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Example 1: Large Hamiltonian system

Large (N > 1) particles with position x; = g; and momentum p;
G=1,-,N).
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Example 1: Large Hamiltonian system

Large (N > 1) particles with position x; = g; and momentum p;
=1, N).
@ Least action principle
t
A= [ L(x(s),x(s),s)ds

fo
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Example 1: Large Hamiltonian system

Large (N > 1) particles with position x; = g; and momentum p;
=1, N).
@ Least action principle

A= tﬁ(x(s),)'((s),s) ds

b
@ Lagrange equations of motion

oL doL

ox diox °
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Example 1: Large Hamiltonian system

Large (N > 1) particles with position x; = g; and momentum p;
=1, N).
@ Least action principle
t
A= [ L(x(s),x(s),s)ds

b
@ Lagrange equations of motion

oL dor
ox;  dtox;

@ Hamiltonian
oL

H=> p¥-L, =%
J
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Example 1: Large Hamiltonian system

Large (N > 1) particles with position x; = g; and momentum p;
=1, N).
@ Least action principle
t
A= [ L(x(s),x(s),s)ds

b
@ Lagrange equations of motion

oL doL

ox diox °

@ Hamiltonian
oL

H=ZP/5‘/—£, k= 5%
; X
@ Hamiltonian system (common notation q; = x))

dy _OH oo _ oM

dt — 9p’ dt  dx’
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Example 1: Large Hamiltonian system

Large (N > 1) particles with position x; = g; and momentum p;
=1, N).
@ Least action principle
t
A= [ L(x(s),x(s),s)ds

b
@ Lagrange equations of motion

oL dor
ox;  dtox;

@ Hamiltonian
oL

H=ZP/5‘/—£, k= 5%
; X
@ Hamiltonian system (common notation q; = x))

dy _OH oo _ oM

dt — 9p’ dt  dx’

@ Conservation of the Hamiltonian H
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Example 2: Logistic map

T(x) =4x(1 —x),x € [0,1]

Figure: Sensitive dependence Figure: Statistical coherence
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Example 3: Lorenz 96 model

Edward Norton Lorenz, 1917-2008

du;
L 96: —1
orenz dt

j:071a"'7‘j;

(Ujsr —

Uj-2)lj—1 — U+ F

J=5F=-12
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Example 3: Lorenz 96 model

Edward Norton Lorenz, 1917-2008

d .
Lorenz96 : TL;] = (U/+1 — U/,Q)Uj,1 — U+ F
j=01, 0  J=5F=-12

Figure: Statistical coherence

Figure: Sensitive dependence

(Sensitive dependence)
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L96_demo.avi
Media File (video/avi)


Example 4: Rayleigh-Bénard convection

+Vp = Au+Rakf, V-u=0, ul,—o1=0,

%-FU-V@—Us = A6, 6|z:071:0- ((9:7-—(1—2))

RY
Il
=N
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RBC set-up and numerics

Figure: Numerical simulation

Figure: RBC set-up |

(0o Pr. simulation)
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m1.mpg
Media File (video/mpeg)


Statistical Approaches

du
EfF(u), ucH

S(t) : solutionsemigroup
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Statistical Approaches

du
EfF(u), ucH

S(t) : solutionsemigroup

@ Long time average

<& >= lim ;_/OTCD(v(t))dt

T—o0
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Statistical Approaches

du
EfF(u), ucH

S(t) : solutionsemigroup

@ Long time average
1T
<O >= Tlinoo 7/0 o(v(t)) dt

@ Statistical coherence in terms of histogram implies independence
on initial data.
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Statistical Approaches

du
EfF(u), ucH

S(t) : solutionsemigroup

@ Long time average

<& >= lim ;_/OTCD(v(t))dt

T—o0

@ Statistical coherence in terms of histogram implies independence
on initial data.
@ Spatial averages

<O = /H (V) djue(V)

{ut, t > 0} statistical solutions
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Statistical Approaches

du
EfF(u), ucH
)

S(t) : solutionsemigroup

@ Long time average

<o >= I|m 7/

@ Statistical coherence in terms of histogram implies independence
on initial data.
@ Spatial averages

<O = /H (V) djue(V)

{ut, t > 0} statistical solutions

e Finite ensemble average v;(t) = S(t)voj,j =1, - ,N
N
<P >= Z (vj(1)) *
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Statistics Solutions

