Then m is a basic removal operator for K iff m

satisfies (B1)–(B9).

All the rules above are already familiar from the be-
lief change literature. Rules (B1)–(B3) belong to
the six basic AGM contraction postulates (Alchourrón,
Gärdenfors, & Makinson 1985). Rules (B4) and (B5)
are weakened versions – under our assumption that K
is consistent – of another of the basic AGM postulates,
namely the Vacuity rule:

(Vacuity) If φ 6∈ K then K m φ = K

As will be confirmed later, basic removal operators do
not generally satisfy (Vacuity). The remaining two ba-
sic AGM contraction rules, neither of which are sound
for basic removal, are:

(Inclusion) K m φ ⊆ K

(Recovery) K ⊆ Cn((K m φ) ∪ {φ})

(Inclusion) is questioned in (Booth et al. 2003), lead-
ing to the study of belief liberation operators, while
(Recovery) has been questioned in many places in the
literature (e.g. (Hansson 1993a; 1999)). Briefly, lib-
eration operators cater to the intuition that removing
a belief from an agent’s corpus can remove the rea-
sons for not holding others and hence lead to the in-
clusion of new beliefs. Of the other postulates for
basic removal above, (B8) and (B9) are the two sup-
plementary AGM contraction postulates (Alchourrón,
Gärdenfors, & Makinson 1985), while (B6) and (B7)
both follow from the AGM postulates (see (Alchourrón,
Gärdenfors, & Makinson 1985; Hansson 1993a; Rott
1992)). The latter rule is closely related to the well-
known rule Cautious Monotony from non-monotonic
inference (Kraus, Lehmann, & Magidor 1991).

Given Theorem 1, we see that basic removals seem
quite closely-related to the similarly general approach
to removal presented by Bochman in (Bochman 2001,
Ch. 12). Like basic removal, Bochman’s operators in



their most general form fail to validate (Vacuity), (In-
clusion) and (Recovery), while they do satisfy (B6)–
(B8).

The completeness part of Theorem 1 is proved by us-
ing the following way to construct a pair of orderings
from a given belief set and basic removal operator.

Definition 3 The structure (≤,�) obtained from a be-
lief set K and a basic removal operator m, and denoted
by C(K,m) is defined as follows (cf. (Cantwell 2003)),
for w1, w2 ∈ W:

(≤) w1 ≤ w2 iff ¬α1 6∈ K m (¬α1 ∧ ¬α2)
(�) w1 � w2 iff ¬α1 6∈ K m ¬α2

where αi is a sentence whose only model is wi (for
i = 1, 2).

In the theorem, C(K,m) is used by checking that if m

satisfies (B1)–(B9), then (≤,�) is a K-context and that
m=m(≤,�). We employ this construction throughout
the paper to prove that certain postulates are complete
for certain sub-classes of basic removal.

We now proceed to investigate how different require-
ments on the second ordering of plausibility � and its
interplay with ≤ can help us characterise different belief
removal operations. We start with one of the simplest
properties there is – transitivity.

Transitive removal
In this section we see what happens if we let the second
order � be transitive, i.e., � becomes a pre-order. We’ll
call the K-context (≤,�) transitive if � is transitive.

Definition 4 We call m a transitive removal operator
(for K) iff m=m(≤,�) for some transitive K-context
(≤,�).

Transitive removal operators may be alternatively de-
scribed as follows. As with any pre-order, the relation
� partitions W into a set W/≡ of equivalence classes
via the relation ≡ defined byw1 ≡ w2 iff bothw1 � w2

and w2 � w1. The set W/≡ is partially-ordered by the
relation �∗ defined by [w1]≡ �∗ [w2]≡ iff w1 � w2.
Meanwhile, we can also define a relation ≤∗ on W/≡
by [w1]≡ ≤∗ [w2]≡ iff w1 ≤ w2. It is easy to check that
≤∗ is well-defined and that ≤∗ is a total pre-order on
W/≡ such that �∗⊆≤∗. Furthermore, for each φ ∈ L∗,
K m(≤,�) φ = Th(

⋃

Θ), where

Θ = {X ∈ W/≡| X �∗ Y for some Y ∈ min(¬φ,≤∗)},

where min(¬φ,≤∗) here denotes the set of ≤∗-minimal
elements Y ∈ W/≡ such that Y ∩ [¬φ] 6= ∅. Note
how worlds belonging to the same equivalence class are
‘indistinguishable’ from the point of view of the agent
using the K-context (≤,�).

