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Logistic map

T (x) = 4x(1− x), x ∈ [0, 1]

Figure: Sensitive dependence
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Lorenz 96 model
Edward Norton Lorenz, 1917-2008

Lorenz96 :
duj

dt
= (uj+1 − uj−2)uj−1 − uj + F ,

j = 0, 1, · · · , J; J = 5, F = −12

Figure: Sensitive dependence Figure: Statistical coherence
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(Sensitive dependence)

Figure: Statistical coherence
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Statistical approach

du
dt

= F(u), u ∈ H

Long time average

< Φ >= lim
T→∞

1
T

∫ T

0
Φ(v(t)) dt

Spatial averages

< Φ >t=

∫
H

Φ(v) dµt(v)

{µt , t ≥ 0} statistical solutions
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Statistics Solutions

{µt , t ≥ 0}, dv
dt

= F(v), {S(t), t ≥ 0}

Pull-back
µ0(S−1(t)(E)) = µt(E)

Push-forward (Φ: suitable test functional)∫
H

Φ(v) dµt(v) =

∫
H

Φ(S(t)v) dµ0(v)

Finite ensemble example

µ0 =
N∑

j=1

pjδv0j (v), µt =
N∑

j=1

pjδvj (t)(v), vj(t) = S(t)v0j
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Figure: Joseph Liouville,
1809-1882

Figure: Eberhard Hopf,
1902-1983
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Liouville and Hopf equations

Liouville type equation

d
dt

∫
H

Φ(v) dµt(v) =

∫
H

< Φ′(v), F(v) > dµt(v)

Φ good test functionals e.g.

Φ(v) = φ((v, v1), · · · , (v, vN))

Liouville equation (finite d)

∂

∂t
p(v, t) +∇ · (p(v, t)F(v)) = 0

Hopf’s equation (special case of Liouville type)

d
dt

∫
H

ei(v,g) dµt(v) =

∫
H

i < F(v), g > ei(v,g) dµt(v)
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Stationary Statistics Solutions (IM)

Invariant measure (IM) µ ∈ PM(H)

µ(S−1(t)(E) = µ(E)

Stationary statistical solutions: essentially∫
H

< F (v),Φ′(v) > dµ(v) = 0,∀Φ

Stationary statistical solutions /IM are not necessarily supported
on steady state solutions or periodic orbits
Uncertainty in both initial condition and parameter(s) (model
error).
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Figure: George David
Birkhoff, 1884-1944 Definition

µ is ergodic if µ(E) = 0, or 1 for all
invariant sets E .

Theorem (Birkhoff’s Ergodic
Theorem)

If µ is invariant and ergodic, the
temporal and spatial averages are
equivalent, i.e.

lim
T→∞

1
T

∫ T

0
ϕ(S(t)u) dt =

∫
H

ϕ(u) dµ(u), a.s.
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Maximum entropy for conservative case

Maximum entropy principle: most probable pdf maximize the
Shannon entropy S = −

∫
p ln p.

Entropy is conserved in the deterministic case with Liouville
property (∇ · F = 0).

d ~X
dt

= ~F (~X ) + ε
d ~W
dt

Fokker-Planck equation (Kolmogorov, Smoluchowski)

∂p
∂t

+ ~F · ∇~X p − ε2

2
∆~X p = 0

Equation for the density of Shannon entropy Q = −p ln p

∂Q
∂t

+∇~X · (~FQ)− ε2

2
∆~X Q =

ε2

2p
|∇p|2

Monotonicity of Shannon entropy (noise increases uncertainty)
d
dt
S(p(t)) ≥ 0.
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More on statistical theories for complex dynamical systems can be
found:

Majda, A.J. and Wang, X. Nonlinear Dynamics and Statistical
Theories for Basic Geophysical Flows. Cambridge University
Press, 2006.
Majda, A.J., Abramov, R., and Grote, M., Information theory and
stochastics for multiscale nonlinear systems, CRM monograph
series, American Mathematical Society, 2005.
Foias, C.; Manley, O.; Rosa, R.; Temam, R.; Navier-Stokes
Equations and Turbulence, Cambridge University Press,
Cambridge, UK, 2001.
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Dissipative system

