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Abstract

Probabilistic reasoning with multiply sectioned Bayesian net-
works (MSBNs) has been successfully applied in static do-
mains under the cooperative multiagent paradigm. Prob-
abilistic reasoning in dynamic domains under the same
paradigm involves several issues. This paper proposes an ap-
proach to address these issues. Intuitively, observation on cur-
rent state plays a more important role in the reasoning of the
current state than remote historic information. Based on the
intuition, we model the entire domain for a period of time into
an MSBN and then reason about the state of the dynamic do-
main period by period exactly. In reasoning the state of a sus-
pected entity, we compute and observe an observable Markov
boundary of the entity. This makes observation more efficient
and relevant. In MSBNs, an observable Markov boundary of
a node may span across all Bayesian subnets. We present
an algorithm for cooperative computation of an observable
Markov boundary of a set of nodes in MSBNs without re-
vealing subnet structures. Preliminary experiments show the
approach works well on our simulated multiagent dynamic
domains.

Introduction
Bayesian networks (BNs) (Pearl 1986; 1988; Castillo,
Gutierrez, & Hadi 1997; D’Ambrosio 1999) and dynamic
Bayesian networks (DBNs) (Dean & Kanazawa 1988; 1989;
Kjaerulff 1992; Murphy 2002) have been widely accepted as
the respective graphical models for uncertain reasoning in
static domains and dynamic domains under the single agent
paradigm. Multiply sectioned Bayesian networks (MSBNs)
(Xiang, Poole, & Beddoes 1993; Xiang & Lesser 2000;
Zhang, Tian, & Lu 2001; Xiang 2002) have been success-
fully applied in static domains under the cooperative mul-
tiagent paradigm. This paper introduces cooperative mul-
tiagent probabilistic reasoning into distributed dynamic do-
mains. Probabilistic reasoning in dynamic multiagent en-
vironments can be applied in many areas such as distributed
monitoring and troubleshooting, workflow and business pro-
cess management (e.g. logistics, manufacturing), informa-
tion retrieval and management (e.g. cooperating internet
agents), electronic commerce, and virtual environments (e.g.
multi-robot environments).

It has been shown that the decomposed representation
of joint probability distributions (JPDs) may not be well
supported in dynamic domains (Boyen & Koller 1998;

Xiang 1999; Bilmes & Bartels 2003). It is also demon-
strated that the spatial distribution of the multiagent systems
conflicts with temporal message passing for dynamic multi-
agent probabilistic reasoning (Xiang 2002; An 2003). These
issues do not allow each agent to obtain historic informa-
tion separately and benefit from each other’s knowledge up
to the relevant history. Intuitively, observation on current
state plays a more important role in the reasoning of the cur-
rent state than remote historic information. Based on the
intuition, we model the entire domain for a period of time
into an MSBN and then reason the state of the dynamic do-
main using the MSBN period by period. By this way, the
state of the domain in each period can be reasoned about ex-
actly. Regarding how long the period should be, there must
be a trade-off between taking advantage of historic informa-
tion and reducing computational complexity. In reasoning
the state of an entity, we compute and observe an observ-
able Markov boundary of the entity. This makes observation
more efficient and relevant. Since an observable Markov
boundary of a node may span across all Bayesian subnets of
an MSBN, we provide an algorithm to cooperatively com-
pute an observable Markov boundary without revealing pri-
vate subnet structures. The approach is tested on our simu-
lated dynamic multiagent domains.

The rest of the paper is organized as follows. Section 2
overviews MSBNs. Section 3 proposes to extend MSBNs
to dynamic domains for cooperative multiagent probabilis-
tic reasoning. Issues related with the uncertain reasoning
using the extended MSBNs are simply reviewed. Section 4
proposes an approach to deal with these issues. Section 5
examines Markov boundaries in MSBNs and provides an al-
gorithm to compute an observable Markov boundary of a set
of nodes in an MSBN. Section 6 demonstrates the approach
over a simulated dynamic domain. Conclusion is presented
in Section 7.

Multiply Sectioned Bayesian Networks
A multiply sectioned Bayesian network (MSBN) is a knowl-
edge representation formalism for cooperative multiagent
uncertain reasoning (Xiang 1996). The framework allows
a large domain to be modeled modularly and the effective
inference to be performed distributedly while maintaining
the coherence (Koller & Pfeffer 1997).

