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Example 1: Large Hamiltonian system
Large (N � 1) particles with position xj = qj and momentum pj
(j = 1, · · · ,N).

Least action principle

A =

∫ t

t0
L(x(s), ẋ(s), s) ds

Lagrange equations of motion

∂L
∂xj

− d
dt
∂L
∂ẋj

= 0

Hamiltonian
H =

∑
j

pj ẋj − L, pj =
∂L
∂ẋj

Hamiltonian system (common notation qj = xj )

dxj

dt
=
∂H
∂pj

,
dpj

dt
= −∂H

∂xj
,

Conservation of the Hamiltonian H
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pj ẋj − L, pj =
∂L
∂ẋj
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Example 2: Logistic map

T (x) = 4x(1− x), x ∈ [0,1]

Figure: Sensitive dependence
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Example 3: Lorenz 96 model

Edward Norton Lorenz, 1917-2008

Lorenz96 :
duj

dt
= (uj+1 − uj−2)uj−1 − uj + F ,

j = 0,1, · · · , J; J = 5,F = −12

Figure: Sensitive dependence Figure: Statistical coherence
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L96_demo.avi
Media File (video/avi)



Example 4: Rayleigh-Bénard convection

1
Pr

(
∂u
∂t

+ (u · ∇)u) +∇p = ∆u + Ra kθ, ∇ · u = 0, u|z=0,1 = 0,

∂θ

∂t
+ u · ∇θ − u3 = ∆θ, θ|z=0,1 = 0. (θ = T − (1− z))

Pr =
ν

κ
,

Ra =
gα(Tbottom − Ttop)h3

νκ
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Figure: Lord Rayleigh (John
William Strutt) 1842-1919

Figure: Henri Bénard (left),
1874-1939
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RBC set-up and numerics

Figure: RBC set-up Figure: Numerical simulation

(∞ Pr. simulation)
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Statistical Approaches

du
dt

= F(u), u ∈ H

S(t) : solutionsemigroup

Long time average

< Φ >= lim
T→∞

1
T

∫ T

0
Φ(v(t)) dt

Statistical coherence in terms of histogram implies independence
on initial data.
Spatial averages

< Φ >t=

∫
H

Φ(v) dµt(v)

{µt , t ≥ 0} statistical solutions
Finite ensemble average vj(t) = S(t)v0j , j = 1, · · · ,N

< Φ >t=
1
N

N∑
j=1

Φ(vj(t))
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Statistics Solutions

{µt , t ≥ 0}, dv
dt

= F(v), {S(t), t ≥ 0}

Pull-back
µ0(S−1(t)(E)) = µt(E)

Push-forward (Φ: suitable test functional)∫
H

Φ(v) dµt(v) =

∫
H

Φ(S(t)v) dµ0(v)

Finite ensemble example

µ0 =
N∑

j=1

pjδv0j (v), µt =
N∑

j=1

pjδvj (t)(v),vj(t) = S(t)v0j
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Relative stability of statistical properties

Finite ensemble
1
N

N∑
j=1

Φ(uj(t))

Total variation

|µt(E)− µ̃t(E)| ≤ |µ0(S−1(t)E)− µ̃0(S−1(t)E)|
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Liouville’s equations

Figure: Joseph Liouville,
1809-1882

Liouville type equation

d
dt

∫
H

Φ(v) dµt(v)

=

∫
H
< Φ′(v),F(v) > dµt(v)

Φ good test functionals e.g.

Φ(v) = φ((v,v1), · · · , (v,vN))

Liouville equation (finite d)

∂

∂t
p(v, t) +∇ · (p(v, t)F(v)) = 0
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Hopf’s equations

Figure: Eberhard Hopf,
1902-1983

Hopf’s equation (special case of Li-
ouville type)

d
dt

∫
H

ei(v,g) dµt(v)

=

∫
H

i < F(v),g > ei(v,g) dµt(v)
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Invariant measures (IM)(Stationary Statistics
Solutions)

Invariant measure (IM) µ ∈ PM(H)

µ(S−1(t)(E) = µ(E)

Stationary statistical solutions: essentially∫
H
< F (v),Φ′(v) > dµ(v) = 0,∀Φ
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Birkhoff’s Ergodic Theorem

Figure: George David
Birkhoff, 1884-1944 Definition

µ is ergodic if µ(E) = 0, or 1 for all
invariant sets E .

