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Abstract

Considering Dung’s argumentation framework and seman-
tics, we are interested in the problem which consists in de-
ciding whether a set of arguments is acceptable under a given
semantics. We look at three approaches. The first one con-
sists in testing whether the set satisfies an equation; In par-
ticular, we look at the equations presented in (Dung 1995;
Besnard & Doutre 2004). The second approach consists in
testing whether the set is a model of a propositional formula
and the third one consists in testing the satisfiability of a
propositional formula.

Introduction
Argumentation is a reasoning model which amounts to
building and evaluating arguments, generally conflicting.
Dung’s argumentation framework ((Dung 1995)) consti-
tutes an adequate formal framework to study this reason-
ing model. Its abstract structure makes it possible to unify
many other approaches proposed for argumentation on the
one hand (see (Prakken & Vreeswijk 2002) for a synthe-
sis of these approaches) and formalisms modelling non-
monotonic reasoning on the other hand (see (Bondarenko
et al. 1997; Doutre 2002)).

From a set of arguments and a binary relation between
arguments representing the notion of a conflict, arguments
are evaluated in order to determine the most acceptable ones.
Among the semantics given to acceptability, those of Dung
define sets of arguments jointly acceptable called extensions.

Algorithms to compute extensions are presented in
(Doutre & Mengin 2001). The credulous decision problem
(does an argument belong to at least one extension?) and the
skeptical one (does a given argument belong to any exten-
sion?) associated to each semantics are studied in various
works: Algorithms to answer these problems are presented
in (Cayrol, Doutre, & Mengin 2003), dialectical proof pro-
cedures are introduced in (Jakobovits & Vermeir 1999;
Vreeswijk & Prakken 2000; Cayrol, Doutre, & Mengin
2003) and algorithms computing some of these proof proce-
dures are established in (Cayrol, Doutre, & Mengin 2003).

In this article, we are interested in the problem which con-
sists in deciding whether a set is an extension of a given se-
mantics.

For his well-known stable semantics, Dung answers this
problem by giving in (Dung 1995) a simple equation that a
set satisfies if and only if it is a stable extension. Equations
of this kind for two other semantics and new equations for
the stable semantics are established in (Besnard & Doutre
2004); These equations aim at exhibiting the sameness of the
various notions of an extension as introduced by Dung. We
are going to briefly study if some of them could be efficient
to check if a set is an extension under a given semantics.

Then, to answer the problem at hand, we will turn to an-
other technique already considered in other formalisms used
to represent knowledge: it consists in associating to the for-
malism a formula in propositional logic whose models cor-
respond to the acceptable sets of the formalism. For exam-
ple, in (Ben-Eliyahu & Dechter 1996) a formula of propo-
sitional logic is given whose models correspond to the ex-
tensions of a default theory. A similar correspondence is
established for circumscription in (Gelfond, Przymusinska,
& Przymusinski 1989) and for disjunctive logic programs in
(Ben-Eliyahu & Dechter 1994). In the same way, we attempt
to associate to an argument system a propositional formula
whose models correspond to the extensions under a given
semantics. For the stable semantics, the work of (Creignou
1995) completed in graph theory can be used. Notice that
in (Dung 1995) a logic program is associated to an argu-
ment system and that the stable models of this logic program
correspond to the stable extensions of the argument system;
A translation of this logic program into propositional logic
would associate to the argument system a propositional for-
mula whose models would be the stable extensions of the
system. This association is in two steps and could lead to
formulas containing more informations than necessary; In
this article we want to make such an association directly
from a Dung argument system.

Exploiting again propositional logic, we will study a third
way to check if a set is an extension. This way consists in
associating to the set a propositional formula which is satis-
fiable if and only if the set is an extension of the considered
semantics. This method and the previous one would make
possible the use of existing constraint satisfaction and satis-
fiability techniques possible for argumentation.

This article presents preliminary ideas in each of the three
approaches explicited above. The outline of the paper is as
follows: In the next section we present Dung’s argumen-



tation framework and semantics. In the section “Equation
checking”, we study the equations characterizing extensions
established in (Dung 1995; Besnard & Doutre 2004) to de-
cide if a set is an extension of a given semantics. In the
section “Model checking”, we show how to associate to an
argument system a propositional formula such that the mod-
els of the formula correspond to the extensions of the system
under a given semantics. In the section “Satisfiability check-
ing”, we attempt to associate to the set which one wants to
know if it is acceptable a propositional formula satisfiable if
and only if the set is acceptable.

Argumentation and extensions
The argument system defined by Dung in (Dung 1995) is an
abstract system in which arguments and conflicts between
arguments are primitives.