(rot=0), L =Fw)., (S.t20)
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Statistics Solutions

(rot=0), L =Fw)., (S.t20)

@ Pull-back
po(S™()(E)) = m(E)
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Statistics Solutions

(rot=0), L =Fw)., (S.t20)

@ Pull-back
po(S™(1)(E)) = m(E)
@ Push-forward (¢: suitable test functional)

/ (V) djur(v) = / O(S(1)v) dpo(v)
H H
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Statistics Solutions

(rot=0), L =Fw)., (S.t20)

@ Pull-back

po(S™(1)(E)) = m(E)
@ Push-forward (¢: suitable test functional)

/ (V) djur(v) = / O(S(1)v) dpo(v)
H H

@ Finite ensemble example

N N
Ho = ij5V0j(v)7 Mt = ijdvj([)(v)avj(t) = S(t)VOJ
=1 =
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Relative stability of statistical properties

@ Finite ensemble

2=

o(u;(1))

\
Il
-
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Relative stability of statistical properties

@ Finite ensemble

HMZ

d(u;(t))

@ Total variation

|e(E) = fi(E)| < luo(ST(H)E) — fio(ST' (H)E)|
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Liouville’s equations

Figure: Joseph Liouville,
1809-1882
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Liouville’s equations

Figure: Joseph Liouville, d [
1800-1882 a4 /H ®(v) dpue(V)

= [ <@ WFO) > dutv)
H
® good test functionals e.g.

(D(V) = ¢((V, V1)’ T (V,VN))
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Liouville’s equations

Figure: Joseph Liouville, d [
1800-1882 a4 /H ®(v) dpue(V)

= /H< o' (v),F(v) > du(v)
® good test functionals e.g.
(D(V) = ¢((V, V1)’ Ty (V,VN))

° (finite d)

PV, 1)+ V- (P, HF(v)) = 0
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Hopf’s equations

Figure: Eberhard Hopf,
1902-1983
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Hopf’s equations

Figure: Eberhard Hopf,
1902-1983

Hopf’s equation (special case of Li-
ouville type)

a [ Lwe
G [ ¢ dutv)

- /i<HWﬂ>e“wmmw
H
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Invariant measures (IM)(Stationary Statistics

Solutions)
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Invariant measures (IM)(Stationary Statistics

Solutions)

° (IM) o € PM(H)
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Invariant measures (IM)(Stationary Statistics

Solutions)

° (IM) u € PM(H)
(S~ (t)(E) = u(E)
° : essentially

/ < F(v),®'(v) > du(v) =0,V
H
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Birkhoff’s Ergodic Theorem

Figure: George David
Birkhoff, 1884-1944

Definition
wis if u(E) =0, or 1 for all
invariant sets E.

Theorem (Birkhoff’s Ergodic
Theorem)

If w is invariant and ergodic, the
temporal and spatial averages are
equivalent, i.e.

TILmOOT/ (Hu) dt = /H o(u) dufu), é
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Examples of IM 1: dissipative

dr oy db
o r(1 )’E 1.
2 do,
duz ld9, onr=1.
2r
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Examples of IM 1: dissipative

dr oy db
o r(1 )’E 1.
2 do,
duz ld9, onr=1.
2r

@ Non-uniqueness of invariant measure.
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Examples of IM 1: dissipative

1
duz —df, onr=1.
2r

@ Non-uniqueness of invariant measure.
@ Support of invariant measure may be singular.
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Examples of IM 1: dissipative

1
duz —df, onr=1.
2r

@ Non-uniqueness of invariant measure.

@ Support of invariant measure may be singular.
@ Question of physical relevance.

Wang, Xiaoming
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Examples of IM 2: Hamiltonian

Hamiltonian system with energy H(p, q) (g = x)
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Examples of IM 2: Hamiltonian

Hamiltonian system with energy H(p, q) (g = x)
@ Canonical measure/distribution

du(p,q) = Z~" exp(—BH(p, q)) dpdq, Z = /H exp(—BH(p, q)) dpdq

Z: partition function, g: inverse temperature
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Examples of IM 2: Hamiltonian

Hamiltonian system with energy H(p, q) (g = x)
@ Canonical measure/distribution

du(p,q) = Z~" exp(—BH(p, q)) dpdq, Z = /H exp(—BH(p, q)) dpdq

Z: partition function, g: inverse temperature
@ Micro-canonical measure/distribution

dpu = x""exp(—BH(p, q))5(E — H(p, q)) dpdq

X = [ exp(~3H(p. @) (E ~ H(p.q)) dbdq = exp(’)

x: structure function, k: Boltzmann const.
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Shannon’s entropy (measuring uncertainty)

