
CR-Prolog with Ordered Disjunction

Marcello Balduccini and Veena Mellarkod
Computer Science Department

Texas Tech University
Lubbock, TX 79409 USA

{balduccini, mellarko }@cs.ttu.edu

Abstract

We present CR-Prolog2, an extension of A-Prolog with
cr-rules and ordered disjunction. CR-rules can be used
to formalize various types of common-sense knowledge
and reasoning, that, to the best of our knowledge, have
no formalization in A-Prolog. The use of ordered dis-
junction often allows for a very concise, easy to read,
representation of knowledge. We also show how CR-
Prolog2 can be used to represent preferences intended
both as binding preferences, and as desires.

Introduction
In recent years, A-Prolog – the language of logic programs
with the answer set semantics (Gelfond & Lifschitz 1991)
– was shown to be a useful tool for knowledge represen-
tation and reasoning (Gelfond 2002). The language is ex-
pressive and has a well understood methodology of repre-
senting defaults, causal properties of actions and fluents,
various types of incompleteness, etc. The development of
efficient computational systems (Cholewinski, Marek, &
Truszczynski 1996; Niemela, Simons, & Soininen 2002;
Calimeri et al. 2002; Lin & Zhao 2002; Pontelli, Balduc-
cini, & Bermudez 2003) has allowed the use of A-Prolog
for a diverse collection of applications. Some of the appli-
cations include: a decision support system for space shut-
tle flight controllers. The system is planned to be used by
flight controllers to find plans for the operation of the Reac-
tive Control System of the space shuttle, as well as check-
ing correctness of existing plans (Nogueiraet al. 2001;
Nogueira 2003); detection of deadlocks using a reduction
of the problem to the computation of stable models of logic
programs (Heljanko 1999). Other important applications are
in planning, product configuration, bounded model check-
ing, wire routing and modeling in hybrid systems etc.

It seems however that A-Prolog lacks the ability to grace-
fully perform the reasoning needed for certain types of con-
flict resolution, e.g. for finding the best explanations of un-
expected observations. To solve the problem, in (Balduc-
cini & Gelfond 2003b) the authors introduced CR-Prolog –
an extension of A-Prolog byconsistency-restoring rules(cr-
rules) with preferences.

In this paper we present CR-Prolog2, a variant of CR-Prolog
with an improved semantics, and allowing ordered disjunc-

tion (Brewka 2002; Brewka, Niemela, & Syrjanen 2002)
in the head of both regular rules and consistency-restoring
rules. The new semantics yields intuitive conclusions in
cases when CR-Prolog would give unintuitive results. The
use of ordered disjunction, when the preference order on
a set of alternatives is total, allows for a more concise,
easier to read, representation of knowledge. The flexibil-
ity of the preference relation in CR-Prolog2 is such that
meta-preferences from LPOD (Brewka, Niemela, & Syrja-
nen 2002) can be encoded in CR-Prolog2 using directly its
preference relation, rather than requiring the definition of a
new type of preference. We show how CR-Prolog2 can be
used to represent preferences intended both as binding pref-
erences (like in CR-Prolog), and as desires (like in LPOD).

The paper is structured as follows. We start with the syntax
and semantics of CR-Prolog2. Next, we compare the new
language with CR-Prolog and LPOD, and show how the new
language can be used to represent complex knowledge and
to perform fairly sophisticated reasoning tasks. Finally, we
summarize the paper and draw conclusions.

Syntax and Semantics
Let Σ be a signature containing symbols for constants,
variables, functions, and predicates (denoted byconst(Σ),
var(Σ), func(Σ) and pred(Σ), respectively). Terms,
atoms, and literals are defined as usual. Literals and terms
not containing variables are calledground. The sets of
ground terms, atoms and literals overΣ will be denoted by
terms(Σ), atoms(Σ), andlit(Σ).

Definition 1 A head expressionis either an epistemic dis-
junction of literals (h1 or h2 or . . . or hk, with k ≥ 0) or
an ordered disjunction of literals (h1 × h2 × . . .× hk, with
k > 1).

