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Abstract

We present a decision-theoretically motivated notion of con-
traction which, we claim, encodes the principles of minimal
change and entrenchment. Contraction is seen as an opera-
tion whose goal is to minimize losses of informational value.
The operation is also compatible with the principle that in
contracting A one should preserve the sentences better en-
trenched than A (when the belief set contains A). Even when
the principle of minimal change and the latter motivation for
entrenchment figure prominently among the basic intuitions
in the works of, among others, Quine (Quine 1951), Levi
(Levi 1980) (Levi 1991), Harman (Harman 1999), and Gar-
denfors (G̈ardenfors 1988), recent formal accounts of belief
change (like AGM - see (G̈ardenfors 1988)) have abandoned
both principles (see (Rott 2000)). We argue for the princi-
ples and we show how to construct a contraction operation
which obeys both. An axiom system is proposed. We also
prove that the decision-theoretic notion of contraction can be
completely characterized in terms of the given axioms. Prov-
ing this type of completeness result is a well-known open
problem in the field, whose solution requires employing both
decision-theoretical techniques and logical methods recently
used in belief change.

Principles for Belief Change
The following principle has guided research in belief revi-
sion at least since it was sketched in (Quine 1951) and (van
O. Quine & Ullian 1978) (we use here a recent formulation
of it presented by Hans Rott and Maurice Pagnucco in (Rott
& Pagnucco 1999).)

The principle of Economy
Keep loss to a minimum in contraction.

Of course one needs to specify what is the index that is
minimized in changing beliefs. A usual way of making this
explicit is done as follows (see (Gärdenfors & Rott 1988), p.
38):

The principle of Informational Economy
Keep loss of information to a minimum in contraction.

Moreover the aforementioned principle is usually com-
plemented by the following additional principle (see
(Gärdenfors & Rott 1988), p 40):

The principle of Entrenchment
When a sentence[A] is given up from a belief set, one
should preserve the sentences better entrenched thanA.

One of the points in (Rott 2000) is to explain in some de-
tail that although many influential authors have maintained
versions of these two principles, almost no concrete theory
of belief change has endorsed them formally. Therefore in
(Rott 2000) Hans Rott proposed the radical move of aban-
doning them and constructing a theory of belief change on
the basis of alternative principles.

In this article we propose that there is nothing wrong with
the principle of Entrenchment and that the Principle of Econ-
omy admits the following sound and intuitive instance:

The principle of Economy for Information Value
Keep loss of informational value to a minimum in
contraction.

Of course, the explicit introduction of the value of infor-
mation gives the resulting models a decision theoretical fla-
vor. We argue that the project of constructing a notion of
contraction based on the joint assumption of our version of
the principle of Economy and the principle of Entrenchment
is viable (from now on we will use the term ‘Economy’ to
refer to our version of the principle). Moreover we offer
a complete characterization of such a contraction. The no-
tion of contraction that thus arises is quite different formally
from some of standards in the field, like AGM (Alchourrón
C. Gärdenfors & D. 1985), and others. Nevertheless our
decision-theoretical model characterizes the same axioms as
the ones proposed in (Rott & Pagnucco 1999) on the basis
of rather different considerations. The notion of contraction
we defend here is also one of the central notions of contrac-
tion studied by one of us (Levi) in (Levi 2004). This paper
extends and complements this work by tackling various for-
mal problems not considered in (Levi 2004). For example,
we offer here a completeness result for the aforementioned
notion of contraction. The result depends centrally on de-
veloping a representation of contraction operators in terms
of system of shells of informational value, a notion not con-
sidered in (Levi 2004). Further use of this representation,
as well as an extension of it useful for iteration, is offered



by one of us (Arĺo-Costa) in a companion paper (Arló-Costa
2004).

Operators of informational value
We will assume a classical propositional languageL as a
representational tool. We assume thatL contains the classi-
cal connectives. The underlying logic will be identified with
its Tarskian consequence operatorCn: 2L → 2L which is
assumed to obey for all subsetsX andY of L:

(Inclusion) X ⊆ Cn(X)
(Monotony) If X ⊆ Y , thenCn(X) ⊆ Cn(Y )
(Iteration) Cn(X) = Cn(Cn(X))
(Superclassicality) If A can be derived fromX by classical

logic, thenA ∈ Cn(X)

We also assume thatCn obeys the deduction theorem
and thatCn is compact. Atheory is any setK such that
K = Cn(K). Theories can be used advantageously in or-
der to representcommitments to full beliefof agents. So, our
investigation here will focus on the logic of theory change.

We understand the problem of how to contract by remov-
ingA from a theoryK to be a decision problem where one
is called upon to choose a contraction removingA from K
from among all the contraction strategies removingA from
K available in the context.

LetK be a theory (representing the current commitments
for full belief) and letLK be aminimal theorysuch that
LK ⊆ K. Thebasic partitionΠ is a set of expansions of
LK, not necessarily all of them and not necessarily all (or
some of) the maximal and consistent ones. Even when the
set of expansions ofLK constitutingΠ need not contain the
set of maximal and consistent extensions ofLK, we will re-
quire that these expansions have to be sufficiently informa-
tive in order to permit contractions of every non-tautological
sentenceA inK (which does not happen to be entailed by all
partition cells inΠ). Syntactical constraints on admissibil-
ity of partitions reflecting this requirement will be provided
below. Theultimate partitionis the subsetΠK of partition
cells ofΠ whose intersection is exactlyK. In additionΠ -
ΠK is thedual ultimate partition∆.

A potential contractionis obtainable by taking any subset
of ∆, forming its intersection and then taking the intersec-
tion of K and the result. Amaxichoice contractionof K
relative to∆ is the intersection ofK with a single element
of ∆. A maxichoice contraction ofK removingA relative
to ∆ is the intersection ofK with a single element of∆ that
entails¬A. A saturatable contractionofK removingA rel-
ative to∆ is the intersection of a maxichoice contraction of
K removingA relative to∆ with the intersection of a set of
elements of∆ none of which entail¬A.