An MSBN consists of a collection of Bayesian subnets



each of which encodes an agent’s knowledge on a subdo-
main. All agents are organized into a junction tree (JT)
(Lauritzen & Spiegelhalter 1988; Castillo, Gutierrez, &
Hadi 1997) structured communication graph called hyper-
tree where each hypernode represents an agent and each hy-
perlink, also called an interface, represents a pathway for
direct inter-agent communication. An interface is a set of
shared nodes between any two adjacent agents, which is
analogous to a separator in the single agent JT. The union
of all agents is a larger Bayesian network (BN).

Definition 1 Let G = (V,E) be a connected graph sec-
tioned into subgraphs {Gi = (Vi, Ei)}. Let these subgraphs
be organized into a tree Ψ where each node, called a hyper-
node, is labeled by Gi and each link between Gi and Gj ,
called a hyperlink, is labeled by the interface Vi ∩ Vj such
that for each pair of nodes Gl and Gm, Vl∩Vm is contained
in each subgraph on the path between Gl and Gm. The tree
Ψ is called a hypertree over G.

Therefore, if each hypernode Gi is considered a cluster
over Vi, the hypertree Ψ is a junction tree which satisfies the
running intersection property (Castillo, Gutierrez, & Hadi
1997).

Definition 2 Let G be a directed graph such that a hyper-
tree over G exists. A node x contained in more than one
subgraph with its parents π(x) in G is a d-sepnode if there
exits a subgraph that contains π(x). An interface I is a d-
sepset if every x ∈ I is a d-sepnode.

On d-sepset, we have the following conclusion (Xiang
2002).

Theorem 3 Let Ψ be a hypertree over a directed graph
G = (V,E). For each hyperlink I which splits Ψ into two
subtrees over U ⊂ V and W ⊂ V respectively, U \ I and
W \ I are independent given I if and only if the hyperlink I
is a d-sepset.

Definition 4 A hypertree MSDAG G =
⋃

i Gi, where each
Gi = (Vi, Ei) is a directed acyclic graph (DAG), is a con-
nected DAG such that there exists a hypertree over G and
each hyperlink is a d-sepset.

An MSBN consists of its structure as defined above as
well as its numerical probability distributions. The follow-
ing definition of an MSBN specifies how the numerical dis-
tributions are associated with the structure.

Definition 5 An MSBN M is a triplet (V,G,P). V =⋃
i Vi is the total universe where each Vi is a set of vari-

ables, called a subdomain. G =
⋃

i Giis a hypertree MS-
DAG where nodes of each subgraph Gi are labeled by el-
ements of Vi. Let x be a variable and π(x) be all parents
of x in G. For each x, exactly one of its occurrences (a Gi

containing {x}∪π(x)) is assigned P (x|π(x)), and each oc-
currence in other subgraphs is assigned a unit constant po-
tential. P =

∏
i Pi is the JPD where each Pi is the product

of the potentials associated with nodes in Gi. Each triplet
Si = (Vi, Gi, Pi) is called a subnet of M . Two subnets Si

and Sj are said to be adjacent if Gi and Gj are adjacent in
the hypertree.

Figure 1 illustrate an MSBN with a trivial MSDAG, where
each box represents the DAG of one agent. The correspond-
ing hypertree is depicted in Figure 2. The interfaces between
G0 and G1, between G1 and G2, and between G1 and G3 are
{x, z}, {x, y} and {u, v}, respectively. All these interfaces
are d-sepsets because π(x) ⊆ V1, π(z) ⊆ V0, π(y) ⊆ V2,
π(u) ⊆ V1 and π(v) ⊆ V1, where Vi denotes the set of nodes
in Gi. If an interface is not a d-sepset, the interface won’t
render the subdomains in the two induced subtrees condi-
tionally independent. Therefore, the hypertree used to orga-
nize all Bayesian subnets in an MSBN is actually a junction
tree to facilitate message passing among agents over inter-
faces.
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Figure 1: An MSBN with a trivial MSDAG.
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Figure 2: The hypertree for the MSDAG in Figure 1.

MSBNs provide a framework for probabilistic reason-
ing in cooperative multi-agent distributed interpretation sys-
tems. In an MSBN, each agent holds its partial perspective
of a large problem domain, accesses a local evidence source
(sensors), communicates with other agents infrequently, rea-
sons with local evidence and limited global evidence, and
answers queries or takes actions. Agents are cooperative in
that the joint system belief is well defined which is identi-
cal to each agent’s belief within its subdomain and supple-
mental to the agent’s belief outside the subdomain (Xiang
1996). Even though multiple agents may acquire evidence
asynchronously in parallel, the communication operations of
MSBNs ensure that the answers to queries from each agent
are consistent with all local evidence acquired so far and are
consistent with all evidence gathered in the entire system up
to the last communication.