Definition 2 A regular rule of CR-Prolog2 is a statement of
the form:

r : H ← l1, . . . , lm, not lm+1, . . . , not ln (1)

whereH is a head expression,l1, . . . , ln are literals, andr is
a term representing the name of the rule. IfH is an epistemic
disjunction, the intuitive reading of the rule is as usual. IfH
is an ordered disjunction, the intuitive meaning of the rule is
(Brewka, Niemela, & Syrjanen 2002): if the body of the rule
is satisfied by the agent’s beliefs, then the agent must believe

the first (leftmost) element ofH, if possible; otherwise it
must believe the second element, if possible;. . . otherwise,
it must believe the last element ofH.

For example, program

r1 : p or q ← not r.

yields two possible conclusions:{p} and{q}. On the other
hand, program

r1 : p× q ← not r.

forces the agent to believep, and program

r1 : p× q ← not r.
r2 : s← not s, p, not r.

forces the agent to believeq (since believingp is made im-
possible by the second rule).

Definition 3 A cr-rule is a statement of the form:

r : H +← l1, . . . , lm, not lm+1, . . . , not ln (2)

wherer is the name of the rule,H is a head expression,
and l1, . . . , ln are literals. The rule says that ifl1, . . . , lm
belong to a set of agent’s beliefs and none oflm+1, . . . , ln
belongs to it then the agent “may possibly” believe one of
the elements of the head expression. This possibility is used
only if the agent has no way to obtain a consistent set of
beliefs using regular rules only. IfH is an ordered disjunc-
tion, the preference order that the agent uses to select an
element from the head expression goes from left to right, as
for regular rules. IfH is an epistemic disjunction, then all
the elements are equally preferable.

For example, program

r1 : p or q
+← not r

r2 : s.

only forces the agent to believes (the cr-rule need not be
applied, since the program containing only the second rule
is consistent). On the other hand, program

r1 : p or q
+← not r

r2 : s.
r3 : ← not p, not q.

forces the agent to believe either{s, p} or{s, q}. If finally
we want the agent to prefer conclusionp to conclusionq
when possible, we write

r1 : p× q
+← not r

r2 : s.
r3 : ← not p, not q.

which yields a unique set of beliefs,{s, p}. Notice though
that adding new information to the above program, for ex-
ample a new rule← p, forces the agent to retract the previ-
ous conclusions, and believe{s, q}.
We will use the termrule to denote both regular rules and cr-
rules. As usual, non-ground rules are intended as schemata
for their ground counterparts.

Definition 4 Preferences between cr-rulesare expressed by
atoms of the formprefer(r1, r2). The intuitive reading of
the atom is “do not consider belief sets obtained usingr2 un-
less you have excluded the existence of belief sets obtained
usingr1.” We call this type of preferencebinding. If all pref-
erences in a program are expressed as facts, we say that the
program employsstatic preferences. Otherwise, preferences
aredynamic.

Definition 5 A CR-Prolog2 program, Π, is a pair〈Σ, R〉
consisting of signatureΣ and a setR of rules of form (1)
or (2). We require thatfunc(Σ) does not containchoice,
and thatpred(Σ) containsprefer and does not contain
appl, fired, and is preferred. SignatureΣ is denoted
by sig(Π); const(Π), func(Π), pred(Π), atoms(Π) and
lit(Π) are shorthands forconst(sig(Π)), func(sig(Π)),
pred(sig(Π)), atoms(sig(Π)) and lit(sig(Π)), respec-
tively. Let P be a set of predicate symbols fromΣ.
By atoms(Π, P) we denote the set of all atoms from
atoms(Π) formed by predicate symbols fromP . (When-
ever possible we drop the first argument and simply write
atoms(P)). The set of rules ofΠ is denoted byrules(Π).
If ρ is a rule ofΠ then head(ρ) = H, and body(ρ) =
{l1, . . . , lm, not lm+1, . . . , not ln}.
Programs of CR-Prolog2 are closely related to abductive
logic programs.