A partition Π is decisivewith respect to a sentenceA, if
and only if every cell ofΠ either entailsA or its negation.
And a partitionΠ is decisive with respect to a set of sen-
tences if it is decisive with respect to all the sentences in the
set. A partition cell is decisive with respect to a sentence as
long as it entails the sentence or its negation. LetAt be a set
of atoms ofL such that an atomt is inAt if and only if there
is at least a cell ofΠ which is decisive with respect tot. We

will assume here as a constraint in the representation that a
partitionΠ is admissible if and only if (1) it is decisive with
respect to all the atoms inAt1 and (2) for every atomt in K
there should be at least one partition cell in∆ entailing¬t.

Any sentenceA ∈ K which is also entailed by all cells
in ∆ will be called a T-sentence. The idea is that it will be
treated as a tautology in the sense that there are no potential
contractions giving upA definable with respect toΠ. It is
clear that any admissible partition is such that for any sen-
tenceA that is not a T-sentence ifA ∈ K then there is a
cell in ∆ entailing¬A. In other words, admissible partitions
always permit to define contractions of non T-sentences of
K.

Of course, for any admissible partition there is a largest
languageL ⊆ L such thatΠ is decisive with respect to all the
atoms ofL , namely the language that has exactly the atoms
in At. Consider now such languageL . Given Π consider
ΠL = {P∩ L : P is a partition cell ofΠ}. Notice thatΠL

is such that all its partition cells are maximal and consistent
theories expressible inL . Of course none of the partition
cells in the original partitionΠ need to be a maximal and
consistent theory in the original languageL. Nevertheless
one can work withΠL without loss of generality and this is
the strategy we will adopt here.

DEFINITION 0.1 Let S(K,A) be the family of A-
saturatable sets ofK. I.e. ifK is a theory,X ∈ S(K,A) if
and only ifX ⊆ K, X is closed, andCn(X ∪ {¬A}) is an
element of the partition∆.

Now, since we are working in all cases with the partition
∆L rather than∆, the second clause in the previous defini-
tion is equivalent to say thatCn(X ∪ {¬A}) is a maximal
and consistent theory inL . Relativities toL will be tacitly
assumed from now on.

CallM the set of all maximal and consistent sets (ofL )
in the basic partition. This notation will be useful later.Φ
= {X : X = ∩Y , with Y ∈ 2∆ ∪ [K]}. Let [T ] the set of
maximals extending theoryT . Then we can now introduce
a measure of informational valueV : Φ → [0,1]. V is not
just any value function. As the terminology indicatesV is
supposed to deliver a measure of the value ofinformation.
As such we assume that it inherits some basic properties
of classical measures of information which are probability-
based. A classical manner of utilizing probability in order to
measure the content of information is to utilize the measure
Cont(.) = 1 - Prob(.) - see for example (Levi 1980) for an ac-
count of how this measure can be used in order to construct
a decision-theoretically motivated theory ofexpansion.

There are two basic properties that probability-based mea-
sures of information satisfy. First theyrespect entailmentin
the following sense:

(Weak Monotony) For any two setsX, that are elements of
Φ, such thatX ⊂ Y , V (X) ≤ V (Y ).

1In other words, if a partition cell is decisive with respect to an
atom, then all partition cells must be decisive with respect to this
atom as well.



In order to introduce the second structural property re-
spected by measures of information in general we need some
additional notation. LetX andY be two saturatable contrac-
tions inS(K,A). Any saturatable contractionS in S(K,A)
has the canonical formK ∩ TA ∩m¬A, whereTA is an in-
tersection ofA-maximals and wherem¬A is a¬A-maximal.
Following notation we introduced above, let[T ] the set of
maximals extending theoryT . For any saturatable contrac-
tion S in S(K,A) let thenS/K be TA ∩ m¬A. So, if we
have a saturatable contractionS that has been formed by in-
tersectingK with a set of maximals [S/K ] which is distinct
from the set of maximals [X/K ] and [Y/K ] used in the con-
struction of saturatable contractionsX andY (in the sense
that the the intersection of [S/K ] with [X] and [Y ] is empty)
then we callS analternativesaturatable contraction with re-
spect toX andY . With the help of these preliminaries we
can now introduce our second postulate:

(Extended Weak Monotonicity) LetX,Y be saturatable
contractions in a familyT ⊆ S(K,A). Then ifS is an
alternative saturatable contraction with respect toX andY ,
and ifV (X) ≤ V (Y ), thenV (X ∩ S) ≤ V (Y ∩ S).

The idea of this postulate is that intersecting saturatable
contractionsX andY by the same alternative saturatable
contractionZ cannot reverse the order of the informational
values ofX andZ. Most familiar measures of information
which are probability-based obey this principle (including,
of course, Cont). The trouble of measures like Cont is that
the Cont-value of the intersection of two optimal saturatable
contractions need not and, in general, will not carry max-
imum Cont-value. Nevertheless we think that it is reason-
able to follow here the standard ‘skeptical’ approach (uti-
lized in AGM and in other accounts of contraction and revi-
sion) according to which when several contractions remov-
ing A from K are optimal one should move to a position of
suspense. But, notice that the two constraints that we have
adopted so far permit the following scenario. Suppose that
S is the set of optimal saturatable contractions removingA
from K. Nothing so far prohibits to have an optimality set
S where the intersection ofS is not optimal. If this situation
were possible then the aforementioned option of moving to
a position of suspense would lack a justification in terms of
optimality. And we think that it is constitutive of the notion
of informational value we are presenting here that positions
of suspense in these situations should be recommended as
optimal. One way of guaranteeing the optimality of the in-
tersection of any finite set of optimal contractions removing
A fromK, is to require that:

(Weak Intersection Equality) For every subsetT of
S(K,A) each element of which is of equal informational
value and for everyX ∈ T , V (∩T ) = V (X).