Dynamic Multiagent Probabilistic Reasoning
Dynamic MSBNs
Multiply sectioned Bayesian networks have been success-
fully applied as a graphical model for probabilistic reason-
ing in static domains under the distributed and multiagent



paradigm. We propose to introduce probabilistic reasoning
into distributed dynamic multiagent domains by extending
MSBNs.

We propose at each time instant a dynamic multiagent do-
main is modeled with an MSBN. All MSBNs over all time
instants are called a dynamic MSBN. The MSBN over one
time instant is called a slice of the dynamic MSBN. In a
dynamic MSBN, there exists a DBN corresponding to each
subdomain where the uncertain knowledge at each time in-
stant is represented by a BN. In each subdomain, the inter-
face between two consecutive Bayesian subnets is called a
slice subinterface and all slice subinterfaces between two
consecutive slices form a slice interface of the dynamic
MSBN.
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Figure 3: An MSBN extended over a dynamic domain: (a)
The MSBN over two subdomains G0 and G1 before exten-
sion; (b) The extended MSBN over two time instants 0 and
1.

Figure 3 shows a two agent MSBN extended over a dy-
namic domain. The structure of one slice of the dynamic
MSBN is shown in (a) and the first two consecutive slices
of the extended MSBN are shown in (b). The temporal de-
pendencies are signified by the arcs (a0, a1) and (g0, g1) re-
spectively. A DBN is formed in each subdomain.

Now we have a model to represent the distributed knowl-
edge in dynamic multiagent systems. However, agents have
difficulty to obtain historic information separately and ben-
efit from each other’s knowledge up to the relevant history.

Issues
Decomposition Issue It has been shown that the decom-
posed representation of joint probability distributions (JPDs)
may not be well supported in dynamic domains. Due to
temporal dependencies, the variables in one slice may be-
come fully correlated very early in time (Boyen & Koller
1998). In general, the state of a dynamic domain can be rea-
soned about using a JT template. The JT template should
be obtained by triangulating the DBN in an temporal order
(e.g. by always eliminating earlier nodes first) (Xiang 1999;
Darwiche 2001; Bilmes & Bartels 2003). In a JT template
such obtained, the slice interface members would be com-
plete (Xiang 1999; Bilmes & Bartels 2003).

All these would be true when probabilistic reasoning are

applied in dynamic multiagent domains. That is, all vari-
ables in the domain may become fully correlated very early
in time and slice interface members may become complete
if triangulation is done chronologically.

Distribution Issue We could not reason about a large dy-
namic domain over an unbounded time period directly by
treating the domain as a static domain. Ideally, we would
like each agent to maintain its belief on its subdomain for
the current time instant and all agents to be able to ben-
efit from each other’s knowledge up to the relevant his-
tory. However, each agent cannot propagate its belief on
its subdomain from one time instant to next time instant
separately, even when Markovian property holds in the dy-
namic domain as a whole (An 2003). Actually, the message
passing separately in each subdomain constructs the mes-
sage passing in non-degenerate cycles (loopy belief prop-
agation). It has been shown coherent belief updating can-
not be achieved in a cluster graph with non-degenerate
cycles, no matter how message is passed (Pearl 1988;
Murphy, Weiss, & M.I.Jordan 1999; Xiang & Lesser 2000;
Crick & Pfeffer 2003). Intuitively, message passing sepa-
rately in each subdomain loses the dependency information
among all messages passed over the slice subinterfaces. We
have difficulty to pass exact probabilistic message distribut-
edly. Further more, in each slice of a dynamic MSBN, the
agent interfaces may not separate the two subdomains they
connect (Xiang 2002).

This shows that exact multiagent probabilistic reasoning
over unbounded time periods cannot be achieved by main-
taining agent belief over a finite time. This further implies
that the spatial distribution of the multiagent systems con-
flicts with the temporal dependency of the dynamic domains
for the probabilistic reasoning.

Local Inference
In dynamic multiagent domains, agents have difficulty to ob-
tain historic information separately and benefit from each
other’s knowledge up to the relevant history for probabilistic
reasoning. Both history information and the observation of
the current state are helpful in the reasoning of the current
state of a dynamic domain, but most times observation of
the current state may play a more important role. For exam-
ple, historical health information is useful in current med-
ical therapy, but observation on current health state would
be more helpful. Given current observation, some history
information may become independent of the current state.
Especially, it is possible belief revision from old unreliable
observation can be corrected by new observation (Friedman
& Halpern 1996; Boutilier, Friedman, & Halpern 1998).