Figure: Claude Shannon,
1916-2001
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Shannon’s entropy (measuring uncertainty)

Figure: Claude Shannon,
1916-2001

Wang, Xiaoming

Definition (Shannon entropy)

S(p) p17' 7pn) Zp, |np,

p € PMpu(A), probability measure
on A={ay,...,an}
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Uniqueness of Shannon entropy

Theorem (Jaynes)

Figure: Edwin Thompson e H,,(p1, A p")" continuous
Jaynes, 1922-1998 @ A(n)=H,(1/n,...,1/n)
monotonic in n.
o A= {a17...7an} = A, U.Az,
A1 = {81 P ak},
Ao = {ak+1 5 000 a,,},
Wi =Py + -+ Pk,
Wo = Pk41 + - + Pn;

Hn(p1, ..., Pn) = Ho(wy, w2)
+wiHk(py /W, ..., Pk /Wy)
+woHp_k(Pk+1/Wa, ..., Pn/ W2

~

Then 3K > 0, s.t. Hy(p1, ..., Pn) =
KS(p1, - n) = —K >[4 pjIn pj
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Jaynes’ maximum entropy principle

Given statistical measurements F; of given functions f;,
j=1,..r<n-—1,

n
Fi=<fi>p=> fi(a)p, j=1,..r.

i=1

or continuous version

=<1 = [ £(0p(x) dx.

Definition (Empirical maximum entropy principle)

Least biased / most probable pdf p* is given by
maxpecS(p) = S(p*), p*€C
C={pePM(A)| < fi>p=F,1<j<r},
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Jaynes’ maximum entropy principle

Given statistical measurements F; of given functions f;,
j=1,..r<n-—1,

n
Fi=<fi>p=> fi(a)p, j=1,..r.

i=1

or continuous version

=<1 = [ £(0p(x) dx.

Definition (Empirical maximum entropy principle)

Least biased / most probable pdf p* is given by
maxpecS(p) = S(p*), p*€C
C={pePM(A)| < fi>p=F,1<j<r},

oxp (= Xj Mif(a)) n i

pi = g Cz=Yew |- i)

Wang, Xiaoming



Maximum relative entropy principle

*}
N D
S(p,p%) ==Y pin
j=1 p;

with prior distribution p°
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Maximum relative entropy principle

*}
N D
S(p,p%) ==Y pin
j=1 p;

with prior distribution p°
@ Relative entropy as semi-distance

~8(p,p°) > 0,vp
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Maximum relative entropy principle

*}
N D
S(p,p%) ==Y pin
j=1 p;

with prior distribution p°
@ Relative entropy as semi-distance

~8(p,p°) > 0,vp

Definition (Empirical maximum relative entropy principle)

Least biased / most probable pdf p* is given by
maxpeeS(p, p°) = S(p*, p°), p*ecC
for a given set of constraints C defined by

C={pePM(A)| <f>p=F,1<j<r}
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Example: discrete case

@ No constraint. The one that maximizes the Shannon entropy on
A ={ay,---,an} is the uniform distribution on A.
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Example: discrete case

@ No constraint. The one that maximizes the Shannon entropy on
A ={ay,---,an} is the uniform distribution on A.

@ No constraint but with prior p°. The least biased (most probable)
one is the prior.

Wang, Xiaoming u Empirical Statistical Mechanics



Maximum entropy principle for continuous pdf

S(p) = - / p(X)In p(x) dx
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Maximum entropy principle for continuous pdf

S(p,Mp) = /p In ) ax

with prior distribution My
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Maximum entropy principle for continuous pdf

S(p,Mp) = /p In ) ax
with prior distribution My

Definition (Empirical maximum relative entropy principle)

Least biased / most probable pdf p* is given by

maXPECS(pa HO) = S(p*7 Ho)a p* eC

for a given set of constraints C defined by

C={pePM(A)| < fi>p=F,1<j<r},
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Example: continuous case

@ The most probable state with given first and second moments on
the line is the Gaussian.
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Example: continuous case

@ The most probable state with given first and second moments on
the line is the Gaussian.