Definition 6 An abductive logic program (Kakas & Man-
carella 1990; Gelfond 1991) is a pair〈Π,A〉, whereΠ is
a program of A-Prolog andA is a set of atoms, calledab-
ducibles. The semantics of an abductive program is given by
the notion ofgeneralized answer set– an answer setM(∆)
of Π ∪ ∆ where∆ ⊆ A; M(∆1) < M(∆2) if ∆1 ⊂ ∆2.
We refer to an answer set asminimal if it is minimal with
respect to this ordering.

The semantics of CR-Prolog2 is based on a transformation
hr(Π) of its programs into abductive programs.

Definition 7 The hard reduct hr(Π) =
〈HΠ, atoms(HΠ, {applcr, appl×})〉 is defined as fol-
lows:

1. let N be a set of new constant symbols, such that every
element ofN is uniquely associated with an atom from
sig(Π). We will denote the constant associated with atom
a byna;

2. sig(HΠ) extends sig(Π) so that: const(HΠ) =
const(Π) ∪ N , func(HΠ) = func(Π) ∪
{choice}, and pred(HΠ) = pred(Π) ∪
{appl, applcr, appl×, fired, is preferred, bodytrue}.

3. letRΠ be set of rules obtained fromΠ by replacing every
cr-rule, ρ, with:

r : head(ρ)← body(ρ), applcr(r).
bodytrue(r)← body(ρ).

wherer is the name ofρ. Notice thatRΠ contains only
regular rules;

4. the set of rules ofHΠ is obtained fromRΠ by replacing
every rule,ρ, such thathead(ρ) = h1 × h2 × . . . × hk,
with the following rules: (r is the name of ruleρ)

(a) hi ← body(ρ), appl×(choice(r, nhi)) for 1 ≤ i ≤ k;
(b) fired(r)← appl×(choice(r, nhi)) for 1 ≤ i ≤ k;
(c) prefer(choice(r, nhi), choice(r, nhi+1)) for 1 ≤ i < k;
(d) ← body(ρ), not fired(r).

5. HΠ also contains the following set of rules, denoted by
Πp:

8
>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

% transitive closure of predicate prefer
m1a : is preferred(R1, R2) ← prefer(R1, R2).
m1b : is preferred(R1, R2) ← prefer(R1, R3),

is preferred(R3, R2).
% no circular preferences
m2 : ← is preferred(R, R).

appl(R)← applcr(R).
appl(R)← appl×(R).

% prohibit application ofR1 andR2 if
% R1 is preferred toR2
m3 : ← appl(R1), appl(R2), is preferred(R1, R2).

% prohibit application ofR if
% its body is not satisfied
m4 : ← applcr(R), not bodytrue(R).

Let us compute the hard reduct of the following program:

Π1

8
>><
>>:

r1 : p ← not q.
r2 : r ← not s.
r3 : q ← t.
r4 : s ← t.

r5 : ← p, r.

r6 : q × s
+← .

r7 : t
+← .

HΠ1 = H ′
Π1
∪Πp, whereH ′

Π1
is:8

>>>>>>>>>>>>><
>>>>>>>>>>>>>:

r1 : p← not q. r2 : r ← not s. r3 : q ← t.
r4 : s← t. r5 :← p, r.

r1
6a : q ← appl×(choice(r6, nq)), applcr(r6).

r2
6a : s ← appl×(choice(r6, ns)), applcr(r6).

r1
6b : fired(r6) ← appl×(choice(r6, nq)), applcr(r6).

r2
6b : fired(r6) ← appl×(choice(r6, ns)), applcr(r6).

r6c : prefer(choice(r6, nq), choice(r6, ns)).
r6d : ← applcr(r6), not fired(r6).
r′7 : t ← applcr(r7).