Hence, we propose to tackle all those issues by model-
ing each k-slices of a dynamic MSBN into an MSBN M .
For each new k-instant period, the initial prior belief of the
first k-instant period is taken. There is not any message
passing between two consecutive periods. The state of each
period can be reasoned about exactly by the MSBN model
M . Then the state of the dynamic domain can be reasoned
about period by period. Therefore, in each period, there is
no need for separate forward message passing in each sub-



domain. Between any two adjacent subdomains, the agent
interface in M would include all corresponding interfaces
over the period. For example, Figure 3 (b) shows a dynamic
MSBN over two time instants 0 and 1. We can model the two
slices of the dynamic MSBN into an static MSBN whose
two Bayesian subnets are G′

0
and G′

1
. The interface between

two subdomains would be {d0, e0, d1, e1}. The ”separation”
property of such agent interfaces could be affected by tem-
poral dependencies between current period and previous pe-
riods. We ignore the message between two consecutive pe-
riods. Intuitively, the remote history information could be
ignored. It has been shown that, in a static domain, the in-
fluence of evidence would become weakened over distance
(de Campos & Fernandez-Luna 2002). Corresponding to
dynamic domains, the longer the time, the farther the dis-
tance, the weaker the influence. The influence of temporal
dependencies between two consecutive periods on ”separa-
tion” property of the agent interfaces in one period MSBN
could become weakened over time and be ignored.

By this approach, we inherit information from the most
recent history and ignore effects of the remote history. We
rely more on the observation than on the remote history.

Markov Boundary in MSBNs
Due to the limitation of bandwidth, we may not be able to
observe all observable variables. We may have to observe
most relevant variables. MSBNs are usually used to model
large and complex domains, so the number of variables in an
MSBN should be large and the topology of an MSBN would
be complex. It should not be very easy to find variables most
relevant to a suspected entity. For example, it is possible we
may choose to observe a variable which appears to be rele-
vant to the state of another variable but actually not (Xiang
2002).

In a BN, a Markov boundary B(α) of a variable α ∈ U is
a minimal subset S ⊆ U of variables that makes the state of
α independent of any variables outside the boundary. That
is, it makes I(α, S, U \ S \ {α}) hold. Hence, its Markov
boundary members would be the most relevant and helpful
variables to observe in reasoning the state of a variable. For a
variable α in a BN, one of its Markov boundaries is the union
of its parents, its children and the parents of its children.

Markov Boundary over a Node
For a node α in an MSBN, its Markov boundary members
may exist in one Bayesian subnet, or in several Bayesian
subnets.

If α is a private node which uniquely exists in only one
Bayesian subnet N , its Markov boundary members could
be private nodes in N or shared (d-sepset) nodes with any
other than N subnets. For example, in Figure 3 (b), node g1

in subnet G′

1
is a private node. Its Markov boundary con-

tains nodes d1, e1, f1 and g0 where d1 and e1 are shared
nodes. Nevertheless, they must all exist in the Bayesian sub-
net N where α exists. This is because both α’s parents and
children won’t be private nodes in Bayesian subnets other
than N (they are at most shared nodes with N ’s adjacent
subnets), and its children won’t have any parents in subnets

other than N but not shared with N (Theorem 3). Hence, in
this case, the agent over N can compute α’s Markov bound-
ary in N and then informs its adjacent agents of any shared
nodes which are boundary members. For an entity, we call
the subdomain where it physically exists its host subdomain
and corresponding agent its host agent. If a node is a private
node, the unique subdomain where it exists is its host sub-
domain and corresponding agent its host agent. If a node is
a shared node, the subdomain where it physically exists is
its host subdomain and corresponding agent its host agent.
A node can only be observed by its host agent.