Given a set of optimal saturatable contractions removing
A from K relative to∆, the previous principle guarantees
that its intersection is also an optimal saturatable contrac-
tion. Consider now the following important property en-
tailed by these requirements.

(Weak Min) If a finiteT ⊂ S(K,A), V (∩T ) =
min(V (X) : X ∈ T ).

Observation 0.1 Weak monotony, extended weak monotony
and weak intersection equality imply Weak Min.

Proof 0.1 Focus first on the setS(K,A). List all the satu-
ratable contractions inS(K,A) with Si and1 ≤ i ≤ k. If
T⊆ S(K,A) consider:

(P) V (∩T ) = min(V (Si) : Si ∈ T ).

(P) holds trivially for T of cardinality 1 and we should
show that if it holds for all non-empty subsets ofT if cardi-
nality n < k then it holds forT of cardinalityn + 1. Then
(P) holds for all non-empty subsets ofT of cardinalityk, i.e.
for all non-empty subsets ofS(K,A).

So, assume (P) holds for all subsets ofT of cardinality
n < k. Consider then a particular suchT and∩T ∩ Sj
with Sj 6∈ T . LetM be the set of maximal and consistent
theories entailing¬A used in order to construct staturat-
able contractions inT . We will consider the most general
case whereSj = K ∩ MA ∩ m¬A, wereMA is an inter-
section of maximal and consistent theories entailingA and
m¬A is a maximal and consistent set of sentences entailing
¬A such thatm¬A 6∈ M . We will also assume that there is
a non-empty subset of elements ofMA not used in order to
construct saturatable contractions inT . Call this subsetSA.
Notice thatX = K ∩SA∩m¬A is a contraction inS(K,A)
which cannot be inT . Moreover∩T ∩Sj = ∩T ∩X. Notice
thatX is an alternative contraction with respect to all con-
tractions inT , a fact that will be useful below. So, Weak Min
holds for∩T . LetY be a member ofT such thatV (∩T ) =
V (Y ). We need then to show thatV (∩T∩Sj) = min(X,Y ).

Consider first the caseV (X) ≤ V (∩T ) = V (Y ), where
Y is a member ofT . LetZ be a saturatable contraction en-
tailing ¬A that that does not belong toT and is distinct from
X and whereV (Z) = V (X). We also wantZ to be alterna-
tive with respect toX and the all saturatable contractions in
T . There need not be such aZ in S(K,A). If that were the
case we can always embed hypotheticallyM into a larger
setM′ in such a way that a newZ with the desired proper-
ties is added and in such a way that the original structure of
values remains unaltered by the addition ofZ. In order to
do so consider the (logically finite) underlying languageL
and its expansionL′ = L∪ t, wheret is a fresh atom not oc-
curring inL. For every theoryS in L, whereV (S) = x, and
for everyS′ overL′, such thatS′ ∩ L = S, V (S′) = x. In
addition construct an embedding partitionΠ’ containing all
thet-maximals ofL′. Now letZ be the¬t-counterpart ofX.
Add toΠ’ the corresponding¬t-counterparts of each maxi-
mal and consistent extension ofX – in such a way that each
¬t-maximal is added to the cell containing itst-counterpart.
It is obvious thatZ exists and thatV (X) = V (Z).

If T ′L′ are the saturatable contractions expressible inL′

overΠ’, it should be clear as well that if we manage to prove
thatV (∩T ′L′) = min(V (R) : R ∈ T ′L′) then the result also
shows thatV (∩T ′) = min(V (Si) : Si ∈ T ′) – the reason
being thatV (∩T ′L′ ∩L) = V (∩T ′). It is important to realize
for what follows thatZL′ is alternative both with respect to



XL′ and with respect toYL′ . In order not to inflate termi-
nology we will drop from now on the sub-indexL′.

Notice first that weak monotony guarantees thatV (X ∩
[∩T ]) ≤ V (X) ≤ V (Y ). The main supposition in this
first case together with extended weak monotony give us in
addition: V (X ∩ Z) ≤ V (∩T ∩ Z).

Now, extended weak monotony also gives us as well that
V (∩T ∩ Z) = V (∩T ∩ X). Therefore weak intersection
equality guarantees thatV (X ∩Z) = V (X). It is also easy
to see thatV (X∩Y ) = V (X), which is enough to establish
thatV (X) = V (X∩Y ) = min(V (W ) : W ∈ ∩[T∪{X}]).
This completes the proof of the first case.

For the second case considerV (∩T ) = V (Y ) < V (X).
ReplaceY in T with X. Since the result contains onlyn
contractions, the min-rule applies. Moreover, the result must
carry informational value no less than the original, it carries
informational value at least as great asY . In effect, case 2
has been converted into the first case•

The three postulates that we just introduced are thecore
postulatesof the notion of informational value used in con-
traction. Such notion is called by Levi in (Levi 2004)
dampedinformational value (as opposed to the notion of un-
damped informational value characterized by the first two
postulates - which is central in decision-theoretical charac-
terizations of expansion). We will assume as well here the
following stronger property.

(Strong Intersection Equality) For every subsetT of Φ each
element of which is of equal informational value and for
everyX ∈ T , V (∩T ) = V (X).

Strong intersection equality combined with weak positive
monotonicity and extended weak positive monotonicity im-
ply the following:

(Min) If X andY are potential contractions fromK in Φ,
V (X ∩ Y ) =min(V (X), V (Y )).

It is obvious that there are other forms of contraction para-
metrically obtainable by relaxing some of the principles that
entail Min (in particular Strong Intersection Equality). Nev-
ertheless, the form of contraction we are studying here is
salient, we would like to argue, given its compatibility with
the Principle of Entrenchment.

Shells of informational value
The assumption of the core postulates and the stronger Min
condition allows us to construct the following notion of
rank.

DEFINITION 0.2 Let I = range(V ) be a set of indices.
For x ∈ I letRx be the non-empty setX of maximals in∆
such that for everyY ⊆ X, V ((∩Y ) ∩K) = x.