The next result shows how we can axiomatically
characterise the class of transitive removal operators.

Theorem 2 (i). If (≤,�) is transitive then m(≤,�)

satisfies:

(BT) If K m θ 6⊆ K m φ then there exist ψ, λ ∈ L∗

such that φ |= ψ |= λ and
(K m θ) ∪ (K m λ) |= ψ

(ii). If m satisfies (BT) then the relation � of C(K,m)
is transitive.

So transitive removal operators may be characterised
by (B1)–(B9) plus (BT). (BT), as might be noted, is a
very weak requirement. One natural way to strengthen
it is to require that ψ = φ:

(BConserv) If K m θ 6⊆ K m φ then there exists
λ ∈ L∗ such that φ |= λ and

(K m θ) ∪ (K m λ) |= φ

(BConserv) looks almost the same as the rules
Conservativity and Weak Conservativity, which
were proposed and argued-for in (Hansson 1993b;
1999) and used there to characterise operations of
so-called base-generated contraction.

It turns out that, for basic removal operators, (BCon-
serv) may be captured by requiring that, in addition to
being transitive, (≤,�) satisfies the following property:

(a) If w1 ∼ w2 and w1 � w2 then w2 � w1

Theorem 3 (i). If (≤,�) is transitive and satisfies (a)
then m(≤,�) satisfies (BConserv). (ii). If m satisfies
(BConserv) then C(K,m) is transitive and satisfies (a).

In terms of the alternative description of transitive re-
moval given above in terms of equivalence classes, re-
quiring (a) of (≤,�) has the effect that the relations ≤∗

and �∗ on W/≡ satisfy, for all X,Y ∈ W/≡,

X �∗ Y implies X <∗ Y or X = Y,

where <∗ is the strict part of ≤∗. Thus any two distinct
classesX,Y which are on the same ‘level’ according to
≤∗ (in that both X ≤∗ Y and Y ≤∗ X) are incompara-
ble according to �∗.

As we will see, although (BConserv) is more restric-
tive than (BT), the class of basic removals satisfying it
remains general enough to include many other impor-
tant sub-classes of basic removal.

By going a step further and identifying λ with φ in
(BConserv) we arrive at a yet stronger postulate:

(BSConserv) If K m θ 6⊆ K m φ then (K m θ) ∪
(K m φ) |= φ

(BSConserv) is known as Strong Conservativity (Hans-
son 1993b), and is used in (Booth et al. 2003) to help
characterise the so-called σ-liberation operators (see
the section on belief liberation). (Booth et al. 2003)
also contains a detailed justification for the use of this
rule. For basic removal, we can capture this property
by requiring the following property, in conjunction with
transitivity:

(b) If w1 ∼ w2 then w1 � w2

Theorem 4 (i). If (≤,�) is transitive and satisfies (b)
then m(≤,�) satisfies (BSConserv). (ii). If m satisfies



(BSConserv) then C(K,m) is transitive and satisfies
(b).

Condition (b) implies (a). In terms of the above con-
struction in terms of W/≡, having that � is transitive
while strengthening (a) to (b) has the effect that the re-
lation ≤∗ becomes a total order on W/ ≡.