If α is a shared node, the nodes in its Markov boundary
could be private nodes or shared nodes. They may exist in
several of all the Bayesian subnets of an MSBN M . All its
parents in M should exist in one subdomain. Its children
and the parents of its children could exist across all subdo-
mains of M . However, any of its Markov boundary mem-
bers should appear in one subdomain containing α. If any
β of its Markov boundary members does not appear in any
subdomains that contain α, then there does not exist a sub-
domain that contains both α and β. This implies there exists
at least one extra node on any path between α and β. It is
not true if β is a parent or a child of α. If β is a parent of a
child of α, then there should be a subdomain containing both
α and β (d-sepset). For example, e1 in Figure 3 is a shared
node between two adjacent subnets. We start the compu-
tation of its Markov boundary from subnet G′

1
because G′

1

contains all parents of e1. Hence, g1 would be one of its
Markov boundary members. The child b1 of e1 and the par-
ents a1 and d1 of b1 exist in subnet G′

0
where d1 is a shared

node. Therefore, each of the agents over subdomains con-
taining α should list all parents and all children of α and all
parents of α’s children as the Markov boundary members
of α. Then all shared Markov boundary members could be
distributed to corresponding adjacent agents for observation.

Observable Markov Boundary over a Set of Nodes
Sometimes, all of a set of neighbouring nodes related with
a suspected entity may not be observable. We may have
to compute the Markov boundary over the set of nodes.
For example, in Figure 3 (b), initially we want to com-
pute the Markov boundary of node g1. The Markov bound-
ary would be {d1, e1, f1, g0} if observabilities are not con-
sidered. However, if we assume g0 is unobservable, we
may have to further compute the Markov boundary of both
g0 and g1. If all other nodes are assumed to be ob-
servable, then the Markov boundary of {g0, g1} would be
{d0, e0, f0, d1, e1, f1}. All members in the boundary are the
most relevant variables we could observe to determine the
state of g1. Sometimes, Markov boundary may expand out-
side a subnet in an MSBN. For example, in Figure 3, we
assume f0 is unobservable and its Markov boundary over
the MSBN would be {d0, g0} if they are observable. How-
ever, if we assume d0 is unobservable, the Markov boundary
would expand outside G′

1
and becomes {g0, c0, b0, a0, e0}.

In particular, if we further assume a0, a1, c1 and d1 are un-
observable, the Markov boundary would expand back to G′

1

to include f1 and g1. Therefore, a Markov boundary of a
node could be expanded over and over again until it becomes



stable.

Computation of the Observable Markov Boundary
in MSBNs
Algorithms 1, 2, 3, 4, 5 and 6 are a suite of algorithms to
compute observable Markov boundary of a set of unobserv-
able nodes H in an MSBN M of n subnets. In these algo-
rithms, we say a node observable in whole domain if it can
be observed by one agent, although an observable node can
only be observed by its host agent. In particular, each agent
should keep a list of Markov boundary members of H it can
observe in its subdomain, called a partial Markov boundary
of H in the subdomain, for observation in inference. Algo-
rithm 3 computes Markov boundary of a set of nodes in a
Bayesian subnet. Algorithm 2 expands the boundary across
subnets until the boundary becomes stable. Algorithm 1
makes some initialization and calls Algorithm 2. Algorithm
4 calls Algorithms 5 and 6 to distribute all shared Markov
boundary members recursively to corresponding agents. Al-
gorithm 3 marks any node checked to ensure each node will
be checked at most once. Hence, the computational com-
plexity of the algorithm would be O(mn), where m is the
number of nodes in the largest subnet of M .

Algorithm 1 (ComputeMarkovBoundary) Let H be a
set of unobservable nodes in an MSBN M . Let S1, S2, ...,
Sn be n subnets of M over subdomains V1, V2, ..., Vn, re-
spectively. Let A1, A2, ..., An be the corresponding agents
over the subnets. Let B1, B2, ..., Bn be the respective
partial Markov boundaries of α in subnet S1, S2, ..., Sn,
respectively.

First, the system coordinator does the following:

for each agent Ai (i = 1, 2, ..., n), do
set Bi = ∅;
create a set Ti;
set Ti = Vi ∩ H;

Then, the system coordinator calls ExpandMarkovBoundary;

Algorithm 2 (ExpandMarkovBoundary) Denote all ad-
jacent agents of an agent Ac by Ak1, Ak2, ..., Akc. Denote
the set of unobservable nodes reached by each agent in
ComputePartialMarkovBoundary by Z1, Z2, ..., Zn.