Intuitively Rx groups the maximals such that the inter-
section of each of them withK has valuex. By Min the
intersection of any subset of them withK, has also valuex.

We can extend here the notion of rank, by adjudicating ranks
to propositionsP ⊆ 2∆.2

ρ+(P ) = max(y: Ry ∩P 6= ∅)

So, for [A] ⊆ 2∆, ρ([A]) = y, whereRy is the set of max-
imals of largest rank intersecting [A]. Of course, we have
then thatρ+({w}) = y whenw ∈ Ry and for everyY ⊆ Ry,
ρ+(Y ) = y.

We can now introduce the notion ofm-shell of informa-
tional value. The idea of am-shell is to group together all
the ranksRx wherex is greater or equal than the indexm.

DEFINITION 0.3 Thex-shell of informational valueSx =
∪i≥xi∈I R

i. Thesystem of shells of informational value(SS)S
is defined as:S = {Sx : ∪Sx = ∆}

It should be obvious that shells of a SS are nested. Notice
in addition that for any maximalw ∈ ∆ we do not nec-
essarily haveV (w) = ρ+(w). For, by definition,ρ+(w) =
V(K ∩w). The only constraint imposed by WM in this case
is thatρ+(w)≤ V ({w}). The equalityV (w) = ρ(w) is only
guaranteed when the intersection of any two arbitrary de-
finable theories carries the minimal value of the two. But
requiring this goes beyond our strongest assumption (Min).
So every maximal and consistent set in a SS has avalue-level
which might not coincide with its rank.

A SS for a value function V determines a grading on∆.
So, none of the maximals inΠK appear in the SS. But of
course there are some constraints relating the value of K
and the value of the sets in the SS. One important constraint
(given by WM) is thatV (K) ≥ i, whereSi is the innermost
shell ofS. ThereforeV (K) is greater than the value of any
rank inS.

With the help of the previous definitions we can now char-
acterize our operator of informational value as an operation
defined in systems of shells of informational value. We only
need an additional definition. Let a sentenceA be rejected
in K if and only if¬A ∈ K.

DEFINITION 0.4 LetA be a sentence rejected in K. Then
SA is the union of[K] with the setX ∈ S such thatX ∩
[A] 6= ∅ and for any otherY ∈ S, such thatY ∩ [A] 6= ∅,
X ⊆ Y .

SA just picks the union of[K] with the innermost shell in
the SSS for V containingA-maximals. Now we can define
some salient operators of informational value.

DEFINITION 0.5 ÷ is an operator of informational value
for a closed setK if and only if there is a selection func-
tion γ such that for allA in L: (i) if A ∈ K, thenK ÷ A
= ∩γ(S(K,A)), whereγ(S(K,A)) = {X ∈ S(K,A):
V (Y ) ≤ V (X) for all Y ∈ S(K,A)} and (ii) K ÷ A =
Cn(K) otherwise.

When the value functionV is constrained by WM, the re-
sulting operator is called abasicoperator of informational

2We will represent by [A] the proposition expressed by the sen-
tenceA, which is encoded by the set of maximal and consistent
sets of sentences extendingA. VariablesP , Q, etc. are used to
denote propositions.



value. When it obeys all core postulates the resulting opera-
tor is called acoreoperator of informational value. Finally
whenV is constrained by all cores postulates plus Min, the
resulting operator is called thestandard operator of infor-
mational value. From now on we will mainly work with
standard operators of informational value and we will use
the notation ‘÷’ to refer to them. Specific references and
clarifications will be made otherwise.3

Observation 0.2 [K ÷ ¬A] = SA

Proof 0.2 Consider a maximal and consistent theoryw,
such thatw ∈ SA∩ [A]. Let C(A) =SA−(SA∩ [A]). Notice
thatMw = ∩C(A) ∩ w is a saturatable contraction remov-
ing ¬A fromK. Mw is one of the contractions of maximal
value inS(K,¬A)). In general these contractions have the
formK ∩ z ∩ (∩S) wherez is a maximal inSA ∩ [A] and
S ⊆ C(A). In fact, it is easy to see that if either of these
conditions fails the resulting saturatable contraction cannot
carry maximal value. Say that we consider(K ∩ z ∩ (∩S))
= C ∈ S(K,¬A)), wherez ∈ [A] but z 6∈ SA ∩ [A].
Then C can be represented as(K ∩ z) ∩ (K ∩ (∩S)) where
V (K ∩ z) < V (K ∩ (∩S)). The Min rule requires there-
fore thatV (C) < V (Mw). The reasoning is similar when
S 6⊆ C(A) (in this case one has to focus on the intersection
of S with the lowest rank intersectingS). It is then clear
that the result of intersecting all the maximal contractions
in S(K,¬A)) (i.e.K ÷¬A) can be represented by just tak-
ing the intersection of all the saturatable contractions of the
formMw, withw ∈ SA ∩ [A] – the value of this intersection
is also maximal by WIE. But then it is obvious that[K÷¬A]
= SA, as desired•

Given a value functionV defined onΦ it is possible to
define the following useful relation:

DEFINITION 0.6 P ≤V Q if and only ifV (P ) < V (Q)

In particular given a theory of referenceK and a value
function this relation orders all the potential contractions for
the theoryK. Moreover, it is immediate how to retrieve a
relation≤V from the system of shells forV andK. This
can be done as follows:

Observation 0.3 If P,Q are potential contractions ofK
thenP ≤V Q if and only if there isSx andSy, such that
Sx ⊆ Sy, Rx is the minimum rank intersecting[P ] andRy

is the minimum rank intersecting[Q].

This property flows from Min. Notice that ifP ≤V Q this
is so independently of the ranks of[P ] and[Q] in the SS for
V andK. Propositions in2∆ are ordered by≤V in virtue of
an index different than its rank. In fact, ifP ⊆ 2∆ we can
define the following index of informational valueρ−:

ρ−(P ) = min(y: Ry ∩P 6= ∅)

Notice that for anyP ⊆ 2∆ we have thatV ((∩P ) ∩K)
= i(P ). NeverthelessV ((∩P ) need not coincide withi(P )

3It is important to keep in mind here that the core postulates
characterize the notion of damped informational value central to
the notion of contraction, while the first two are enough to charac-
terize the notion of informational value important in expansion.