@ Hamiltonian system with energy H being the only conserved

quantity, the most probably state is the Gibbs measure
(macro-canonical measure)

1
Z exp(—4H)
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Maximum entropy for continuous field

One point statistics for g(x),x € Q

(application to PDE)

"}
(X, )) > 0, / (X)) dA = 1.ae.
o
g+
[ plx.3) dr=Probia- < q(x) < q+}
.
° |
< F(g) >p= = / F(%, \)p(X, ) dAdx
Q[ Jo Jri
o

S(p) = // A)Inp(x, A) dAdx
T o )

A)
S(p, Mo) = IQI//w )\)In A) dAdx
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Maximum entropy for continuous field

One point statistics for g(x),x € Q

(application to PDE)

o
p(x,A) >0 / )dA=1.ae.
°
a+
[ plx.3) dr=Probia- < q(x) < q+}
g-
° 1
< F(g) >p= = / F(%, \)p(X, ) dAdx
Q| Jo Jr:
°
S(p) = // A)Inp(x, A) dAdx
Tl o Ju %
A)
Mo) I
S(p,Mo) |Q|//R1 A)n )\) d\dx
Maximum entropy principle remain the same e
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Barotropic quasi-geostrophic equation with topography

@ Barotropic quasi-geostrophic equation

%+vw~wy:0, g=A¢p+h
q: potential vorticity, ¢: stream-function, h: bottom topography,

Q = (0,27) x (0,2r), per. b.c.
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Barotropic quasi-geostrophic equation with topography

@ Barotropic quasi-geostrophic equation

q

at+vw Vg=0, gq=A¢+h

q: potential vorticity, ¢: stream-function, h: bottom topography,
Q = (0,27) x (0,2r), per. b.c.
@ Conserved quantities: kinetic energy E and total enstrophy £

E = 2|Q|/wAwdx

E = —/ ax
20 o7
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Barotropic quasi-geostrophic equation with topography

@ Barotropic quasi-geostrophic equation

%+vw Vg=0, gq=A¢+h

q: potential vorticity, ¢: stream-function, h: bottom topography,
Q = (0,27) x (0,2r), per. b.c.
@ Conserved quantities: kinetic energy E and total enstrophy £

E = 2|Q|/wAwdx

= — ax
210 /Q"

@ There exist infinitely many conserved quantities.
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Application of maximum entropy principle to barotropic

QG
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Application of maximum entropy principle to barotropic

QG

@ Energy and total enstrophy as constraints

E(p) = —2|1Q / J@—h). G0 = [ M(xN)d\g=Ad+h,

2
2/ 731/\ ) dAdx.

8]
—~~
D
~

I
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Application of maximum entropy principle to barotropic

QG
@ Energy and total enstrophy as constraints
1 _ _ _ -
EG) = 5o / H@—h). qo= [ Ap(xN)dr.g=Ad+h,
2|9 R
£p) = / X2p(x, \) dAdX.
2/ Jas
@ Lagrangian multiplier calculation
0S8
o 1,
w2
SE - 6q
% — Aw(x)7 % -
8 [ p(x,\)dA
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Application of maximum entropy principle to barotropic

QG, continued
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Application of maximum entropy principle to barotropic

QG, continued

@ Most probable state p*
—1—1In(p*) = —ON" + %/\2 +5(x)

pxN) = L ep(- (- L)

0, o Lagrange multipliers for energy and enstrophy, 5(x):
Lagrange multipliers for the pdf constraint.

Wang, Xiaoming w: u.edu Empirical Statistical Mechanics



Application of maximum entropy principle to barotropic

QG, continued

@ Most probable state p*
—1—1In(p*) = —ON" + %/\2 +5(x)

pxN) = L ep(- (- L)

0, o Lagrange multipliers for energy and enstrophy, 5(x):
Lagrange multipliers for the pdf constraint.

@ Mean field equation

AY* 4+ h= gq/_z* = pp*, with p = g, a> 0.
«@ !
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Application of maximum entropy principle to barotropic

QG, continued

@ Most probable state p*
—1—1In(p*) = —ON" + %/\2 +5(x)

pxN) = L ep(- (- L)

0, o Lagrange multipliers for energy and enstrophy, 5(x):
Lagrange multipliers for the pdf constraint.