Each Ac of all agents (A1, A2, ..., An) whose corre-
sponding Tc 6= ∅ does the following:

run ComputePartialMarkovBoundary;
for each adjacent agent Ai (i = k1, k2, ..., kc) of Ac, do

pass the shared nodes in Zc ∩ Vi to Ti of Ai;
call Ai to remove any marked nodes from Ti;

if all Ti’s (1 ≤ i ≤ n) are ∅’s, do
call UnifyMarkovBoundary;
halt;

otherwise restart the algorithm;

Algorithm 3 (ComputePartialMarkovBoundary) Let
Ti be a set of unobservable nodes in subnet Si, Agent Ai

does the following to compute observable partial Markov
boundary of Ti in Si:

mark all nodes in Ti and set Zi = Ti;
while Ti is not empty, do

pick β ∈ Ti randomly and set Ti = Ti \ {β};
for each unmarked member γ of Markov boundary of β, do

if γ is observable, set Bi = {γ} ∪ Bi ;
otherwise, do

set Ti = {γ} ∪ Ti and set Zi = {γ} ∪ Zi;
mark γ;

Algorithm 4 (UnifyMarkovBoundary) The system coor-
dinator selects an agent Ar to run CollectMarkovBoundary
in Gr. After it finishes, Ar runs DistributeMarkovBoundary
in Gr. Finally, each agent Ai removes nodes it cannot
observe from Bi;

Algorithm 5 (CollectMarkovBoundary) Denote all adja-
cent agents of an agent Ac by Ak1, Ak2, ..., Akc. Agent Ac

does the following:

for each adjacent agent Ai (i = k1, k2, ..., kc) except caller, do
call Ai to run CollectMarkovBoundary;
Ac absorbs Bi ∩ Vc to Bc;

Algorithm 6 (DistributeMarkovBoundary) Denote all
adjacent agents of an agent Ac by Ak1, Ak2, ..., Akc. Agent
Ac does the following:

for each adjacent agent Ai (i = k1, k2, ..., kc) except caller, do
pass Bc ∩ Vi to Bi of Ai;
call Ai to run DistributeMarkovBoundary;

By this way, the Markov boundary of a set of nodes can
be computed across all subdomains through message pass-
ing over shared nodes only. This is a good property. Under
the multiagent paradigm, each agent may be constructed by
an independent vendor who embeds the know-hows about
a subdomain into the agent. The vendor may not be will-
ing to reveal the know-hows when the agent is integrated
into a multiagent MSBN. To protect the know-hows of such
vendors, it is desirable not to force each agent to reveal its
internal structures.

We are going to demonstrate the computation of the ob-
servable Markov boundary of an unobservable node c in sub-
net G1 shown in Figure 1. We assume nodes a, e, f, d and
z are unobservable. We also assume A0 is the host agent
of {a, b, z}, A1 is the host agent of {c, v, x}, A2 is the host
agent of {e, f, y} and A4 is the host agent of {d, u}. Since c
is a private node, only T1 = {c} is not empty after initializa-
tion. Then agent A1 runs ComputePartialMarkovBoundary



in G1. The observable partial Markov boundary of c in G1

would be B1 = {x, u, v, y}. Node z is a Markov boundary
of c. It is not in B1 because it is unobservable. Hence, Z1 =
{z, c}. Node z is a node shared with agent A0, so agent A1

passes z to T0 of A0. Since A1 does not have any unob-
servable nodes in Z1 shared with agents A2 and A3, noth-
ing is passed to A2 and A3. Since T0 is not empty, restart
ExpandMarkovBoundary. Agent A0 runs ComputePartial-
MarkovBoundary in G0. The observable partial Markov
boundary of c in G0 would be B0 = {b, x}. Node a is
unobservable, so it won’t be in B0. Therefore, Z0 = {z, a}.
A0 passes z back to A1. Since z was marked by A1 al-
ready, T1 becomes ∅ after A1 removes marked nodes. Until
now, T0, T1, T2 and T3 are all empty. UnifyMarkovBound-
ary is called to distribute all observable Markov boundary
members to corresponding agents. The distribution can be
started from any one agent. For example, we can start from
agent A0. Agent A0 calls A1 and A1 calls A2 and A3 to
run CollectMarkovBoundary. A1 get nothing from A2 and
A3. A0 union B1 ∩ V0 = {x} to B0. Since x is already
in B0, B0 does not change. Then agent A0 is called to run
DistributeMarkovBoundary. It passes B0∩V1 = {x} to B1.
Since x is in B1, B1 does not change. A1 is then called to
run DistributeMarkovBoundary. It passes B1 ∩ V2 = {u, v}
to B2 of A2 and B1∩V3 = {x, y} to B3 of A3. Finally, after
each agent removes all nodes for which it is not host agent
from the respective partial Markov boundary, the observable
partial Markov boundaries of c in subnets G0, G1, G2, and
G3 are respectively:

B0 = {b, x} \ {x} = {b},

B1 = {u, v, x, y} \ {u, y} = {v, x},

B2 = {x, y} \ {x} = {y}, and

B3 = {u, v} \ {v} = {u}.