The generalized answer sets ofhr(Π1) are: (we omit the
atoms formed byapplcr, appl×, is preferred andfired):

C1 = {prefer(choice(r6, nq), choice(r6, ns)), appl(r6),
appl(choice(r6, nq)), q, r}

C2 = {prefer(choice(r6, nq), choice(r6, ns)), appl(r6),
appl(choice(r6, ns)), s, p}

C3 = {prefer(choice(r6, nq), choice(r6, ns)), appl(r7),
t, q, s}

C4 = {prefer(choice(r6, nq), choice(r6, ns)), appl(r6),
appl(choice(r6, nq)), q, r, appl(r7), t, s}

C5 = {prefer(choice(r6, nq), choice(r6, ns)),
appl(r6), appl(choice(r6, ns)), q, appl(r7), t, s}

Intuitively, not all the generalized answer sets appear equally
appealing w.r.t the preferences expressed in the program.
The following definition formalizes this idea.
Definition 8 Let Π be a CR-Prolog2 program, andC, C ′ be
generalized answer sets ofhr(Π). We say thatC dominates
C ′ (and writeC Â C ′) if:

∃appl(r1) ∈ C, appl(r2) ∈ C ′ s.t.
is preferred(r1, r2) ∈ C ∩ C ′. (3)

To see how this definition works, let us apply it to the
generalized answer sets of programΠ1 above. According
to Equation (3),C1 Â C2. In fact appl(choice(r6, nq))
belongs toC1, appl(choice(r6, ns)) belongs toC2, and
prefer(choice(r6, nq), choice(r6, ns)) belongs toC1 and
C2. In a similar way,C4 Â C5.

If a generalized answer set is dominated by another, it means
that it is not as “good” as the other w.r.t. some preference
contained in the program. ConsiderC2, for example: since
it is dominated byC1, the intuition suggests thatC2 should
be excluded from the belief sets of the agent. Generalized
answer sets that are equally acceptable w.r.t. the preferences
are called candidate answer sets, as stated by the next defi-
nition.

Definition 9 Let Π be a CR-Prolog2 program, andC be a
generalized answer set ofhr(Π). We say thatC is a can-
didate answer set ofΠ if there exists no generalized answer
set,C ′, of hr(Π) such thatC ′ Â C.

Hence,C2 andC5 above are not candidate answer sets of
Π1, while C1, C3, and C4 are. Now let us compareC1

and C4. Set C1 is obtained by abducingapplcr(r6) and
appl×(choice(r6, ns)). Set C4 is obtained by abducing
applcr(r6), appl×(choice(r6, ns)) andapplcr(r7). Accord-
ing to the intuition,applcr(r7) is abduced unnecessarily,
which makesC4 less acceptable thanC1. We discard be-
lief sets such asC4 by applying a minimality criterion based
on set-theoretic inclusion on the abducibles present in each
set. The remaining sets are the answer sets of the program.

Definition 10 Let Π be a CR-Prolog2 program, andC be
a candidate answer set ofΠ. We say thatC ∩ lit(Π) is an
answer set ofΠ if there exists no candidate answer set,C ′,
of Π such thatC ′ ∩ atoms({applcr}) ⊂ C.

SinceC1 ∩ atoms({applcr}) ⊂ C4, C4 ∩ lit(Π1) is not an
answer set ofΠ1. In conclusion, the answer sets ofΠ1 are
C1 ∩ lit(Π1) andC3 ∩ lit(Π1).
As the reader may have noticed, the names of rules can be
safely omitted when they are not used to specify preferences.
In the rest of the paper, we will omit them when possible.

CR-Prolog2 and CR-Prolog
CR-Prolog2 has two main advantages over CR-Prolog: the
major conciseness, due to ordered disjunction (see Example
2), and the improved semantics, which allows to derive the
correct conclusions in cases when CR-Prolog returns unintu-
itive conclusions. To understand when CR-Prolog may give
unintuitive results, consider the following situation:

“We need to take full-body exercise. Full-body
exercise is achieved either by combining swimming
and ball playing, or by combining weight lifting
and running. We prefer running to swimming and
ball playing to weight lifting, but we are willing
to ignore our preferences, if that is the only way
to obtain a solution to the problem.”

(4)

According to the intuition, the problem has no solution un-
less preferences are ignored. In fact, we can either combine

weight lifting and running, or combine swimming and ball
playing, but each option is at the same time better and worse
than the other according to different points of view.1 If pref-
erences are ignored, both combinations are acceptable.