Towards AGM contraction
It was mentioned previously that basic removal does
not satisfy the three basic AGM contraction postulates
(Vacuity), (Inclusion) and (Recovery). In the last sec-
tion it is shown that the severe withdrawal operators,
which are known not to satisfy (Recovery) (Rott & Pag-
nucco 1999), are all basic removal operators, thus prov-
ing that (Recovery) fails for basic removal. For the fail-
ure of the other two rules, suppose K = Cn(∅) and
consider the K-context (≤,�) where ≤ is the full rela-
tion W × W and � is just the equality relation. Then
it is easy to check that, for any consistent φ ∈ L∗,
we get K m(≤,�) φ = Th([¬φ]) = Cn(¬φ). Thus
K m(≤,�) φ 6⊆ K, even though φ 6∈ K. ‘One half’ of
(Vacuity), however, is valid for basic removal:

Proposition 1 Let m be a basic removal operator for
K, then m satisfies: If φ 6∈ K then K ⊆ K m φ

The ‘missing half’ of (Vacuity) is: If φ 6∈ K then
K m φ ⊆ K. Clearly this rule doubles as a weak-
ened version of (Inclusion). Thus we see that, for basic
removal operators, (Inclusion) actually implies (Vacu-
ity). Now let’s verify under what conditions on (≤,�)
each of these postulates are satisfied by basic removal
operators.

Vacuity

To ensure that m(≤,�) satisfy all of (Vacuity), we re-
quire that all ≤-minimal elements (i.e., all elements of
[K]) are �-connected, i.e.,

(c) If (for each i = 1, 2) wi ≤ w′ for all w′,
then w1 � w2

Theorem 5 (i). If (≤,�) satisfies (c) then m(≤,�) sat-
isfies (Vacuity). (ii). If m satisfies (Vacuity) then
C(K,m) satisfies (c).

As is easily verified, (c) is implied by condition
(b). Thus we see that any basic removal satisfy-
ing (BSConserv) satisfies (Vacuity). However, our
counter-example above shows that (Vacuity) is not
valid for transitive removals satisfying (a).

Shouldn’t (Vacuity) be a basic requirement for any
rational removal operation? From a purely minimal
change point of view it is certainly hard to contest, but
we would nevertheless argue that there are plausible
scenarios in which it can fail. Consider an agent who
has equally good reasons to believe each of p and ¬p.
In this situation the agent remains cautious and commits
to believe neither p nor ¬p. But if this agent were then
to receive information that undermines p then it seems

plausible that it would come to believe (or assign sig-
nificantly more plausibility to) ¬p.

Of course one could always try and force a given ba-
sic removal m to satisfy (Vacuity) by defining a new
operator + from m by

K + φ =

{

K if φ 6∈ K
K m φ otherwise.

It is fairly straightforward to show that + so defined sat-
isfies (B1)–(B9), and so again forms a basic removal.
However we run into difficulties in the case of transitive
removal, for it turns out that rule (BT) is not preserved.
Exploring ways out of this problem will be left for fu-
ture work.

Inclusion

To obtain (Inclusion) we may add the following condi-
tion, stronger than (c):

(d) If w1 ≤ w2 for all w2 then w1 � w2 for all w2

So the ≤-minimum worlds are also the �-minimum
worlds.

Theorem 6 (i). If (≤,�) satisfies (d) then m(≤,�) sat-
isfies (Inclusion). (ii). If m satisfies (Inclusion) then
C(K,m) satisfies (d).

Note that, even though basic removal operators do not
satisfy (Inclusion) in general, it is always possible to
transform a given basic removal m into an operator
which does satisfy that rule. We simply take the incar-
ceration l of m (Booth et al. 2003), i.e., the operator
defined from m by K l φ = K ∩ (K m φ). It can be
shown that the incarceration of a basic removal opera-
tor is always itself a basic removal, while furthermore if
m satisfies any of the three postulates from the section
on transitive removal, then l will satisfy the same ones
as well.

Recovery

To obtain (Recovery) it suffices to require the following
condition:

(e) If w1 � w2 then w1 = w2 or w1 ≤ w′ for all w′

So, apart from itself, nothing but ≤-minimal worlds
may be below any world in �.

Theorem 7 (i). If (≤,�) satisfies (e) then m(≤,�) sat-
isfies (Recovery). (ii). If m satisfies (Recovery) then
C(K,m) satisfies (e).