Hence, over the MSBN, the Markov boundary of c is B =
B0 ∪ B1 ∪ B2 ∪ B3 = {b, u, v, x, y}.

Preliminary Experiments
Dynamic Domain
We shall demonstrate the approach on a sequential digital
circuit simulator, which can construct a sequential digit cir-
cuit and simulate its running (An, Xiang, & Cercone 2003).
The simulator supports multiagent inquires.

We use digital circuits as our test beds because they re-
quire little extra knowledge for the professionals in IT to
understand. Perhaps this is one of the major reasons why
digital electronics has been the source of problems for many
researchers in diagnosis (Davis 1984; Genesereth 1984;
de Kleer & Williams 1987; Poole 1993; Srinivas & Horvitz
1995; Xiang 1999; Xiang, Olesen, & Jensen 2000; Xiang
2002). A digital circuit system is intended to work deter-
ministically, but the failure behavior is uncertain. Hence, the
use of a digital domain does not diminish the number of gen-
eral issues related with uncertain reasoning. Further more,
the complexity in modeling and inference using probabilis-
tic graphical models grows as the degree of network nodes
increases and the number of loops in the network increases.

In digital system, the former corresponds to the number of
inputs and outputs for a particular gate or device, and the lat-
ter is reflected in the circuit topology. A digital system may
be combinatorial or sequential. In a combinatorial circuit,
output values depend only on the input values, whereas in a
sequential circuit output values depend also on the internal
state of the circuit which is determined by the history of in-
puts. Therefore, a combinatorial circuit system provides a
static domain, whereas a sequential circuit system provides
a dynamic domain.

Figure 4 shows a synchronous sequential digital circuit
which is composed of two D flip-flop, 4 J-K flip-flops and
19 logic gates. Clock signal to 6 flip-flops is ignored in the
diagram. The circuit is simulated by our simulator.

MSBN Model
We monitor and diagnose the simulated circuit with a 5 agent
MSBN over a period of two time instants. To reason the state
of a dynamic device, at least two time instants are needed;
otherwise, we may not be able to know if a flip flop is faulty
or not. Figure 5 shows the structure of the Bayesian sub-
net over subdomain C2. The figure was generated using the
WebWeavr toolkit. Each variable is labeled by its variable
name followed by the variable’s index (which readers may
ignore) separated by a comma. The variable name is com-
posed of a string indicating a device or a signal point in the
digital circuit and a digit indicating time instant. For exam-
ple, d11 denotes the state of J-K flip flop d1 at relative time
instant 1.

To use the MSBN to reason the state of the domain, we
perform cooperative triangulation to get its linked junction
forest (LJF)(Xiang 2001). The largest cliques in the linked
junction forest of the MSBN are those of 6 nodes and the
largest linkages in linkage trees (Xiang 2001) are those of
5 nodes. This indicates we can perform effective inference
using the MSBN.

In addition to the dependence structure, we assume the
following representational parameters. The state of a de-
vice (flip-flops, logic gates) at a time instant is represented
by a binary variable and is either normal or abnormal. It
is assumed that each device has a 0.01 probability of being
faulty. A faulty device is modeled so that it may or may not
produce the incorrect output. A faulty AND or Flip-Flop is
assumed to output correctly 20% of the time. A faulty NOT
is assumed to output correctly 50% of the time. A faulty OR
gate is assumed to output correctly 70% of the time.

Monitoring
We assume J-K flip flop d1 in subdomain C2 is faulty. We
assume the states of devices in digital circuits are unobserv-
able. Hence, in Figure 5, both d10 and d11 are unobservable.
To make observation efficient, we compute their Markov
boundary by Algorithms 1, 2, 3, 4, 5, and 6 which contains
5 nodes: {s00, w01, w00, s01, u00}. Since s0 and w0 only
exists in subdomain C2, the host agent of s00, s01, w00 and
w01 should be A2. However, both agents A2 and A3 could
be the host agent of entities u00 and u01 because u0 exists
in both subdomains C2 and C3. We assume u0 physically
exists in subdomain C2 and hence agent A2 is the host agent
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Figure 4: A sequential digital circuit.

of u00 and u01. So agent A2 is the host agent of all these
Markov boundary members and observes them. After that,
all agents communicate with A2 to absorb the impacts of
the observation. Agent A2 finds that d1 is faulty (with belief
100%) and is sure nothing else is abnormal (with belief more
than 98%). All other agents are very confident that nothing
in their corresponding subdomains is abnormal (with belief
more than 98%).