– the theory∩P could have some value lower thanρ−(P ).
The indexρ− has some obvious properties. For example:
ρ−(P ∪Q) = min(ρ−(P ), ρ−(Q)). And the index of infor-
mational value can be combined with ranks to give a simple
definition of contraction. For anyA rejected inK:

Corollary 0.1 [K÷¬A] = ∪{P ⊆ 2∆: ρ−(P ) = ρ+([A])}
∪ [K].

In words, in order to construct [K÷¬A] we take the union
of [K] with all the propositions in2∆ such that their index of
informational value equals the rank ofA. It is quite obvious
thatSA is one of these propositions. We can now go back to
some additional properties of≤V :

Observation 0.4 (d1) Either[K÷A] ≤V [K÷B], or [K÷
B] ≤V [K ÷A]

Which, in turn, means that we can easily establish a pretty
strong property of informational value contractions, namely
that: (d1) Either[K÷A] ⊆ [K÷B], or [K÷B] ⊆ [K÷A].
This property will be used later on in the proof of our main
result.

Shells of informational value are structures which, at first
sight at least, might be easy to conflate with Spohn’sranking
systems(Spohn 1988), (Spohn 2002). A ranking functionκ
is a function fromM to the set of extended non-negative
integersN+ =N∪ {∞}, such thatκ(w) = 0, for somew ∈
M. For each propositionP ⊆ M the rank κ(P ) of P is
defined byκ(P ) = min {κ(w): w ∈ P} andκ(∅) = {∞}.

Ranks in Spohn’s system are best interpreted asgrades of
disbelief. κ(P ) = 0 says thatP is not disbelieved at all. It
does not say thatP is believed; this is rather expressed by
κ(P c) > 0, i.e., that non-P is disbelieved (to some degree).
The setCκ = {w: κ(w) = 0} is called thecoreof κ andCκ
is the strongest proposition believed (to be true) inκ. So, if
Ac is believed to be true inκ, one way of representing the
contraction ofAc from Cκ is to take the union ofCκ with
the set of least disbelievedA points, i.e.{w: κ(w) = κ(A)}.
This is a simple way of defining an AGM contraction in this
setting.

Ranking systems are different, both formally and concep-
tually from shell systems. Notice first that since we are
working with finite partitions we can define shells also with
range overN , but in our case the domain is restricted toΦ
= {X : X = ∩Y , with Y ∈ 2∆}. Moreover in the case
of rankings one proceeds by assigning first natural numbers
to points (maximal and consistent theories in this case) and
then ranks are assigned to propositions in an unproblematic
manner. In our case an assignment of values to maximal
and consistent theories does not fully determine the ranks of
contractions for a theory of referenceK. In fact, notice that
we can also define bothκ−(P ) = min {V (w): w ∈ P} and
κ+(P ) = max{V (w): w ∈ P}. The second notion is not
usually defined in Spohn’s systems. But even if we were to
use it notice that, given any propositionP in 2∆, nothing
guarantees thatκ+(P ) = ρ+(P ) or thatκ−(P ) = ρ−(P ).
As we explained before, the maximal and consistent theo-
riesw in ∆ receive a rankρ−({w}) = ρ+({w}) = x, forRx

such thatw ∈ Rx. But this rank need not coincide withw’s



value-level (measured byκ+({w}) or κ−({w})).4
In our framework the value-level of propositions is, of

course, quite useful. It puts a constraint on permissible rank-
ingsρ and it is crucial for determining iterated contractions
(and revisions). But the value-level of points (maximal and
consistent sets) does not fully determine ranks in our sense
(ρ) and the ‘upper’ and ‘lower’ point-ranksκ do not play a
significant role in our proposal. Moreover even if we were
to restrict our attention exclusively to ranks in our sense to
the detriment of value levels we would need to useboth the
‘upper’ and ‘lower’ ranksρ+ andρ−. So ranking systems
and systems of shells are quite different. Both induce an
indexed grading, but they induce gradings over different do-
mains and the algorithm for assigned grades to propositions
is different in each account. Spohn’s ranking functions as-
sign ranks to propositions identical to the degree of disbelief
of its least disbelieved points, while in our account the rank
of a propositionP (relative toK and∆) is identical to the
degree of informational value carried by theP -maxichoice
contractions ofK of maximal value. Notice that this no-
tion of ‘upper’ rank has no operative counterpart in Spohn’s
system.5

All these formal differences flow from the central fact
that the intended interpretation of grades in each account
(Spohn’s and ours) is fundamentally different. Spohn’s
account is a purely doxastic account where ranks can be
(roughly) interpreted as the orders of magnitude of infinites-
imal probabilities. As we explain above Spohn’s main
goal is to develop a non-probabilistic articulation ofdegrees
of disbelief. In our account the grades are induced by a
probability-based function measuring thevalueof informa-
tion.

Mild contractions
Here we will proceed axiomatically. The axioms used here
are well known in the literature and their names are also
more or less standard (see, for example, (Hansson 1999)).

(÷ 1) K ÷A = Cn(K ÷A) [closure]

(÷ 2) K ÷A ⊆ K [inclusion]

(÷ 3) If A 6∈ K orA ∈ Cn(∅), thenK ⊆ K ÷A [vacuity]

(÷ 4) If A 6∈ Cn(∅), thenA 6∈ K ÷A [success]
4The ‘upper’ rankκ+ and the ‘lower’ rankκ+ can be used in or-

der to determine an epistemic ordering solely on the basis of point-
value utility. The procedure, suggested by John Collins in (Collins
2002), consists (roughly) in stipulating that proposition P is pre-
ferred to proposition Q if and only if the upper rank of P is greater
than the upper rank of Q and the lower rank of P is no worse than
the lower rank of Q. Or, alternatively that the lower rank of P is
better than the lower rank of Q and the upper rank of P is no worse
than the upper rank of Q. The procedure allows for incomparabil-
ity of preference. This view of preference, nevertheless, does not
satisfy postulates that are typical of probability-based notions of
utility, like Weak Monotony, and therefore is quite different from
the one presented here.