@ Mean field equation

AY* 4+ h= gq/_z* = pp*, with p = g, a> 0.
«@ !
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Application of maximum entropy principle to barotropic

QG, continued

@ Most probable state p*
—1—1In(p*) = —ON" + %/\2 +5(x)

pxN) = L ep(- (- L)

0, o Lagrange multipliers for energy and enstrophy, 5(x):
Lagrange multipliers for the pdf constraint.

@ Mean field equation
— 0 -, . 0
AY*+h=—¢" = pp*,withy=—, a> 0.
o «

@ Under generic topography, 3u = p(E) € (-1, 00), ¥, solves the
mean field equation uniquely and is nonlinearly stable
(Arnold-Kruskal stability).
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Application of maximum relative entropy principle to

barotropic QG
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Application of maximum relative entropy principle to

barotropic QG

@ Energy constraint

E(p) =5 [ 5@ 1.300 = [ M N)orG=ad+h
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Application of maximum relative entropy principle to

barotropic QG

@ Energy constraint

1 - _ _ -
E(p) =~ [ #@=.a0) = [ Mx.N)orq=aj+h
@ Gaussian prior

Mo(3) = Y2 exp(~5 )
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Application of maximum relative entropy principle to

barotropic QG

@ Energy constraint

1 - _ _ -
E(p) =~ [ #@=.a0) = [ Mx.N)orq=aj+h
@ Gaussian prior

Mo(3) = Y2 exp(~5 )

@ Most probable state

PEN = e300 — 2i7)

0: Lagrange multiplier for energy.
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Application of maximum relative entropy principle to

barotropic QG

@ Energy constraint

1 - _ _ -
E(p) =~ [ #@=.a0) = [ Mx.N)orq=aj+h
@ Gaussian prior

Mo(3) = Y2 exp(~5 )

@ Most probable state

PEN = e300 — 2i7)

0: Lagrange multiplier for energy.
@ Mean field equation

AY* 4+ h= gl/_)* = pp*, with = g, a> 0.
«@ !
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Application of maximum relative entropy principle to

barotropic QG

@ Energy constraint

1 - _ _ _
E(p) =~ [ #@=.a0) = [ Mx.N)orq=aj+h
@ Gaussian prior
Mo(A) = Y2 exp(— 22)

v2r 2
@ Most probable state
*( 0 _ \/a _O[ _ 0 7%\2
pr(X,\) = EGXP( 5()\ aiﬁ )%)

0: Lagrange multiplier for energy.
@ Mean field equation

AY* 4+ h= gl/_)* = pp*, with = g, a> 0.
«@ !

@ Under generic topography, 3u = p(E) € (-1, 00), ¥, solves the
mean field equation uniquely and is nonlinearly stable. ¢
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Energy circulation theory with a general prior
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Energy circulation theory with a general prior

@ BQG with bottom topography and channel geometry
Q= (0,27) x (0, )

=1 = (akcos(jx) + by sin(jx)) sin(ky).

k>1j>0
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Energy circulation theory with a general prior

@ BQG with bottom topography and channel geometry
Q= (0,27) x (0, )

=1 = (akcos(jx) + by sin(jx)) sin(ky).

k>1j>0

@ Energy and circulation as conserved quantities

E(p) = _2|19| /Q T@dx, (p) = |19| /Q / Ap(X, \)dAdx
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Energy circulation theory with a general prior

@ BQG with bottom topography and channel geometry
Q= (0,27) x (0, )

=1 = (akcos(jx) + by sin(jx)) sin(ky).

k>1j>0

@ Energy and circulation as conserved quantities

E(p) = _2|19| /Q T@dx, (p) = |19| /Q / Ap(X, \)dAdx

@ Most probable one-point statistics

B e(ew**’Y))\ |'|0(X, )\)
[ el =AM (x, A) A

0,~ Lagrange multipliers for energy and circulation respectively.

p*(X,A)
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Energy circulation theory with a general prior

@ BQG with bottom topography and channel geometry
Q= (0,27) x (0, )

=1 = (akcos(jx) + by sin(jx)) sin(ky).

k>1j>0

@ Energy and circulation as conserved quantities

E(p) = _2|19| /Q T@dx, (p) = |19| /Q / Ap(X, \)dAdx

@ Most probable one-point statistics
(09" —7)A
PN = o
[ e =MAMg(x, \) dA

0,~ Lagrange multipliers for energy and circulation respectively.
@ Mean field equation

Ay +h = 1 (8 In Z(0¢,x)) ‘

5 (50 - 2@ = [ () o)

p=1p*
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Mean field statistical theory for point vortices
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Mean field statistical theory for point vortices

@ 2D Euler in a disc Q = Bg(0).
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Mean field statistical theory for point vortices

@ 2D Euler in a disc Q = Bg(0).
@ Energy, circulation and angular momentum (A = ﬁ Ja IX|?w) as
conserved quantities.
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Mean field statistical theory for point vortices

@ 2D Euler in a disc Q = Bg(0).