Theorem (Birkhoff’s Ergodic
Theorem)

If µ is invariant and ergodic, the
temporal and spatial averages are
equivalent, i.e.

lim
T→∞

1
T

∫ T

0
ϕ(S(t)u) dt =

∫
H
ϕ(u) dµ(u), a.s.
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Examples of IM 1: dissipative

dr
dt

= r(1− r2),
dθ
dt

= 1.

µ1 = δ0,

dµ2 =
1

2π
dθ, on r = 1.

Non-uniqueness of invariant measure.
Support of invariant measure may be singular.
Question of physical relevance.

Wang, Xiaoming wxm@math.fsu.edu Empirical Statistical Mechanics



Examples of IM 1: dissipative

dr
dt

= r(1− r2),
dθ
dt

= 1.

µ1 = δ0,

dµ2 =
1

2π
dθ, on r = 1.

Non-uniqueness of invariant measure.
Support of invariant measure may be singular.
Question of physical relevance.

Wang, Xiaoming wxm@math.fsu.edu Empirical Statistical Mechanics



Examples of IM 1: dissipative

dr
dt

= r(1− r2),
dθ
dt

= 1.

µ1 = δ0,

dµ2 =
1

2π
dθ, on r = 1.

Non-uniqueness of invariant measure.
Support of invariant measure may be singular.
Question of physical relevance.

Wang, Xiaoming wxm@math.fsu.edu Empirical Statistical Mechanics



Examples of IM 1: dissipative

dr
dt

= r(1− r2),
dθ
dt

= 1.

µ1 = δ0,

dµ2 =
1

2π
dθ, on r = 1.

Non-uniqueness of invariant measure.
Support of invariant measure may be singular.
Question of physical relevance.

Wang, Xiaoming wxm@math.fsu.edu Empirical Statistical Mechanics



Examples of IM 2: Hamiltonian

Hamiltonian system with energy H(p,q) (q = x)
Canonical measure/distribution

dµ(p,q) = Z−1 exp(−βH(p,q)) dpdq,Z =

∫
H

exp(−βH(p,q)) dpdq

Z : partition function, β: inverse temperature
Micro-canonical measure/distribution

dµ = χ−1 exp(−βH(p,q))δ(E − H(p,q)) dpdq

χ =

∫
exp(−βH(p,q))δ(E − H(p,q)) dpdq = exp(

S
k

)

χ: structure function, k : Boltzmann const.
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Shannon’s entropy (measuring uncertainty)

Figure: Claude Shannon,
1916-2001

Definition (Shannon entropy)

S(p) = S(p1, ...,pn) = −
n∑

i=1

pi ln pi .

p ∈ PMn(A), probability measure
on A = {a1, ...,an}
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Uniqueness of Shannon entropy

Figure: Edwin Thompson
Jaynes, 1922-1998

Theorem (Jaynes)

Hn(p1, ...,pn): continuous
A(n) = Hn(1/n, ...,1/n)
monotonic in n.
A = {a1, ...,an} = A1

⋃
A2,

A1 = {a1, ...,ak},
A2 = {ak+1, ...,an},
w1 = p1 + · · ·+ pk ,
w2 = pk+1 + · · ·+ pn,

Hn(p1, ...,pn) = H2(w1,w2)

+w1Hk (p1/w1, ...,pk/w1)

+w2Hn−k (pk+1/w2, ...,pn/w2)

Then ∃K > 0, s.t. Hn(p1, ...,pn) =
KS(p1, ...,pn) = −K

∑n
j=1 pj ln pj
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Jaynes’ maximum entropy principle
Given statistical measurements Fj of given functions fj ,
j = 1, ..., r ≤ n − 1,

Fj =< fj >p=
n∑

i=1

fj(ai)pi , j = 1, ..., r .

or continuous version

Fj =< fj >p=

∫
fj(x)p(x) dx.