Definition 1 (Dung 1995) An argument system is a pair
(A,R) where A is a set of arguments and R is a binary
relation over A which represents a notion of attack between
arguments (R ⊆ A × A). Given two arguments a and b,
(a, b) ∈ R or equivalently aRb, means that a attacks b or
that a is an attacker of b. A set of arguments S attacks an
argument a if a is attacked by an argument of S. A set of
arguments S attacks a set of arguments S ′ if there is an ar-
gument a ∈ S which attacks an argument b ∈ S ′.

In all the definitions and notations which follow, we as-
sume that an argument system (A,R) is given.

An argument system can be represented in a very simple
way by a directed graph whose vertices are the arguments
and edges correspond to the elements of R.

Dung gave several semantics to acceptability. These var-
ious semantics produce none, one or several acceptable sets
of arguments, called extensions. One of these semantics, the
stable semantics, is only defined via the notion of an attack:

Definition 2 (Dung 1995) A set S ⊆ A is conflict-free iff it
does not exist two arguments a and b in S such that a attacks
b. A conflict-free set S ⊆ A is a stable extension iff for each
argument which is not in S, there exists an argument in S
that attacks it.

The other semantics for acceptability rely upon the con-
cept of defense:

Definition 3 An argument a is defended by a set S ⊆ A (or
S defends a) iff for any argument b ∈ A, if b attacks a then
S attacks b.

An acceptable set of arguments according to Dung must
be a conflict-free set which defends all its elements. For-
mally:

Definition 4 (Dung 1995) A conflict-free set S ⊆ A is ad-
missible iff each argument in S is defended by S.

Even if the definition of a stable extension does not rely
upon the notion of defense, a stable extension is an admissi-
ble set. Admissibility has an advantage over stable seman-
tics: given an argument system, there need not be any stable
extension but there always exists at least one admissible set
(the empty set is always admissible). A drawback of admis-
sibility is that an argument system may have a large number

of admissible sets. This is why other notions of acceptabil-
ity which select only some admissible sets were introduced.
Besides the stable semantics, three semantics refining ad-
missibility have been introduced by Dung:

Definition 5 (Dung 1995) A preferred extension is a maxi-
mal (wrt set inclusion) admissible subset of A. An admissi-
ble S ⊆ A is a complete extension iff each argument which
is defended by S is in S. The least (wrt set inclusion) com-
plete extension is the grounded extension.

Notice that a stable extension is also a preferred exten-
sion and a preferred extension is also a complete extension.
Stable, preferred and complete semantics admit multiple ex-
tensions whereas the grounded semantics ascribes a single
extension to a given argument system.

Deciding if a set is a stable extension or an admissible set
can be computed in polynomial time, but deciding if a set is
a preferred extension is a CO-NP-complete problem. These
results of complexity were given in (Dimopoulos & Torres
1996) in the context of graph theory; given that the con-
cepts of kernel, semi-kernel and maximum semi-kernel cor-
respond respectively to the concepts of stable extension, ad-
missible set and preferred extension (see (Dunne & Bench-
Capon 2002; Doutre 2002)), these results are transposable to
argumentation.

Example 1 Let (A,R) be the argument system such that

A = {a, b, c, d, e} and

R = {(a, b), (c, b), (c, d), (d, c), (d, e), (e, e)}.

The graph representation of (A,R) is the following:

a b c d e

The admissible sets of (A,R) are ∅, {a}, {c}, {d}, {a, c}
and {a, d}. Dung’s semantics induce the following accept-
able sets:

• Stable extension(s): {a, d}
• Preferred extensions: {a, c}, {a, d}
• Complete extensions: {a, c}, {a, d}, {a}
• Grounded extension: {a}.

Equation checking
A first method to check if a set is acceptable under a given
semantics is to check if the set satisfies a given equation.
Since Dung’s semantics rely upon the notion of admissibil-
ity, it is natural to express these equations in terms of attack
and defense.

An equation of this kind is presented by Dung himself for
the stable extensions in (Dung 1995). Prior to giving this
result, some notations are introduced: Given an argument
system (A,R), for every set S ⊆ A:

S
def
= A \ S

Def(S)
def
= {a ∈ A | S defends a}

R+(S)
def
= {a ∈ A | S attacks a}

R−(S)
def
= {a ∈ A | a attacks an argument of S}



Proposition 1 (Dung 1995) Given an argument system
(A,R), S ⊆ A is a stable extension iff S = R+(S).

According to Proposition 1, checking if a set S is a stable
extension amounts to computing the set of arguments which
are not attacked by S and then testing if this set is equal to
S.