5Such notion can, of course, be defined for Spohn’s ranking
functions as well. According to Spohn’s official interpretation the
‘upper’ rank of a proposition would be determined by the degree
of disbelief assigned to its most disbelieved points.

(÷ 6) If Cn(A) = Cn(B), thenK ÷ A = K ÷ B [exten-
sionality]

(÷ 7) If A 6∈ Cn(∅), thenK÷A⊆K÷ (A∧B) [antitony]

(÷ 8) If A 6∈ K ÷ (A ∧ B), thenK ÷ (A ∧ B) ⊆ K ÷ A
[conjunctive inclusion]

All the conditions, except antitony, are AGM properties.
On the other hand there is a notorious postulate, AGM’s ax-
iom of recovery, which is not in the previous list and that is
not derivable from the previous list:

(÷ 5)K ⊆ Cn((K ÷A) ∪ {A}) [recovery]

Antitony is perhaps the most controversial postulate from
the list. For example Hansson reports in (Hansson 1999)
that antitony does not hold ‘[...] for any sensible notion of
contraction’; while Rott and Pagnuco report in page 513 of
(Rott & Pagnucco 1999) that ‘[...] intuitively antitony makes
quite a bit of sense’.

The axiomatic base given here is exactly the one pro-
posed in (Rott & Pagnucco 1999) to characterizesevere
withdrawals. Here we will show that this axiomatic base
is indirectly supported by the intuitiveness of the postulates
of Economy and Entrenchment. This gives, in turn, indirect
support to Antitony.

A representation result for mild contractions
We will focus first on a soundness result. It is interesting to
remark that this result can be partitioned in two lemmas.

Lemma 0.1 Any basic operator of informational value
obeys postulates (÷ 1)-(÷ 4), (÷ 6) and (÷ 8).

A proof of this fact was given in (Hansson & Olsson
1995). The proof of (÷ 8) requires some work if only weak
monotony is assumed (as a matter of fact this proof is one
of the substantial arguments presented in (Hansson & Ols-
son 1995)). Things are simpler when we have an operator
of informational value which obeys the Weak Min. The use
of shells of informational value permits a more direct proof
- we will offer below a simpler proof of (÷ 8) to illustrate
this.

Lemma 0.2 Any standard operator of informational value
satisfies all the postulates of mild contractions.

Proof 0.3 Let’s first focus on Conjunctive Inclusion. As-
sume thatA 6∈ K ÷ (A ∧ B). We need to show that
K÷(A∧B)⊆K÷A. We have that[K÷A] = S¬A, i.e. we
know that[K ÷A] is identical to the smallestm-shell of in-
formational value intersecting[¬A]. And by the same token
we have that[K ÷ (A∧B)] = S¬(A∧B). Given the assump-
tion of the proof we have thatS(¬A∨¬B) ∩ [¬A] 6= ∅. This
is enough to guarantee thatS(¬A) ⊆ S(¬A∨¬B). Therefore
[K ÷A] ⊆ [K ÷ (A∧B)], andK ÷ (A∧B) ⊆K ÷A, as
desired.

Considering Antitony, we have to show that whenA 6∈
Cn(∅),K÷A⊆K÷(A∧B). So, assume thatA 6∈ Cn(∅).
We need to show thatK÷A⊆K÷ (A∧B). Or, in terms of
collections of maximals, we need to show that[K÷(A∧B)]
⊆ [K ÷ A]. So, we need to show thatS¬(A∧B) ⊆ S¬A, or,



equivalently thatS(¬A∨¬B) ⊆ S¬A. By the assumptions we
know that(A ∧B) 6∈ Cn(∅). So, since[¬A] ⊆ [¬A ∨ ¬B],
we have thatS¬(A∧B) ⊆ S¬A, as desired. Of course, as we
showed in a previous observation, the appeal to the identity
[K ÷ ¬A] = SA in the proof presupposes that our operator
of informational value obeys not only all the core postulates
but also Min, i.e. that it is a standard operator•

Aside from soundness we can also establish the following
completeness result:

Theorem 0.1 If ‘÷’ is a mild contraction function obeying
the correspondent postulates, then ‘÷’ can be represented
as an operator of informational value.

Proof 0.4 We need to show that starting with an operator÷
obeying the postulates of mild contractions we can explic-
itly construct a system of shells of informational value. We
have to show as well that the operator÷′ obtained from the
defined system of shells of informational value by requiring
[K÷′A] = S¬A, whereS¬A is the smallest m-shell of infor-
mational value intersecting¬A, is identical to÷.

Let’s first focus on how to construct a Grove system in
terms of the operation÷. The method for constructing a
Grove system from a contraction operation is well-known
(Grove 1988). So, we will only outline here the main steps of
the proof, skipping unnecessary details. The proof sketched
here follows a suitable modification of Grove’s original
proof as presented in (Rott & Pagnucco 1999). The central
idea is quite simple: a Grove system of spheresS centered
on [X], is determined by identifying a sphere inS with the
collection[X ÷A] for someA ∈ L. More precisely:

(d)XA = [X ÷A]

In addition define the system of spheresS as follows;

S = {XA: A ∈ L} ∪M, whenK 6= L, andS = {XA:
A ∈ L} ∪M∪ ∅ otherwise.

The gist of this first part of the proof consists on showing
that the systemS is indeed a Grove system of spheres cen-
tered on[X]. Since this is important for the rest of the result
we are showing, we will remind the reader immediately of
the definition of a Grove system of spheres centered on[X].