The combination of (d) and (e) then states that the
worlds below a world w in � are exactly w itself and
the ≤-minimal worlds. And this gives us precisely
AGM contraction (satisfying the basic plus supplemen-
tary AGM contraction postulates).

Theorem 8 The following are equivalent:
(i). m is a full AGM contraction operator.



(ii). m satisfies (B1)–(B9) plus (Inclusion) and (Recov-
ery).
(iii). m=m(≤,�) for some (≤,�) which satisfies (d) and
(e).

Observe that since (d)+(e) implies transitivity and (a),
every full AGM contraction is a basic removal satisfy-
ing (BConserv).

Belief liberation
In (Booth et al. 2003) two models of belief libera-
tion operators are presented, each in terms of finite se-
quences of sentences. The second model, linear liber-
ation, is more general than the first, σ-liberation. The
class of liberation operators it generates includes that
generated by the first. The first construction employs a
linearly ordered sequence of sentences and the second a
set of candidate belief sets one of which corresponds to
the agent’s set after belief retraction. Axiomatic charac-
terisations of each of these classes are also provided in
(Booth et al. 2003). Linear liberation is characterised
by (B1)–(B3) plus (Vacuity) and the following rule:

(Hyperreg) If θ 6∈ K m (θ ∧ φ) then
K m (θ ∧ φ) = K m θ

This is the rule originally known as Hyperregularity
from (Hansson 1993b). The first thing to note about
(Hyperreg) is that, in the presence of (B1)–(B4), it ac-
tually implies (Vacuity) and the remaining rules for ba-
sic removal (B5)–(B9). Thus we see:

Proposition 2 m is a linear liberation operator iff it is
a basic removal operator which satisfies (Hyperreg).

Is there a condition on (≤,�) which corresponds ex-
actly to (Hyperreg)? It turns out that the following con-
dition does the trick:

(f) If w1 ∼ w2 and w3 � w1 then w3 � w2

Rule (f) says that whether or not a world w3 is below
w1 according to � depends only on the ≤-plausibility
rank of w1.

Theorem 9 (i). If (≤,�) satisfies (f) then m(≤,�) sat-
isfies (Hyperreg). (ii). If m satisfies (Hyperreg) then
C(K,m) satisfies (f).

Thus we see that linear liberation operators may be rep-
resented by the class of K-contexts which satisfy (f).

In (Booth et al. 2003) it is shown that the σ-liberation
operators are precisely those linear liberation operators
which satisfy (BSConserv). Using this fact together
with Theorems 4 and 9 allows us to deduce:

Proposition 3 m is a σ-liberation operator iff
m=m(≤,�) for some transitive (≤,�) satisfying (b)
and (f).

However, we can simplify here, for as soon as � is tran-
sitive, conditions (b) and (f) become equivalent:

Proposition 4 Let (≤,�) be a transitive K-context.
Then (≤,�) satisfies (b) iff (≤,�) satisfies (f).

This means that in Prop. 3 it is unnecessary to require
both (b) and (f) – just one of them will suffice. Depend-
ing on which one we choose to retain, we obtain two dif-
ferent characterisations of σ-liberation which provide
alternatives to the one from (Booth et al. 2003):

Theorem 10 The following are equivalent:
(i). m is a σ-liberation operator.
(ii). m is a linear liberation operator which satisfies
(BT).
(iii). m is a basic removal operator which satisfies
(BSConserv).

The equivalence (i)⇔(ii) comes from combining Prop.
3 (retaining just (f)) with Theorems 2 and 9, while
(i)⇔(iii) comes from combining Prop. 3 (retaining just
(b)) with Theorem 4. Surprisingly, (i)⇔(ii) says that,
in the axiomatisation of σ-liberation in (Booth et al.
2003), (BSConserv) may be replaced by the seem-
ingly much weaker (BT). Meanwhile, since (i)⇔(iii),
σ-liberation operators inherit the nice description in
terms of W/≡ given for the basic removals which sat-
isfy (BSConserv) at the end of the section on transitive
removal (where ≤∗ is a total order on W/≡).