In the example above, we assume that the state of each de-
vice is unobservable. To make the situations more challeng-
ing, we may also assume that observation of each input and
output has a cost. Hence, observing all inputs and outputs
is not an option. We assume inputs and outputs s0, w0, u0

of flip flop d1 in Figure 4 are unobservable. On the
assumption, the Markov boundary of {d10, d11} becomes
{a20, a21, b20, b21, i10, i11, x00, x01, y00, y01, z00, z01,
z40, z41}. All these members exist in subdomain C2, but
they may not all have agent A2 as their host agent. We
assume A3 is the host agent of y00, y01, a20 and a21
and A2 is the host agent of the rest of Markov boundary
members. After agents A2 and A3 observe these boundary
members respectively in their own subdomains, all agents
communicate with each other. Agent A2, then, is quite
confident that d1 is faulty (with belief 97.08%) and believes
nothing else in its subdomain is abnormal (with belief
94.11% for t8 and belief 95.50% for w9 and belief more
than 98% for all other devices). All other agents believe that
devices in their corresponding subdomains are normal (with

belief more than 98%).

Discussion
This approach monitors the domain period by period. The
problems of the domain will be reasoned about over and
over again. The two consecutive periods could overlap on
some instants. When the dynamic domain proceeds slow
enough, reasoning with overlapped consecutive periods can
find problems earlier. For example, the last period contains
instants 3, 4 and 5 and the current period contains instants
4, 5, and 6. If problems happened at instant 5, the problems
won’t be found in the last period. This is because effects of
any problems at instant 5 can only be reflected at and after
instant 6. The earliest time to find the problems would be
at instant 6. However, if the current period contains instants
6, 7, and 8 which does not overlap with the last period, the
earliest time to find the problems would be at instant 7.

Markov boundary helps us locate most relevant variables
to observe in graphical models. However, this won’t guar-
antee we find problems. Due to the observabilities of nodes,
observable Markov boundary may be far from the prob-
lem origins. It is possible we could never locate the exact
problem origins if the environment we could observe is too
far from the problem origins. On the other hand, Markov
boundary may provide more than enough nodes to observe
to find the problems. Sometimes, we could have had very
high confidence that we identify the problem origins before
observing all Markov boundary members.



Figure 5: Subnet 2 (over subdomain C2) of a two time instant MSBN for the digital circuit in Figure 4.

This approach reasons about the states of dynamic multi-
agent domains exactly in each period. Information from re-
mote history is ignored, although information from the most
recent history is absorbed. The approach would be most
suitable to those domains (or cases) where history would
affect the present softly. For example, in medical therapy
domain, previous sickness information may not be very nec-
essary (maybe helpful) for the therapy of the current sick-
ness. The approach is proposed based on intuition that cur-
rent state observation may play a more important role than
remote history information (e.g. in medical therapy). Obser-
vation can also make some old evidence independent of the
current state. New observation may correct belief revised
from old unreliable observation. Further theoretical analysis
or empirical study on this approach has to be made. For ex-
ample, what kind of multiagent dynamic domains are most
suitable to this approach and why? How to determine how
many instants each period should contain to make inference
both efficient and effective? We will also further test this
approach on sequential digital circuits with multiple faults.

Conclusions
Two issues (distribution issue and decomposition issue) are
involved in cooperative multiagent probabilistic reasoning in
dynamic domains. Distribution issue shows that the spatial
distribution of multiagent systems conflicts with the tempo-
ral dependencies of dynamic domains for probabilistic rea-
soning. Decomposition issue shows the decomposed repre-
sentation of JPDs is very poorly supported in dynamic mul-
tiagent domains. These issues do not allow each agent to
obtain historic information separately and benefit from each

other’s knowledge up to the relevant history. However, we
believe that observation of the most recent state, instead of
remote history, may play a more important role in the rea-
soning about the state of dynamic domains. We propose an
approach to deal with these issues. This approach ignores
effects of remote history and models a period of a dynamic
multiagent domain into an MSBN. Then the state of the do-
main can be reasoned about period by period exactly. We
compute and observe an observable Markov boundary of a
set of suspected entities. This makes observation more effi-
cient and relevant.

Preliminary experiments show the approach performs
well when the observable Markov boundary of a set of sus-
pected entities is close to the suspected entities.
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