Definition (Empirical maximum entropy principle)

Least biased / most probable pdf p∗ is given by

maxp∈CS(p) = S(p∗), p∗ ∈ C

C = {p ∈ PM(A)
∣∣ < fj >p= Fj ,1 ≤ j ≤ r},

p∗i =
exp

(
−

∑r
j=1 λj fj(ai)

)
Z

, Z =
n∑

i=1

exp

− r∑
j=1

λj fj(ai)


Z: partition function.
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Maximum relative entropy principle

Relative entropy

S(p,p0) = −
N∑

j=1

pj ln
pj

p0
j

= −P(p,p0)

with prior distribution p0

Relative entropy as semi-distance

−S(p,p0) ≥ 0,∀p

Definition (Empirical maximum relative entropy principle)

Least biased / most probable pdf p∗ is given by

maxp∈CS(p,p0) = S(p∗,p0), p∗ ∈ C

for a given set of constraints C defined by

C = {p ∈ PM(A)
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Example: discrete case

No constraint. The one that maximizes the Shannon entropy on
A = {a1, · · · ,aN} is the uniform distribution on A.
No constraint but with prior p0. The least biased (most probable)
one is the prior.
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Maximum entropy principle for continuous pdf

Entropy
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Example: continuous case

The most probable state with given first and second moments on
the line is the Gaussian.
Hamiltonian system with energy H being the only conserved
quantity, the most probably state is the Gibbs measure
(macro-canonical measure)

1
Z

exp(−βH)
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Maximum entropy for continuous field
One point statistics for q(x), x ∈ Ω

(application to PDE)

ρ(x, λ) ≥ 0,
∫
ρ(x, λ) dλ = 1.a.e.

∫ q+

q−
ρ(x, λ) dλ = Prob{q− ≤ q(x) < q+}

< F (q) >ρ=
1
|Ω|

∫
Ω

∫
R1

F (x, λ)ρ(x, λ) dλdx

S(ρ) = − 1
|Ω|

∫
Ω

∫
R1
ρ(x, λ) ln ρ(x, λ) dλdx

S(ρ,Π0) = − 1
|Ω|

∫
Ω

∫
R1
ρ(x, λ) ln

ρ(x, λ)

Π0(x, λ)
dλdx

Maximum entropy principle remain the same
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Barotropic quasi-geostrophic equation with topography

Barotropic quasi-geostrophic equation

∂q
∂t

+∇⊥ψ · ∇q = 0, q = ∆ψ + h

q: potential vorticity, ψ: stream-function, h: bottom topography,
Ω = (0,2π)× (0,2π), per. b.c.
Conserved quantities: kinetic energy E and total enstrophy E

E = − 1
2|Ω|

∫
Ω

ψ∆ψ dx,

E =
1

2|Ω|

∫
Ω

q2 dx

There exist infinitely many conserved quantities.
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Application of maximum entropy principle to barotropic
QG

Energy and total enstrophy as constraints

E(ρ) = − 1
2|Ω|

∫
Ω

ψ̄(q̄ − h), q̄(x) =

∫
R1
λρ(x, λ)dλ, q̄ = ∆ψ̄ + h,

E(ρ) =
1
2

∫ ∫
R1
λ2ρ(x, λ) dλdx.

Lagrangian multiplier calculation

δS
δρ

= −1− ln ρ,

δE
δρ

=
1
2
λ2,

δE
δρ

= λψ̄(x),
δq̄
δρ

= λ

δ
∫
ρ(x, λ) dλ
δρ

= δx
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Application of maximum entropy principle to barotropic
QG, continued

Most probable state ρ∗

−1− ln(ρ∗) = −θλψ̄∗ +
α

2
λ2 + γ̃(x)

ρ∗(x, λ) =

√
α√
2π

exp(−α
2

(λ− θ

α
ψ̄∗)2)

θ, α: Lagrange multipliers for energy and enstrophy, γ̃(x):
Lagrange multipliers for the pdf constraint.
Mean field equation

∆ψ̄∗ + h =
θ

α
ψ̄∗ = µψ̄∗,with µ =

θ

α
, α > 0.