Definition

A dynamical system S(t), t ≥ 0 on a phase space H is called
dissipative if there exists a global attractor A such that

A is invariant under S(t).
A is compact.
A attracts any bounded set B in H, i.e.,

lim
t→∞

dist(S(t)B,A) = 0.
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IM and attractors

Theorem (IM and the global attractors, W. 08)
1 IM is a convex compact set (with respect to the weak topology)
2 suppµ ⊂ A,∀µ ∈ IM

Singular nature of invariant measure
Earlier work under existence of a compact absorbing set (Ciprian
Foias et al)
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IM and time averages

Theorem (IM and time averages, W. 08)

Assume H reflexive, S dissipative.
∀u0 ∈ H,∀LIM ⇒ ∃!µ ∈ IM such that

LIMT→∞
1
T

∫ T

0
ϕ(S(t)u0) dt =

∫
H

ϕ(u) dµ(u),∀ϕ ∈ C(H).

Earlier work under existence of a compact absorbing set or smaller
class of weakly continuous functionals (Foias et al)
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Ergodicity and extremal points

Theorem (Ergodicity and extremal points, W. 08)

Let IM be the set of all invariant probability measures of a
dissipative dynamical system {S(t), t ≥ 0}. Then an invariant
measure µ is ergodic if µ is an extreme point of IM. Moreover, if the
dynamical system is injective on the global attractor A, then every
ergodic invariant measure must be an extremal point of IM.

Other versions with group (ODE) assumption is well-known.
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Regular perturbation

Theorem (Conv. of IM, regular version, W. 08)

Assume for S(t , ε)
1 (uniformly dissipativity) pre-compactness of K =

⋃
0<|ε|≤ε0

Aε

2 (finite time u-conv.)
limε→0 supu∈Aε

‖S(t , ε)u− S(t , 0)u‖H = 0,∀t ≥ 0.

Then
limε→0 µε = µ0, µε ∈ IMε, µ0 ∈ IM0

Beyond continuity, linear response ...
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Two time scale set-up

Two-time-scale problem: X1, X2: Hilbert spaces

ε(
du1

dt
+ g(u1, u2)) = f1(u1, u2), u1(0) = u10,

du2

dt
= f2(u1, u2), u2(0) = u20,

Limit problem ( ε = 0)

0 = f1(u0
1, u0

2),

du0
2

dt
= f2(u0

1, u0
2), u0

2(0) = u20.

y = f1(u1, u2) ⇔ u1 = F1(u2, y)
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Conv. of stat. prop.: 2 time scale case

Theorem (Conv. of IM, singular version, W. 08)

Assume
1 (uniform dissipativity) pre-compactness of K =

⋃
0<ε<ε0

Aε

2 (dissipativity of the limit system) A0 in X2.
3 (conv. of the slow variable)

limε→0 supu2∈P2Aε
‖P2S(t , ε)(F1(u2, 0), u2)− S(t , 0)u2‖X2 =

0, ∀ t ≥ 0.

4 (smallness of the perturbation)
limε→0 sup(u1,u2)∈Aε

‖ε( du1
dt + g(u1, u2))‖X1 = 0.

5 (continuity of the slave relation) u1 = F1(u2, y)

Then
µε ⇀ Lµ0,

Wang, Xiaoming wxm@math.fsu.edu Stationary Statistical Properties of Dissipative Systems
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Rayleigh and Bénard

Figure: Lord Rayleigh (John
William Strutt) 1842-1919

Figure: Henri Bénard (left),
1874-1939
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Application to RBC, W., CPAM 07

Boussinesq system for Rayleigh-Bénard convection

1
Pr

(
∂u
∂t

+ (u · ∇)u) +∇p = ∆u + Ra kθ, ∇ · u = 0, u|z=0,1 = 0,

∂θ

∂t
+ u · ∇θ − u3 = ∆θ, θ|z=0,1 = 0,

Infinite Prandtl number model for convection

∇p0 = ∆u0 + Ra kθ0, ∇ · u0 = 0, u0|z=0,1 = 0,

∂θ0

∂t
+ u0 · ∇θ0 − u0

3 = ∆θ0, θ0|z=0,1 = 0.