Similar characterisations for sub-classes of libera-
tion, such as the class of dichotomous liberation oper-
ators (Booth et al. 2003), exist. However, space consid-
erations prevent us here from embroidering further on
this theme.

Systematic withdrawal
An interesting sub-class of basic removal operators,
which includes both systematic (Meyer et al. 2002)
and severe withdrawal (Rott & Pagnucco 1999) (see be-
low) is obtained by requiring the following condition on
(≤,�):

(g) If w1 < w2 then w1 � w2

where < is the strict part of ≤.

Theorem 11 (i). If (≤,�) satisfies (g) then m(≤,�) sat-
isfies:

(B10) If θ ∈ K m (θ ∧ φ) then φ 6∈ K m θ

(ii). If m satisfies (B10) then C(K,m) satisfies (g).

The class of basic removal operators m(≤,�) such that
(≤,�) satisfies (g) still do not generally satisfy (Inclu-
sion) or (Vacuity), since condition (g) does not rule out
that some ≤-minimal elements may be �-unconnected.
However they do come mighty close to satisfying (In-
clusion), in that the following is satisfied:

If θ ∈ K then K m θ ⊆ K

Using this fact we can see that for this class of opera-
tors, (Inclusion) and (Vacuity) are equivalent.

The next condition on K-contexts is, essentially, a
requirement for antisymmetry to hold:

(h) If w1 � w2 then either w1 < w2 or w1 = w2



Theorem 12 (i). If (≤,�) satisfies (h) then m(≤,�) sat-
isfies:

(B11) If |= (θ ∨ φ) and θ 6∈ K m φ then
φ ∈ K m (θ ∧ φ)

(ii). If m satisfies (B11) then C(K,m) satisfies (h).

Clearly, by requiring (h) in combination with (g) (and
reflexivity) we specify � uniquely:

(g)+(h) w1 � w2 iff either w1 < w2 or w1 = w2

Note that � so defined will automatically be transitive
and will satisfy the condition (a) from the section on
transitive removal. Putting together Theorems 11 and
12, then, we have that the class of basic removal op-
erators m(≤,�) where � is defined via (g)+(h) may be
axiomatically characterised by (B1)–(B11). This looks
very much like the class of systematic withdrawals. A
systematic withdrawal operator ÷ can be defined in
terms of ≤ as follows (Meyer et al. 2002):
K ÷ φ = K ∩ Th(∇≤(min([¬φ],≤)))

where ∇≤(X) = {v | ∃w ∈ X s.t. v < w}. Un-
like systematic withdrawal, the class of removal op-
erators defined by (B1)–(B11) fails to satisfy (Inclu-
sion)/(Vacuity), since all the ≤-minimal elements are
necessarily unconnected according to �. So in fact
(Vacuity) will fail as soon as there is more than one
≤-minimal element. These operators satisfy instead:

If φ 6∈ K then ¬φ ∈ K m φ

That is, for these operators, we see that K m φ is an
operation which ‘demotes’ the status of φ: if its current
status is ‘accepted’, i.e., φ ∈ K, then its status is ‘de-
moted’ to ‘undecided’ i.e., φ,¬φ 6∈ K m φ, while if its
current status is ‘undecided’ then its status is ‘demoted’
to ‘rejected’. If its status is already ‘rejected’ then no
change occurs. However, if we take the incarcerations
of these operators then we end up with precisely the
class of systematic withdrawal operators.

Systematic withdrawal can also be obtained by weak-
ening (h):

(j) If w1 � w2 then w1 < w2, w1 = w2,
or w1 ≤ w′ ∀w′

So, unlike (h), (j) allows the models of K to be con-
nected according to �, although it does not force them
to be.
Theorem 13 (i). If (≤,�) satisfies (j) then m(≤,�) sat-
isfies:

(B12) If φ ∈ K, |= (θ ∨ φ) and θ 6∈ K m φ
then φ ∈ K m (θ ∧ φ)

(ii). If m satisfies (B12) then C(K,m) satisfies (j).
Since the operators obtained from (g) and (h) form a
sub-class of the operators obtained from (g) and (j), the
latter class still does not satisfy (Vacuity). But adding
(a) (and therefore (Vacuity)) to (g) and (j) leads exactly
to systematic withdrawal.