Under generic topography, ∃µ = µ(E) ∈ (−1,∞), ψµ solves the
mean field equation uniquely and is nonlinearly stable
(Arnold-Kruskal stability).
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Application of maximum relative entropy principle to
barotropic QG

Energy constraint

E(ρ) = −1
2

∫
Ω

ψ̄(q̄ − h), q̄(x) =

∫
R1
λρ(x, λ)dλ, q̄ = ∆ψ̄ + h

Gaussian prior

Π0(λ) =

√
α√
2π

exp(−α
2
λ2)

Most probable state

ρ∗(~x , λ) =

√
α√
2π

exp(−α
2

(λ− θ

α
ψ̄∗)2)

θ: Lagrange multiplier for energy.
Mean field equation

∆ψ̄∗ + h =
θ

α
ψ̄∗ = µψ̄∗,with µ =

θ

α
, α > 0.

Under generic topography, ∃µ = µ(E) ∈ (−1,∞), ψµ solves the
mean field equation uniquely and is nonlinearly stable.
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Energy circulation theory with a general prior

BQG with bottom topography and channel geometry
Ω = (0,2π)× (0, π)

ψ = ψ′ =
∑
k≥1

∑
j≥0

(ajk cos(jx) + bjk sin(jx)) sin(ky).

Energy and circulation as conserved quantities

E(ρ) = − 1
2|Ω|

∫
Ω

ψωdx, Γ(ρ) =
1
|Ω|

∫
Ω

∫
λρ(x, λ)dλdx

Most probable one-point statistics

ρ∗(x, λ) =
e(θψ∗−γ)λΠ0(x, λ)∫

e(θψ∗−γ)λΠ0(x, λ) dλ
.

θ, γ Lagrange multipliers for energy and circulation respectively.
Mean field equation

∆ψ∗+h =
1
θ

(
∂

∂ψ
lnZ(θψ, x)

) ∣∣∣∣
ψ=ψ∗

, Z(ψ,x) =

∫
e(ψ−γ)λΠ0(x, λ) dλ.
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Mean field statistical theory for point vortices

2D Euler in a disc Ω = BR(0).
Energy, circulation and angular momentum (A = 1

|Ω|
∫
Ω
|x|2ω) as

conserved quantities.
Appropriate prior distribution

N∑
i=1

1
N

(δω0(λ)⊗ δxi ) ⇀ δω0(λ)
dx
|Ω|

:= Π0(λ).

Mean field equation for the most probable state

∆ψ∗ = ω∗ =
|Ω|

∫
λe(θψ∗−γ−α|x|2)λΠ0(x, λ) dλ∫ ∫

e(θψ∗−γ−α|x|2)λΠ0(x, λ) dλ dx
.

Case with no angular momentum

∆ψ∗ =
Γ0e−βψ

∗∫
e−βψ∗dx

, β = −θω0.

Case with angular momentum

∆ψ∗ =
Γ0e−βψ

∗−α|x|2∫
BR(0)

e−βψ∗−α|x|2dx
.
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Summary: empirical statistical mechanics

Undamped/unforced setting customary
Information theoretical approach: maximize Shannon entropy or
relative entropy with prior and given measurements (conserved
quantities)
Conserved quantities become constraints on the one-point
statistics ρ
Mean field equation

q̄ = G(ψ̄)

Most of them (large scale structure) are stable under appropriate
assumptions and hence physically relevant
The process is relatively easy and versatile (with given prior and
conserved quantities).
Further reading: Majda and W., Nonlinear Dynamics and
Statistical Theories for Basic Geophysical Flows, CUP, 2006
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