X1 = H, X2 = L2, ε = 1
Pr and F1(θ, y) = Ra A−1(kθ)− A−1(y)
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RBC set-up and numerics

Figure: RBC set-up Figure: Numerical simulation

(∞ Pr. simulation)
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Temporal approximation

Possible deficiency of classical schemes

du
dt

= F(u), u ∈ H

classical scheme of order m

‖u(n∆t)− un‖ ≤ C(n∆t)∆tm

Dependence on T
C(T ) = exp(αT )

Error in approximation of long time averages

| lim sup
N→∞

1
N

N∑
n=1

(Φ(u(n∆t))− Φ(un))|

≤ c lim sup
N→∞

∆tm exp((N + 1)α∆t)− exp(α∆t)
exp(α∆t)− 1

= ∞.

Classical schemes may not be able to capture the climate
although they may work very well for weather.
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Difficulty with large Rayleigh number

Infinite Pr number model

∂θ0

∂t
+ Ra A−1(kθ0) · ∇θ0 − Ra A−1(kθ0)3 = ∆θ0

A: Stokes operator
Alternative form with s = Ra t

∂θ0

∂s
+ A−1(kθ0) · ∇θ0 − A−1(kθ0)3 =

1
Ra

∆θ0
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Theorem (General result, W. 08)

Assume
1 (Uniform dissipativity) K =

⋃
0<k≤k0

Ak

2 (Finite time uniform convergence)
supu∈Ak ,nk∈[t0,T ] ‖Sn

k u− S(nk)u‖ → 0, as k → 0.

3 (Uniform continuity of the continuous system)
limt→T supu∈K ‖S(t)u− S(T )u‖ = 0.

Then
1 (Conv. of stationary stat. prop.)

µk ⇀ µ, µk ∈ IMk , µ ∈ IM.

2 (Conv. of attractors)

lim
k→0

dist(Ak ,A) = 0.
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Application to ∞ Pr. model

∞ Prandtl number model (alternative form)

∂θ

∂t
+ Ra A−1(kθ) · ∇θ − Ra A−1(kθ)3 = ∆θ, θ|z=0,1 = 0.

Semi-implicit scheme

θn+1 − θn

k
+ Ra A−1(kθn) · ∇θn+1 + Ra A−1(kθn)3 = ∆θn+1

Equivalent form (T = θ + 1− z):

T n+1 − T n

k
+ Ra A−1(kT n) · ∇T n+1 = ∆T n+1
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Nusselt number (recast)

For the infinite Prandtl number model

Nu = sup
θ0∈L2

lim sup
t→∞

1
tLxLy

∫ t

0

∫
Ω

|∇T (x, s)|2 dxds,

= 1 + Ra sup
θ0∈L2

lim sup
t→∞

1
tLxLy

∫ t

0

∫
Ω

A−1(kT (x, s))3T (x, s) dxds,

= 1 + Ra sup
θ0∈L2

lim sup
t→∞

1
tLxLy

∫ t

0

∫
Ω

A−1(kθ(x, s))3θ(x, s) dxds.

For the scheme

Nuk = 1 + Ra sup
θ0∈L2

lim sup
N→∞

1
NLxLy

N∑
n=1

∫
Ω

A−1(kθn(x))3θ
n(x) dx
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Nusselt number limit

Convergence of Nusselt number

lim sup
k→0

Nuk ≤ Nu.

Complements variational approach (Constantin& Doering)
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Temporal approximation

Summary

Invariant measures of appropriate numerical approximations
converge to invariant measures of the continuous in time
dynamical system under approximation
Specific stationary statistical properties (such as Nusselt
number) also converge
Same idea can be applied to many dissipative dynamical
systems
Uniform dissipativity is crucial
Long way to go to reach our goal
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Questions

Continuity instead of upper semi-continuity? Linear response?
Statistical hysteresis?
Uniqueness of physical invariant measure? Noise effect?
Balancing mixing rate and error?
Convergence rate? At least for certain "good" statistical
quantities?
High order schemes
Explicit time stepping (Perhaps with posterior approach)?
Fully discrete schemes
Other schemes
Partially/weakly dissipative systems
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