@ Energy, circulation and angular momentum (A = ﬁ Ja IX|?w) as
conserved quantities.

@ Appropriate prior distribution

N
1 ax
2 gy (nlN) @ 8) = 0 g
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Mean field statistical theory for point vortices

@ 2D Euler in a disc Q = Bg(0).

@ Energy, circulation and angular momentum (A = ﬁ Ja IX|?w) as
conserved quantities.

@ Appropriate prior distribution

N
1 ax
2 gy (nlN) @ 8) = 0 g

@ Mean field equation for the most probable state

Ao o — 1RGO (x, 1) d

=W = .
[ [ e —r—alx®)AM,(x, \) dX dx
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Mean field statistical theory for point vortices

@ 2D Euler in a disc Q = Bg(0).

@ Energy, circulation and angular momentum (A = ﬁ Ja IX|?w) as
conserved quantities.

@ Appropriate prior distribution

N
1 ax
2 gy (nlN) @ 8) = 0 g

@ Mean field equation for the most probable state
Ao o — 1RGO (x, 1) d
=w = .
[ [ e —r—alx®)AM,(x, \) dX dx
@ Case with no angular momentum

N [_Oe—/3¢*
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Mean field statistical theory for point vortices

@ 2D Euler in a disc Q = Bg(0).

@ Energy, circulation and angular momentum (A = ﬁ Ja IX|?w) as
conserved quantities.

@ Appropriate prior distribution

N
1 ax
2 gy (nlN) @ 8) = 0 g

@ Mean field equation for the most probable state
Ao o — 1RGO (x, 1) d
[ [ e0v =o)Xy (x, X) dA dx’
@ Case with no angular momentum
N [_Oe—/3¢*
@ Case with angular momentum

Foe v —alx?
e Bv —alxP gy’ g

Ay =

Bg(0)
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Summary: empirical statistical mechanics
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Summary: empirical statistical mechanics

@ Undamped/unforced setting customary
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Summary: empirical statistical mechanics

@ Undamped/unforced setting customary

@ Information theoretical approach: maximize Shannon entropy or
relative entropy with prior and given measurements (conserved
quantities)
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Summary: empirical statistical mechanics

@ Undamped/unforced setting customary

@ Information theoretical approach: maximize Shannon entropy or
relative entropy with prior and given measurements (conserved
quantities)

@ Conserved quantities become constraints on the one-point
statistics p
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Summary: empirical statistical mechanics

@ Undamped/unforced setting customary

@ Information theoretical approach: maximize Shannon entropy or
relative entropy with prior and given measurements (conserved
quantities)

@ Conserved quantities become constraints on the one-point
statistics p

@ Mean field equation
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Summary: empirical statistical mechanics

@ Undamped/unforced setting customary

@ Information theoretical approach: maximize Shannon entropy or
relative entropy with prior and given measurements (conserved
quantities)

@ Conserved quantities become constraints on the one-point
statistics p

@ Mean field equation

a=36()

@ Most of them (large scale structure) are stable under appropriate
assumptions and hence physically relevant
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Summary: empirical statistical mechanics

@ Undamped/unforced setting customary

@ Information theoretical approach: maximize Shannon entropy or
relative entropy with prior and given measurements (conserved
quantities)

@ Conserved quantities become constraints on the one-point
statistics p

@ Mean field equation

q=6()
@ Most of them (large scale structure) are stable under appropriate
assumptions and hence physically relevant

@ The process is relatively easy and versatile (with given prior and
conserved quantities).
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Summary: empirical statistical mechanics

Undamped/unforced setting customary

Information theoretical approach: maximize Shannon entropy or
relative entropy with prior and given measurements (conserved
quantities)

Conserved quantities become constraints on the one-point
statistics p

Mean field equation

q=6()
Most of them (large scale structure) are stable under appropriate
assumptions and hence physically relevant
The process is relatively easy and versatile (with given prior and
conserved quantities).

Further reading: Majda and W.,
, CUP, 2006
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