The equation presented in Proposition 1 is clearly more
efficient than the ones presented in (Besnard & Doutre
2004), where one has to compute the set of arguments which
are not attacked by S and the set of argument which do not
attack S, and then to take their intersection or conjunction in
order to find an X and a Y appearing in the equation char-
acterizing stable extensions:

Proposition 2 (Besnard & Doutre 2004) Let (A,R) be an
argument system. Let S ⊆ A. For all X ⊆ A and for all
Y ⊆ A such that at least one of the conditions below is
satisfied

1. R+(S)∩R−(S) ⊆ X ⊆ R−(S) and R+(S)∩R−(S) ⊆

Y ⊆ R+(S) ∪ R−(S)

2. R+(S)∩R−(S) ⊆ X and R+(S)∩R−(S) ⊆ Y ⊆

R−(S)

the following property holds:

S is a stable extension iff S = Def((S ∪ X) ∩ Y ).

Whereas Dung does not give any equation characteriz-
ing his other semantics, (Besnard & Doutre 2004) presents
equations characterizing the preferred and the complete ex-
tensions. These equations are driven by the aim of exhibiting
the sameness of Dung’s extensions.

(Besnard & Doutre 2004)’s equations characterizing the
preferred semantics are not effective since one has to know
whether a set S is a preferred extension before giving one of
these equations. An effective equation characterizing pre-
ferred extensions remains to be exhibited.

Concerning the complete extensions, (Besnard & Doutre
2004) presents a simple equation:

Proposition 3 (Besnard & Doutre 2004) Given (A,R),

S ⊆ A is a complete extension iff S = Def(S) ∩ R+(S).

According to this Proposition, checking if a set S is a
complete extension amounts to computing the set of argu-
ments defended by S, the set of arguments not attacked by
S and then to test if their intersection is equal to S.

The equation of Proposition 3 is more efficient than the
other equations also presented in (Besnard & Doutre 2004),
where one has to first compute Def(S)∩R+(S) in order to
find a set X appearing in the equation characterizing com-
plete extensions:

Proposition 4 (Besnard & Doutre 2004) Let (A,R) be an
argument system. Let S ⊆ A. For all X ⊆ A and for all
Y ⊆ A such that

• X ⊆ Def(S) ∩ R−(S) or X ⊆ Def(S) ∩ R+(S)

and

• R−(S) ∩ R+(S) ⊆ Y ⊆ R−(S) ∪ R+(S)

the following holds:

S is a complete extension iff S = Def(S ∪ X) ∩ Y

iff S = Def((S ∪ X) ∩ Y ).

(Besnard & Doutre 2004) suggests that these last equa-
tions could be used in order to speed up refuting that a set S
is a complete extension. It is actually the case if one chooses
Y to be the set of arguments not attacked by S (or the set of
arguments which do not attack S) and X to be the set of ar-
guments which have no attacker in (A,R); Def(S)∩R+(S)

and Def(S) ∩ R−(S) do not have to be computed in order
to check if such an X is included in them, it is always the
case; If X 6⊆ S, then X prevents the equations to hold.

Concerning the grounded extension, an equation remains
to be found.

Model checking
A second technique to check if a set S is an extension of
an argument system consists in characterizing all the exten-
sions of the system by the models of a formula expressed in
propositional logic; S is an extension if and only if S corre-
sponds to a model of the formula. This method only works
for finite sets of arguments.

Given an argument system (A,R), let us consider the
propositional language L whose propositional symbols are
the elements of A. For a given semantics, we will associate
to (A,R) a formula whose models (maximum or minimal
in certain cases), will correspond to the acceptable sets un-
der the semantics. A model is represented by the set of the
atoms which it satisfies, in other words a model of a formula
is a set included in A.

Such a characterization already exists for the stable se-
mantics. This characterization is not given in the con-
text of argumentation but in the context of graph theory by
(Creignou 1995). We already underlined in the section “Ar-
gumentation and extensions” the correspondence between
the two contexts. Consequently, characterizing by a logical
formula the kernels of a graph, (Creignou 1995) character-
izes the stable extensions of an argument system.

Proposition 5 Let (A,R) be an argument system. A set S ⊆
A is a stable extension iff S is a model of the formula

∧

a∈A

(a ↔
∧

b:(b,a)∈R

¬b).

In order to characterize the other semantics, we are first
going to associate to an argument system (A,R) a formula
whose models are the admissible sets of (A,R). Let us recall
that an admissible set is conflict-free and that it defends all
its elements.