LetSbe a collection of subsets of the set of all L-maximals
ofM. S is a system of spheres, centered onX =[K]⊆ M
and satisfying:

(1) S is totally ordered by⊆.

(2) X is the⊆-minimum ofS.

(3) M is the⊆-maximum ofS.

(4) If A ∈ L and∅ 6= [A] ∈ 2M, then there is a smallest
sphereSA in S intersecting the set[A].

Condition (1) is directly satisfied in virtue of (d) above
and the fact that the following property can be deduced from
the axioms of mild contractions:

(d1) EitherK ÷A ⊆K ÷B or K ÷B ⊆K ÷A.

Conditions (÷ 2) and (÷ 3) guarantee thatK÷true = K.
This and (d) are enough to show thatX = [K] is a sphere.
That this is the innermost sphere follows immediately from
(÷ 2) and (d). This takes care of condition (2). Condition
(3) is automatically satisfied by the given definition ofS.

Condition (4) is slightly harder. LetA be such that∅ 6=
[A] ∈ 2M. Now we need to show that there is a sphereU ∈
S, such thatU ∩ [A] 6= ∅ and for every otherV ∈ S, such
that V ∩ [A] 6= ∅, we haveU ⊆ V . The basic idea of the
proof, which we skip here, is to show that[K ÷¬A] = X¬A
satisfies this constraint.

The proof of condition (4) establishes that (whenA is not
a tautology)S¬A = [K ÷ A] = XA, whereS¬A denotes
the smallest sphere intersecting[¬A] - we used basically the
same notationS. for shells above, indicating the smallest
m-shell intersecting[¬A]. This fact will be useful below.

Now we should focus on the second step of the proof,
namely the construction of a system of shells of informa-
tional value for the constructed system of spheres. Here is
the recipe in order to do so.

First construct a system of ranks out of the given system
of spheres as follows: index first spheres with natural num-
bers starting with 0 assigned to the innermost sphere in such
a way thatSi denotes the set of maximals in the sphere in-
dexed byi. This is done via an indexing function mapping
propositions to natural numbers. Then define a functionδ
from the range of the indexing function to propositions, such
thatδ(k) = Sk+1 - Sk. As a second step assign an arbitrary
V -valuex to the innermost sphere ofS, [K] as long asx is
greater thank, wherek is the index of the outermost sphere
Sk.

As a third step we need to give a value to each maximal
not included in[K]. In order to do so assign a uniform value
y > x to each maximal inδ(0) and, in general, for every
κ(i + 1), for i ≥ 0, assign a uniform valuez > z′ to the
maximals inκ(i+ 1), wherez′ is the uniform value of max-
imals inκ(i).

As a fourth step we need to define ranks andm-shells of
informational value. In order to do so we need to re-index
the ranks we just defined from the Grove system. Assign
to δ(0) a positive indexx′ < x and, in general, for every
δ(i + 1), with i ≥ 0, assign toδ(i + 1), a positive index
z, wherez < z′ and z′ is the value ofδ(i). So, for an
arbitrary δ(i), we have a positive numberm assigned to it
such thatm < x. Create then the ranks of informational
valueRmi and the corresponding shellsSmi as follows:Rmi
= δ(i) andSmi = Si. The last definition allows us to com-
plete the definition of theV -measure, by requiring that (i)
for every[Y ] ⊆ Rxi , V ((∩Y ) ∩ K) = x; (ii) that for ev-
ery [Y ] ⊆ Sxi , such thatRxi is the outermost rank such
that Rxi ∩ [Y ] 6= ∅, V ((∩Y ) ∩ K) = x; and (iii) for any
theoryT incompatible withK, let V (T ) = min(V (m) :
misamaximalandconsistenttheoryextendingK).

It is obvious thatV , as defined, is a function. It is also
clear it satisfies WM. We need to check that for any two
maxichoice contractions ofK, X,Y , such that[Y ] ⊂ [X],
thenV (X) ≤ V (Y ). LetR[X] = Rmi be the outermost rank
intersecting[X] − [K]. Then it is clear that the outermost



rank intersecting[Y ]− [K], R[Y ] = Rm
′

i′ is such thati′ ≤ i

andm′ ≥ m. Since[Y ] − [K] is a subset ofRm
′

i′ [Y ] re-
ceives valuem′, and since[X]− [K] is a subset ofRmi [X]
receives valuem. And sincem′ ≥ m, weak monotony is
satisfied.

Consider nowY = ∩X, whereX is a family of maxi-
choice contractions ofK, and its associated set[Y ]. Con-
sider again the outermost rank intersecting[Y ]− [K],R[Y ]

= Rmi . Then according to the proposed explicit definition
of V , V (Y ) = m. Take now an arbitraryZ ∈ X such that
[Z] − [K] does not intersectR[Y ]. Then, by construction,
V (Y ) < V (Z). And if[Z]−[K] intersectsR[Y ], V (Z) = m.
So, clearly we do have thatV (Y ) = min{V (Z) : Z ∈ X}.

Finally we need to check that an operation of contraction
÷′ defined from the explicitly constructed system of shells of
informational value, coincides with the operator÷ charac-
terized by the postulates of mild contractions. We will de-
fine:

[K ÷′ ¬A] = SA

whereSA is the smallestm-shell of informational value
intersecting[A] union [K]. The non-trivial case to consider
is whenA is not a tautology. We will work under this as-
sumption. Assume first thatB ∈ K ÷ ¬A. This entails that
[K ÷ ¬A] ⊆ [B]. The proof of condition (4) for Grove sys-
tems above tell us that[K÷¬A] is a sphere, and since in our
construction all the resultingm-shells are the spheres that
we constructed in the first step of the proof (conveniently in-
dexed and where[K] has been substracted),[K÷¬A]− [K]
is also anm-shell of informational value. Moreover, the
proof of (4) also tells us that the smallest sphere overlap-
ping [A] is identical to[K ÷ ¬A]. Therefore the smallest
m-shell of informational value overlapping[A] is identical
with [K ÷¬A]− [K]. Therefore we have that[K ÷′ ¬A] ⊆
[B], andB ∈ K ÷′ ¬A, as desired. Proving thatK ÷′ ¬A
⊆K ÷ ¬A only requires reversing the strategy used for the
RTL inclusion•