Statement (4) can be encoded by the following program,Π4:
8
>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

rr : run
+← .

rs : swim
+← .

rp : play ball
+← .

rw : lift weights
+← .

full body exercise← swim, play ball.
full body exercise← swim, play ball.
← not full body exercise.

prefer(rr, rs)← not ignore prefs.
prefer(rp, rw)← not ignore prefs.

rz : ignore prefs
+← .

The generalized answer sets ofhr(Π4) are: (we show only
the atoms formed byrun, swim, play ball, lift weights,
ignore prefs, andprefer)

G1 : {lift weights, run, prefer(rr, rs), prefer(rp, rw)}
G2 : {swim, play ball, prefer(rr, rs), prefer(rp, rw)}
G3 : {ignore prefs, lift weights, run}
G4 : {ignore prefs, swim, play ball}
G5 : {ignore prefs, lift weights, run, swim}
G6 : {ignore prefs, lift weights, run, play ball}
G7 : {ignore prefs, swim, play ball, lift weights}
G7 : {ignore prefs, swim, play ball, run}
G8 : {ignore prefs, lift weights, run, swim, play ball}

Under the semantics of CR-Prolog,G1 andG2 are the only
minimal generalized answer sets. SinceG1 Â G2 andG2 Â
G1, Π4 has no answer sets.

Under the semantics of CR-Prolog2, G1 andG2 dominate
each other, which leaves onlyG3, . . . , G8 as candidate an-
swer sets. SinceG3 andG4 are both minimal w.r.t. the ab-
ducibles present in each candidate answer set, they are both
answer sets ofΠ4, like intuition suggested.

The reason for this difference is that, in the semantics of CR-
Prolog, set-theoretic minimization occursbefore the com-
parison of belief sets w.r.t. the preferences. In CR-Prolog2,
on the other hand, generalized answer sets are first of all
compared w.r.t. the preference relation, and only later set-
theoretic minimization is applied. In our opinion, giving
higher relevance to the preference relation is a better choice
(as confirmed by the previous example), since preferences
are explicitly given by the programmer.

Comparison with LPOD
In (Brewka 2002), the author introduces logic programs
with ordered disjunction (LPOD). The semantics of LPOD
is based on the notion of preferred answer sets. In a

1Both alternatives are valid if we intend preferences asdesires,
instead of binding preferences. See the next section for a discussion
on this topic.

later paper (Brewka, Niemela, & Syrjanen 2002), the au-
thors introduce the notion of Pareto-preference between be-
lief sets and show that this criterion gives more intuitive
results that the other criteria described in (Brewka 2002;
Brewka, Niemela, & Syrjanen 2002). In this section, we
compare LPOD (under Pareto-preference) and CR-Prolog2.

Consider programΠs1 from (Brewka, Niemela, & Syrjanen
2002):

8
>>>>><
>>>>>:

% Have ice cream, if possible; otherwise, have cake.
r1 : ice cream× cake.
% Have coffee if possible, otherwise, have tea.
r2 : coffee× tea.
% It is impossible to have icecream and cake together.
← ice cream, coffee.

The preferred answer sets ofΠs1 in LPOD are:

{ice cream, tea} and{cake, coffee}. (5)

There are no answer sets ofΠs1 according to the semantics
of CR-Prolog2. The difference between the two semantics
depends on the fact that Pareto optimality was introduced
to satisfy desires and it looks for a set of solutions that sat-
isfy as many desires as possible. On the other hand, our
preference criterion corresponds to a stricter reading of the
preferences.

In order to make it easy to understand the relationship be-
tween the two types of preference, we restate the Pareto cri-
terion in the context of CR-Prolog2.
Definition 11 Let Π be a CR-Prolog2 program, andC, C ′
be generalized answer sets ofhr(Π). We say thatC Pareto-
dominatesC ′ (written asC Âp C ′), if

∃appl(r1) ∈ C, appl(r2) ∈ C′ s.t.
is preferred(r1, r2) ∈ C ∩ C′, and

¬∃appl(r3) ∈ C, appl(r4) ∈ C′ s.t.
is preferred(r4, r3) ∈ C ∩ C′.

(6)

Definition 12 Let Π be a CR-Prolog2 program,C be a gen-
eralized answer set ofhr(Π). We say thatC is a Pareto-
candidate answer set ofΠ if there exists no generalized an-
swer set,C ′, of hr(Π) such thatC ′ Âp C.