First, it is known that if an argument a ∈ A is attacked by
an argument b ∈ A, then a set containing a will be conflict-
free only if it does not contain b. The formula

Φ1 =
∧

a∈A

(a →
∧

b:(b,a)∈R

¬b)

admits as its models the conflict-free sets of (A,R). This
formula is not the only one. Indeed, one could also express



the fact that if an argument a ∈ A attacks an argument b ∈ A
then a set containing a is conflict-free only if it does not
contain b. The formula

Φ′

1 =
∧

a∈A

(a →
∧

b:(a,b)∈R

¬b)

also admits as its models the conflict-free sets of (A,R).
One can also view the concept of conflict-freedom like the
fact that for any pair (a, b) ∈ R, a and b cannot both belong
to a set if this set is to be conflict-free. Thus, the formula

Φ′′

1 =
∧

(a,b)∈R

(¬a ∨ ¬b)

also admits as its models the conflict-free sets of (A,R).
Second, in order to characterize the sets which defend all

their elements, a formula has to capture the idea that if an
argument a ∈ A belongs to a set which defends all its ele-
ments, then for each of its attackers b ∈ A, there must be in
the set an element c which attacks b. The formula

Φ2 =
∧

a∈A

(a →
∧

b:(b,a)∈R

(
∨

c:(c,b)∈R

c))

admits as its models the sets of (A,R) which defend all their
elements.

Finally, a formula characterizing the admissible sets of
(A,R) is the conjunction of a formula characterizing the
conflict-free sets of (A,R) (Φ1, Φ′

1 or Φ′′

1 ) and of the for-
mula Φ2. If one chooses the formula Φ1 to characterize
the conflict-free sets, the admissible sets are characterized
as follows:

Proposition 6 Let (A,R) be an argument system. A set S ⊆
A is admissible iff S is a model of the formula

∧

a∈A

((a →
∧

b:(b,a)∈R

¬b) ∧ (a →
∧

b:(b,a)∈R

(
∨

c:(c,b)∈R

c))).

The preferred extensions are maximal admissible sets.
They are thus characterized as follows:

Proposition 7 Let (A,R) be an argument system. A set S ⊆
A is a preferred extension iff S is a maximal model of the
formula

∧

a∈A

((a →
∧

b:(b,a)∈R

¬b) ∧ (a →
∧

b:(b,a)∈R

(
∨

c:(c,b)∈R

c))).

A formula characterizing the complete semantics must
capture the idea that any argument defended by an extension
must belong to the extension. In other words, if an argument
a ∈ A is such that each of its attackers b has an attacker c
which belongs to the extension, then a must belong to the
extension. The formula

∧

a∈A

((
∧

b:(b,a)∈R

(
∨

c:(c,b)∈R

c)) → a))

admits as its models the sets which contain all the arguments
that they defend. A characterization of the complete exten-
sions is thus the following one:

Proposition 8 Let (A,R) be an argument system. A set S ⊆
A is a complete extension iff S is a model of the formula

∧

a∈A

((a →
∧

b:(b,a)∈R

¬b) ∧ (a ↔
∧

b:(b,a)∈R

(
∨

c:(c,b)∈R

c))).

The grounded extension being the least complete exten-
sion, it can be characterized as follows:

Proposition 9 Let (A,R) be an argument system. A set S ⊆
A is the grounded extension iff S is the minimal model of the
formula

∧

a∈A

((a →
∧

b:(b,a)∈R

¬b) ∧ (a ↔
∧

b:(b,a)∈R

(
∨

c:(c,b)∈R

c))).

A drawback of this technique is that one has to build a
formula which can turn out to be quite large (since it is asso-
ciated to the system (A,R)). However, this formula is built
once for all and then can be used from one test to another.

Another technique consists in associating a formula to the
set to test and then checking the satisfiability of this formula.
The advantage is that the formula to be built may be less
large than with the preceding technique, but a drawback is
that for each test which one wishes to make, it is necessary
to build a new formula. We present this technique in the
following section.

Satisfiability checking
A third technique to check if a set S is an extension of an
argument system consists in associating to S a formula in
propositional logic; S is an extension under a given seman-
tics if and only if the formula is satisfiable. This method
only works for finite sets of arguments.

Let us consider an argument system (A,R) and a set S ⊆
A. One wants to know if S is conflict-free. It should for that
be checked that, for any argument a ∈ S, the attackers b of
a do not belong to S. In other words, it is necessary that the
formula

Ψ1 =
∧

a∈S

(a ∧ (
∧

b:(b,a)∈R

¬b))

be satisfiable. One can also test if the formula

Ψ′

1 =
∧

a∈S

(a ∧ (
∧

b:(a,b)∈R

¬b))

is satisfiable in order to determine if S is conflict-free: In this
case, we make sure that any argument attacked by a ∈ S is
out of S.