The Principle of Entrenchment and
informational value

So far nothing has been said about the Principle of Entrench-
ment invoked in the introduction. Let’s first introduce a re-
lation of entrenchment formally. Let≤ be an ordering of the
sentences of L.≤ is a relation of entrenchment for a theory
K if and only if the following postulates are satisfied

(i) If A ≤ B andB ≤ C, thenA ≤ C (transitivity)

(ii) If A ∈ Cn(∅), thenB ≤ A (dominance)

(iii) A ≤ A ∧B orB ≤ A ∧B (conjunctiveness)

(iv) If K 6= L, thenA ≤ B for everyB ∈ L if and only if
A 6∈ K (minimality)

(v) If A ≤ B for everyA ∈ L, thenB ∈ Cn(∅)
Now, we remind the reader that our principle of entrench-

ment said that in giving up a sentenceA from the current
view one should preserve the sentences better entrenched
thanA. This translates formally into:

DEFINITION 0.7 If A ∈ K andA 6∈ Cn(∅), thenK ÷ A
= K ∩ {B : A < B} andK otherwise.

This simple and elegant manner of characterizing contrac-
tion in terms of entrenchment was first proposed by Rott
in (Rott 1991). AGM cannot be characterized in terms of
entrenchment in this way. The non-equivalent bridge con-
necting entrenchment and AGM contractions stipulates that:
K ÷A =K ∩ {B : A < A ∨B}
Observation 0.5 (Rott and Pagnuco) If≤ satisfies the pos-
tulates (i) to (v) then the function÷ obtained from≤ by
definition 5.1 is a mild contraction.

Therefore, via the completeness result offered above, the
informational value contractions can be retrieved by using
the Principle of Entrenchment. Moreover, we can also ap-
peal to a result recently proved by Rott and Pagnuco (and
to our completeness result) in order to retrieve the relevant
notion of entrenchment from an informational value contrac-
tion.

DEFINITION 0.8 If A ≤ B if and only ifA 6∈ K ÷ B, or
B ∈ Cn(∅).
Observation 0.6 (Rott and Pagnuco) If÷ is a mild contrac-
tion then the relation≤ obtained via definition 5.2 satisfies
the postulates (i) to (v) for the entrenchment relation.

So, the Principle of Entrenchment and the Principle of
Economy give exactly the same account of contraction.
AGM contractions are also mirrored by a corresponding no-
tion of entrenchment, but this notion does not obey the Prin-
ciple of Entrenchment. One of the consequences of this
divergence is the fact that AGM contractions satisfy the
controversial principle of recovery, which is not satisfied
by mild contractions (alias severe withdrawals according to
Rott and Pagnuco’s terminology).

Conclusions
The article focuses on determining the logical commitments
entailed by our formulation of the principle of Economy (in
terms of informational value) and the principle of Entrench-
ment. Together they give a holistic justification of the ax-
ioms of mild contractions. We pointed out above, neverthe-
less, that the principle of Economy is more accommodat-
ing than the principle of Entrenchment. In fact, minimizing
loses of informational value under the constraints imposed
by the three core postulates of (damped) informational value
is coherent with endorsing our version of Economy. But this
does not guarantee the satisfaction of:

(÷ 7) If A 6∈ Cn(∅), thenK÷A⊆K÷ (A∧B) [antitony]

In order to satisfy Antitony we need to assume in addition
the full force of Min. One could justify Min (and therefore
Antitony) by pointing out that this is exactly the requirement
that is needed in order to have a theory of contraction where
both Economy and Entrenchment are satisfied.

Apparent counterexamples against Antitony are easy to
concoct, nevertheless, by considering scenarios where the
sentencesA andB (in the formulation of Antitony) express
propositions that in some pre-systematic sense are irrelevant



to each other. The serious study of these apparent coun-
terexamples requires nevertheless a minimal articulation of
the notion of relevance presupposed by the examples. Even
when formalizing a notion of relevance is a complicated
problem in itself, there are some proposals in the literature
that articulate precisely the degree of relevance that two for-
mulas might have to each other (Chopra & Parikh 2000),
(Parikh 1999). It should be pointed out here in passing, nev-
ertheless, that an unmodified version of our model is not in-
sensitive to the problem of relevance. The theory of contrac-
tion we are proposing has various contextual parameters that
are useful for this problem. In particular the space of options
M is determined by the adoption of a basic partition encod-
ing a set of potential answers to a problem. So our model,
like some of the existing syntactic approaches to the problem
of relevance focuses on certain relevant (syntactic) partitions
of the set of all expansions of the basic theoryLK. Unlike
most of the existing theories of belief change we restrict the
set of potential options and the set of potential contractions
to a set relevant to the solution of a cognitive problem from
scratch. So, counterexamples in terms of relevance are not
crucially threatening to the theory presented here. In any
case, it is important to realize that potential counterexamples
against Antitony do not seem to threaten the core postulates
(i.e. the notion of informational value) but the full force of
Min.

There are some obvious extensions of our proposal and
some ways of weakening it as well. An obvious extension is
the consideration of the infinite case. In this case the density
of the real interval[0, 1] is important. Otherwise we can
as well define a value function with range over the natural
numbers. In addition, it would be interesting to study the
shape of sequential change of view in this setting. It is also
clear that more expressive languages (taking advantage of
the numerical features of the semantics in terms of system
of shells) can also be studied.

Concerning weakenings of the proposed theory, when
Min fails there are a variety of possible contraction theories
obeying the core postulates. Their parametric study can help
to identify the constraints on value that completely charac-
terize variouswithdrawal operators. Finally it would be in-
teresting to study the more realistic case which permits value
to be indeterminate (we conjecture that this is also a weak-
ening of the theory that leads to the failure of Antitony).
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