(Notice that Pareto-domination is essentially a restatement
of the Pareto criterion, in the context of CR-Prolog2. Also,
Pareto-candidate answer sets essentially correspond to pre-
ferred answer sets.)

Now, to see the difference between Definitions 8 and 11,
consider a program,Π, and generalized answer sets,C1 and
C2, such thatC1 dominatesC2 and vice-versa. Notice that
they do not Pareto-dominate each other. Under our seman-
tics, none of them is a candidate answer set ofΠ. How-
ever, using Pareto-domination,C1 andC2 are incomparable
and thus, both are eligible as Pareto-candidate answer sets
(whether they really are Pareto-candidate answer sets, de-
pends on the other generalized answer sets).

In a sense, Definition 8 enforces a clearer representation of
knowledge and of preferences. However, that does not rule

out the possibility of representing desires in CR-Prolog2.
The defeasible nature of desires is represented by means of
cr-rules. For example, the programΠs1 can be rewritten as
follows, Πs2 :

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

r1a : ice cream
+← .

r1b : cake
+← .

r2a : coffee
+← .

r2b : tea
+← .

r3 : prefer(r1a, r1b)← not ¬prefer(r1a, r1b).
r4 : prefer(r2a, r2b)← not ¬prefer(r2a, r2b).

r5 : ¬prefer(r1a, r1b)
+← .

r6 : ¬prefer(r2a, r2b)
+← .

solid← ice cream.
solid← cake.
liquid← coffee.
liquid← tea.
← not solid.
← not liquid.
← ice cream, coffee.

In Πs2 , the desire to have icecream over cake is repre-
sented by: (1) a cr-rule,r5, that says that “the agent may
possibly give up his preference for icecream over cake”;
(2) a default,r3, saying that “the agent normally prefers
ice cream over cake”. In a similar way, we represent the
desire for coffee over tea. The answer sets of the above pro-
gram are (we show only the atoms from cr-rulesr1a-r2b)
{ice cream, tea} and {cake, coffee}, which correspond
to (5).

There are also some programs for which the semantics of
LPOD seems to yield unintuitive results, while the seman-
tics of CR-Prolog2 gives results that agree with the intuition.
Consider the following example:2

Example 1 “A television show conducts a game where the
first winner is offered a prize of$200,000 and the second
winner is offered a prize of$100,000. John wants to play, if
possible. Otherwise he will give up. If he plays he wants to
gain $200,000 if possible; otherwise,$100,000. He is told
that he cannot win the first prize.

8
>>>>><
>>>>>:

% John wants to play, if possible. Otherwise, give up.
play × give up.
% If he plays, he prefers gaining$200,000 over$100,000.
gain(200, 000)× gain(100, 000)← play.
% He is told that, he cannot gain$200,000.
← gain(200, 000).

Intuitively, John should play and gain $100,000. Giv-
ing up without even trying seems a less acceptable op-
tion. Under the LPOD semantics, however, the above
program has two answer sets:{play, gain(100, 000)} and
{give up}, in contrast to the intuition. The same pro-
gram under CR-Prolog2 semantics gives only one answer

2We thank Richard Watson for pointing out the behavior of
LPOD in this case.

set,{play, gain(100, 000)}, which corresponds to the intu-
itive result. (The unintuitive result by LPOD, we believe,
may be caused by the fact that degree 1 is assigned to rules
whose body is not satisfied.)

Applications of CR-Prolog2

CR-Prolog2 can be used to encode types of common-sense
knowledge which, to the best of our knowledge, have no nat-
ural formalization in A-Prolog. In this section, we give an
example of such use, and show how the alternative formal-
ization in CR-Prolog is less elegant and concise.

In the example that follows we consider a diagnostic reason-
ing task performed by an intelligent agent acting in dynamic
domains in the sense of (Baral & Gelfond 2000). Since
space limitations do not allow us to give a complete intro-
duction on the modeling of dynamic systems in A-Prolog
and its extensions, we refer the reader to (Balduccini & Gel-
fond 2003a; 2003b) for details on the formalization used.