If one wants to check if S is such that any argument which
does not belong to S is attacked by at least one argument of
S, it is necessary that the formula

Ψ2 =
∧

a/∈S

(¬a ∧ (
∨

b:(b,a)∈R

b))

be satisfiable.
To check if a set S is a stable extension, one has to test

if the conjunction of one of the formulas testing conflict-
freedom (Ψ1 or Ψ′

1) and of the formula Ψ2 is satisfiable. If
the formula Ψ1 is chosen to test conflict-freedom, then:



Proposition 10 Let (A,R) be an argument system. A set
S ⊆ A is a stable extension iff the formula

∧

a∈S

(a ∧ (
∧

b:(b,a)∈R

¬b)) ∧
∧

a/∈S

(¬a ∧ (
∨

b:(b,a)∈R

b))

is satisfiable.

To check if a set S defends all its elements, it should be
verified that for any argument a ∈ S, each attacker b of a is
attacked by an argument c ∈ S. This amounts to checking if
the formula

∧

a∈S

(
∧

b:(b,a)∈R

(
∨

c:(c,b)∈R

c)) ∧
∧

a/∈S

¬a

is satisfiable.
Thus, to test if a set S is admissible, one has to check if the

conjunction of one of the formulas testing conflict-freedom
and of the preceding formula, is a satisfiable formula.

Proposition 11 Let (A,R) be an argument system. A set
S ⊆ A is admissible iff the formula

∧

a∈S

(a ∧ (
∧

b:(b,a)∈R

(¬b ∧ (
∨

c:(c,b)∈R

c)))) ∧
∧

a/∈S

¬a

is satisfiable.

To check if a set S is such that all the arguments which
it defends belong to it, it should be made sure that for any
argument a ∈ A, if each attacker b of a has an attacker c ∈ S
then a ∈ S. Hence the formula

∧

a∈S

a ∧
∧

a/∈S

¬a ∧
∧

a∈A

((
∧

b:(b,a)∈R

(
∨

c:(c,b)∈R

c)) → a)

must be satisfiable.
This formula can be simplified as follows:

∧

a∈S

a ∧
∧

a/∈S

¬a ∧
∧

a/∈S

¬(
∧

b:(b,a)∈R

(
∨

c:(c,b)∈R

c)).

Testing if the conjunction of this formula and of the for-
mula testing if S is admissible (Proposition 11) is satisfiable,
one can check if S is a complete extension.

Proposition 12 Let (A,R) be an argument system. A set
S ⊆ A is a complete extension iff the formula

∧

a∈S

(a ∧ (
∧

b:(b,a)∈R

¬b) ∧ (
∧

b:(b,a)∈R

(
∨

c:(c,b)∈R

c)))

∧
∧

a/∈S

(¬a ∧ ¬(
∧

b:(b,a)∈R

(
∨

c:(c,b)∈R

c)))

is satisfiable.

To test if a set S ⊆ A is a preferred extension, a for-
mula which is satisfiable only when the set S is maximal
among all the admissible sets of (A,R) has to be character-
ized. Such a formula is being studied, just like the formula
to test if S is the grounded extension of (A,R): It should,
in this last case, be made sure that the formula is satisfi-
able only when S is, among all the complete extensions of
(A,R), the least one.

Conclusion

Given a Dung argument system, we were interested in this
article in the problem which consists in determining if a set
of arguments is acceptable under a given Dung’s semantics.
We have been interested in three approaches.

The first one consists in using an equation expressed in
terms of defense and attack that a set satisfies if and only if
it is acceptable under the given semantics. Concerning the
stable semantics, the equation presented in (Dung 1995) is
more efficient than the ones provided in (Besnard & Doutre
2004). Some equations characterizing the complete exten-
sions presented in (Besnard & Doutre 2004) can be used
to test if a set is a complete extension and others can be
used to speed up refuting that a set is a complete extension.
Equations testing if a set of arguments is a preferred or the
grounded extension remain to be established.

The second approach consists in associating to an argu-
ment system a formula in propositional logic whose models
are the acceptable sets under the given semantics. A set is
acceptable if it is a model of the formula. We provided such
formulas for all Dung’s semantics.

The third approach consists in associating to the set to
test a formula in propositional logic which is satisfiable if
and only if the set is acceptable under the given semantics.
Such formulas have been established for the stable and the
complete extensions. They remain to be established for the
preferred extensions and the grounded extension.

These two last approaches are preliminary to the use of
satisfiability and constraint satisfaction techniques for argu-
mentation. In particular, these techniques may be used to
improve existing algorithms computing acceptable sets or
answering decision problems.
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