Theorem 14 The following are equivalent:
(i). m is a systematic withdrawal.
(ii). m satisfies (B1)–(B9) plus (Vacuity), (B10) and
(B12).
(iii). m=m(≤,�) for some (≤,�) which satisfies (a), (g)
and (j).

As we shall see in the next section, the class of severe
withdrawals can also be isolated in a similar manner.

Limiting cases
We have seen that the addition of the second ordering �
provides us with considerable flexibility when defining
removal operators. But what happens when we focus on
the limits imposed on �? In this section we consider the
two cases where � is the smallest and the largest reflex-
ive sub-relation of ≤. If we take � to be the smallest �,
the equality relation, then the operator m(≤,�) reduces
to:

K m(≤,�) φ = Th(min([¬φ],≤)).

and we have the following result.

Theorem 15 (i). If � is the equality relation then
m(≤,�) satisfies:

(B13) ¬φ ∈ K m φ.

(ii). If m satisfies (B13) then � in C(K,m) is the equal-
ity relation.

Thus we see that removing φ here amounts to a re-
vision by its negation, and in fact that m(≤,�) essen-
tially reduces to an AGM revision function (satisfying
the full list of AGM revision postulates (Alchourrón,
Gärdenfors, & Makinson 1985)). More precisely the
operator ∗(≤,�) for K defined by

K ∗(≤,�) φ = K m(≤,�) ¬φ

is an AGM revision operator. Moreover, every AGM re-
vision operator can be obtained in this way. Note that
in the above case, since φ ∈ K m(≤,�) ¬φ, the right-
hand side here is equal to Cn((K m(≤,�) ¬φ) ∪ {φ}).
Thus what we have is just the Levi Identity (Gärdenfors
1988). In fact a result more general holds: when-
ever (≤,�) is a K-context and ∗(≤,�) is defined from
m(≤,�) via the Levi Identity then ∗(≤,�) is an AGM re-
vision operator.

By taking � to be the largest reflexive sub-relation of
≤ we get the full relation ≤, and the operator m(≤,�)

reduces to:

K m(≤,�) φ = Th({w | w ≤ w′ for
some w′ ∈ min([¬φ],≤)}).

Thus, from the characterisation of severe withdrawal in
terms of total pre-orders found in (Rott & Pagnucco
1999), we see clearly that setting �=≤ gives us the
class of severe withdrawal operators. Note that � so
defined will be transitive and satisfy condition (b) from
the section on transitive removal (and hence also (f) –
see Prop. 4). From the results above it turns out that we



can give an axiomatic characterisation of severe with-
drawal which is different to the ones found in the litera-
ture (see (Rott & Pagnucco 1999)). To do this first note
the following:

Proposition 5 Let (≤,�) be a K-context. Then �=≤
iff both (f) and (g) are satisfied.

Using this fact with Theorems 9 and 11 then yields:

Theorem 16 m is a severe withdrawal operator iff it
satisfies (B1)–(B4), (Hyperreg) and (B10).

Conclusion
In this study we have presented a unified framework for
belief removal in terms of a possible world semantics
which is distinctive in that it uses a pair of orderings
over the set of worlds. We argued for the conceptual
plausibility of this pair and showed how a large class
of belief removal operators such as liberation, system-
atic and severe withdrawal operators could be charac-
terised. This approach opens the door for identifying
hitherto unstudied sub-classes of basic removal oper-
ators, such as those obtained by requiring of � to be
a total pre-order and a partial order.An obvious gener-
alisation to consider in future work is the extension to
propositional languages with a countably infinite num-
ber of propositional variables. Also, a detailed study of
the connection between basic removal, base-generated
contraction, and sequence-based retraction is of inter-
est. Finally, as in any formalism for belief change, we
need to consider iterated removal and how this affects
the adjustment of worlds in both ≤ and �, as well as
the interplay between ≤ and �.
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