Example 2 “A car’s engine starts when the start key is
turned, unless there is a failure with some equipment re-
sponsible for starting the engine. There can be electrical
failures, such as battery down or fuse burnt; or mechanical
failures, such as clutch sensor stuck or belt loose. In gen-
eral, the electrical failures are more likely than the mechan-
ical failures. Among the electrical failures, battery down is
more likely than fuse burnt. Among the mechanical failures,
clutch sensor stuck is more likely than belt loose.”

The knowledge contained in this story can be represented by
the following action description,Πc:

% normally, a car’s engine starts when the start key is
% turned, unless there is a failure in start equipment.
h(engine on, T + 1)← o(turn key, T),
¬h(ab(start equip), T).

% battery being down causes failure in start equipment.
h(ab(start equip), T)← h(battery down, T).
% fuse being burnt causes failure in start equipment.
h(ab(start equip), T)← h(fuse burnt, T).

% clutch sensor stuck causes failure in start equipment.
h(ab(start equip), T)← h(sensor stuck, T).

% belt being loose causes failure in start equipment.
h(ab(start equip), T)← h(belt loose, T).

% sometimes, battery is down or fuse is burnt,
% the former being more likely than the latter

relec(T) : h(battery down, T)× h(fuse burnt, T)
+← .

% sometimes, clutch sensor is stuck or
% belt is loose, the former being more
% likely than the latter

rmech(T) : h(sensor stuck, T)× h(belt loose, T)
+← .

% electrical failures are more likely
% than mechanical failures
rp(T) : prefer(relec(T), rmech(T)).

% INERTIA
h(F, T + 1)← h(F, T), not ¬h(F, T + 1).
¬h(F, T + 1)← ¬h(F, T), not h(F, T + 1).

% REALITY CHECKS
← obs(F, T), not h(F, T).
← obs(¬F, T), not ¬h(F, T).

% AUXILIARY AXIOMS
o(A, T)← hpd(A, T).
h(F, 0)← obs(F, 0).
¬h(F, 0)← obs(¬F, 0).

Let us add the following history to the action description:
8
<
:

obs(¬engine on, 0).
hpd(turn key, 0).
obs(¬engine on, 1).

% CWA on initial observations
obs(¬F, 0)← not obs(F, 0).

The observation at time1 is unexpected, and causes the pro-
gram to be inconsistent (because of thereality checks), un-
less at least one cr-rule is applied; because of the preference
encoded byrp(T), the preferred way to restore consistency
is by applyingrelec(0); of the two options contained in the
head ofrelec(0), h(battery down, 0) is the preferred one.
Clearly, adding the beliefh(battery down, 0) restores con-
sistency of the program, and explains the unexpected obser-
vation.

It is worth noticing that the statements encoded by rules
relect(T), rmech(T) and rp(T) of Πc can be also repre-
sented without ordered disjunction. The three rules are re-
placed by:
8
>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

rbatt(T) : h(battery down, T)
+← hyp elec(T).

rfuse(T) : h(fuse burnt, T)
+← hyp elec(T).

rsens(T) : h(sensor stuck, T)
+← hyp mech(T).

rbelt(T) : h(belt loose, T)
+← hyp mech(T).

prefer(rbatt(T), rfuse(T)).
prefer(rsens(T), rbelt(T)).

relec(T) : hyp elec(T)
+← .

rmech(T) : hyp mech(T)
+← .

prefer(relec(T), rmech(T)).

The new program has (essentially) the same answer sets as
the previous one. This shows that the rules with ordered dis-
junction allow for a more concise and elegant representation
of knowledge.

Conclusions
In this paper, we extended CR-Prolog by ordered disjunction
and an improved semantics, gave the semantics of the new
language, and demonstrated how it differs from CR-Prolog
and LPOD. We also showed how CR-Prolog2 can be used
to formalize various types of common-sense knowledge and
reasoning. We could not find natural A-Prolog formaliza-
tions for some of the examples in the paper, and formal-
izations in CR-Prolog were often less elegant and concise
(besides giving sometimes unintuitive results). In compar-
ison with CR-Prolog, we believe that the new features of

CR-Prolog2 make it possible to write formalizations that are
more natural, and reasonably elaboration tolerant. In com-
parison with LPOD, CR-Prolog2 appears more expressive
(because of the availability of cr-rules and epistemic disjunc-
tion), and, in some cases, yields more intuitive results than
LPOD.

References
Balduccini, M., and Gelfond, M. 2003a. Diagnostic rea-
soning with a-prolog.Journal of Theory and Practice of
Logic Programming (TPLP)3(4–5):425–461.
Balduccini, M., and Gelfond, M. 2003b. Logic programs
with consistency-restoring rules. In Doherty, P.; McCarthy,
J.; and Williams, M.-A., eds.,International Symposium on
Logical Formalization of Commonsense Reasoning, AAAI
2003 Spring Symposium Series.
Baral, C., and Gelfond, M. 2000. Reasoning agents in
dynamic domains. InWorkshop on Logic-Based Artificial
Intelligence. Kluwer Academic Publishers.
Brewka, G.; Niemela, I.; and Syrjanen, T. 2002. Imple-
menting ordered disjunction using answer set solvers for
normal programs. In Flesca, S., and Ianni, G., eds.,Pro-
ceedings of the 8th European Conference on Artificial In-
telligence (JELIA 2002).
Brewka, G. 2002. Logic programming with ordered dis-
junction. InProceedings of AAAI-02.
Calimeri, F.; Dell’Armi, T.; Eiter, T.; Faber, W.; Gottlob,
G.; Ianni, G.; Ielpa, G.; Koch, C.; Leone, N.; Perri, S.;
Pfeifer, G.; and Polleres, A. 2002. The dlv system. In
Flesca, S., and Ianni, G., eds.,Proceedings of the 8th Euro-
pean Conference on Artificial Intelligence (JELIA 2002).
Cholewinski, P.; Marek, V. W.; and Truszczynski, M. 1996.
Default reasoning system deres. InInternational Confer-
ence on Principles of Knowledge Representation and Rea-
soning, 518–528. Morgan Kaufmann.
Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databases.New Generation
Computing365–385.
Gelfond, M. 1991. Epistemic approach to formalization of
commonsense reasoning. Technical Report TR-91-2, Uni-
versity of Texas at El Paso.
Gelfond, M. 2002. Representing knowledge in A-
Prolog. In Kakas, A. C., and Sadri, F., eds.,Computational
Logic: Logic Programming and Beyond, Essays in Hon-
our of Robert A. Kowalski, Part II, volume 2408, 413–451.
Springer Verlag, Berlin.
Heljanko, K. 1999. Using logic programs with sta-
ble model semantics to solve deadlock and reachability
problems for 1-safe Petri nets.Fundamenta Informaticae
37(3):247–268.
Kakas, A. C., and Mancarella, P. 1990. Generalized sta-
ble models: a semantics for abduction. InProceedings of
ECAI-90, 385–391. IOS Press.
Lin, F., and Zhao, Y. 2002. Assat: Computing answer
sets of a logic program by sat solvers. InProceedings of
AAAI-02.

Niemela, I.; Simons, P.; and Soininen, T. 2002. Extending
and implementing the stable model semantics.Artificial
Intelligence138(1–2):181–234.
Nogueira, M.; Balduccini, M.; Gelfond, M.; Watson, R.;
and Barry, M. 2001. An a-prolog decision support system
for the space shuttle. In Provetti, A., and Tran, S. C., eds.,
Answer Set Programming: Towards Efficient and Scalable
Knowledge Representation and Reasoning, AAAI 2001
Spring Symposium Series.
Nogueira, M. 2003.Building Knowledge Systems in A-
Prolog. Ph.D. Dissertation, University of Texas at El Paso.
Pontelli, E.; Balduccini, M.; and Bermudez, F. 2003. Non-
monotonic reasoning on beowulf platforms. In Dahl, V.,
and Wadler, P., eds.,PADL 2003, volume 2562 ofLecture
Notes in Artificial Intelligence (LNCS), 37–57.

