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1.) Basics on parabolic equations

The heat equation

A function u : R" x IR{S' — R solves the heat equation
with initial value ug : R" — R if

(O — DNu(z,t) =0 in R"x(0,0) and
u(-,0) = ug.

If for f:R" xRy — R

(at — A)’UJ(ZC,t) — f(xat) and ’LL(', O) — UuQ
then u solves the inhomogeneous heat equation
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Properties:

TR
( )ne 4t solves
47t)2

1) Fundamental solution ®(z,t) =

the heat equation with ug = dg
(Note: For every t > 0, ®(-,t) € C°(R™, R))

2) Solution of the inhomogeneous equation
(ug € CONL>®(R"), f e C?(R" x [0,0)))

u(@,t) = [ &z =y, Duoly)dy

t
—I—/O /n¢(x—y,t—8)f(y,8)dy ds
=Sug(z,t) + Vf(x,t) (Duhamel's principle)
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3) Solutions are smooth for t > 0. In fact, for every
t > 0 fixed, the map

x — u(x,t)
IS analytic. This is not true in general for the map

t — u(x,t).

4) Let T > 0. Solutions are unique in the class of all
functions v € C%1(R" x (0, T]))NCO(R" x [0, T]) satisfying

u(z, )] < A (z e R, te (0,1,

for constants A,a > 0.
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Constant coefficients:
Now consider the more general equation

n
(O — > a;;05)u(z,t) = f(z,t) and  u(-,0) = up,
1,7=1

with a;; = aj; = const. and for some A > 0 and all £ € R"
S a6 > g2
1]

Nash '58, Fabes & Stroock '86: The fundamental so-

lution @, satisfies (for a constant 6 > 0)

n4204|y| _ c|z[?
DY Dy (z,1)] < cygt™ 2 e 0

= all results from heat equation carry over to this case
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Fully nonlinear equations:
Consider the initial value problem

ur =F(x,t,u, Du, D?u) in R"x (0,T), (1)
’LL(,O) —uo,

where F : R™ x IR%E')‘ X R x R"™ x R’”Q — R is elliptic and
smooth, i.e. there exists A > 0 such that

OF

9q;;

General result: For ug € C*°(R"™) there exists a number
T > 0 and a smooth solution u of (1).
Question: Can we do better than ug € C°(R")?

(ZC, t, 2, D, Q)€Z€] > >‘|€|2
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2.) Geometric motivations
Smoothing of hon-smooth geometric objects
a) Submanifolds

Let FF: ¥ — R"t1 pe a smooth immersion (i.e. the

differential is injective). We have the induced metric
gz(v,w) = (DF(v), DF(w))

and the mean curvature

Hv =Y g"05F,
i.j

where v is the normal vector
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What about non-smooth immersions (not C2)?
Example: A cone with vertex at the origin.

The standard immersion is Lipschitz but not C<.

In this situation the mean curvature is only defined al-

most everywhere.

Question: Can we approximate a Lipschitz immersion
Fy by smooth ones?
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Idea: Use parabolic equation (here mean curvature flow)

(MCF) F =Hv on ¥ x(0,7) and F(-,0)= Fj

Problem: Not elliptic (invariant under tangential diffeo-
morphisms)

Here: M™ =R", Fp(z) = (=, fo(z)) (fo:R" — R)
(MCF) equivalent to
(GMCF) o f =g"05f, f(-,0) = fo,

where 9ij = 523 -+ (‘)Lf@]f
Elliptic if ||V £]|z < c.
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Known results:

1) m = 1 Ecker-Huisken ‘91: fp locally Lipschitz =
3 global smooth solution (see also Evans-Spruck)

2) m>1M.T.Wang ‘04: M compact, ||V fo||lr~ locally
small = 4 global smooth solution

3) m = n Chau-Chen-He ‘09: fo = Vug, —(1 —§)id <
V2ug < (1 —146)id V¥ § > 0 = 3 global smooth solution of
LLagrangian MCF

4) for some n, m > 1 Lawson-Osserman ‘77: 3 minimal
graph which is Lipschitz but not C1
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b) General manifolds

Let (M,g) be a smooth Riemannian manifold. Then
we can define the (Ricci-) curvature of the manifold.

In “nice” coordinates it is of the form

, 1
RZCij == _EAgg” —I— [.o.t.

Hence we need at least g € C2.
Question: Can we approximate L°-metrics by C°° ones?

Ricci-flow:

(RF) 0tg = —2Ricg on M x (0,7) and g(-,0) =gg € L™
Problem: Not elliptic (invariant under diffeomorphisms)
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Here: Ricci-DeTurck flow on (R%,§)
(RDF) Orgi; =9°V2,9ii + 9~
g('7 O) —430,
where gg € L°°(R™).
Defining h = g — 6 we calculate
(9 — D)hij =Va((g"" = ") Vyhij) + Rolh],
where

1*9_1*V9*Vg

Ro[h) =(14 (6 +h) 16 +h) 1) Vh*Vh

Previous results: Simon '04: local existence for
L>®-perturbations of C2-metrics
Schniirer, Schulze & Simon ‘08: C9-perturbation of §

on R"
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3.) Formulation of results

Remember: Goal was to study for which initial data
ug do we get a local solution uw : R" x [0,T) — R of

(1) w = F(x,t,u, Du,D?u) in R”x (0,7), wu(-,0)=ug,

where F' is smooth and elliptic.

Case 1: compare with (GMCF)

F(z,t,u, Du, D%u) = a;;(z,t,u, Du)@%u + f(x,t,u, Du)

where a;;&:¢; > Aé|? and a;;, f € C1 bounded, with uni-
formly continuous and bounded derivatives.
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Theorem 1. Let ug € CL(R™) have a uniformly con-
tinuous and bounded first derivative. Then there ex-
ists T = T(ug) > 0 and a unique, analytic solution
u:R"x (0, T7) — R of (1). Moreover u depends analyt-
ically on ug.

Bem.: Theorem 2 remains true for weighted Lipschitz-
perturbations of ug as above. In particular this applies
to (GMCF) for arbitrary m > 1.

Theorem 2. There exists eg > 0, such that for all ug €
COL(R™) with |uol| 0,1 < €0 there exists a unique, global
and analytic solution of (1).
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Case 2: compare with (RDF), harmonic map flow

F(xa t,u, Du, DQU’) — az(a”L] ($, t u)a]u)_l_bm (337 t u)azuayu_l_f(xa t U’)

Qjj» bijr f asin Case 1

Theorem 3. Let ug be uniformly continuous with |ug(z)—
ug(y)| < c(lz—y|+1) Vz,y € R™. Then there existsT > 0
and a unique, analytic soln v : R" x (0,T7) — R of (1).

Remark.:

Theorem 4 true for small L°°-perturbations of ug as
above.

Theorem 4.3¢g > 0, s.t. Vug € L®(R™) with ||ugl|pe <
eo there exists a unique, global, analytic solution of (1).
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Case 3: general elliptic F with uniformly continuous
and bounded second derivatives

Theorem 5. Let ug € C? with uniformly continuous
and bounded 2nd derivatives. There exists T' > 0 and
a unique, analytic solution u : R™ x (0,7) — R of (1).

Remark.: Further results for systems of higher order

(Willmore flow, surface diffusion, etc.)
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4.) Proofs: Navier-Stokes (Koch-Tataru 2001)
Sketch of proof of Thm. 2 for (GMCF):

Rewrite (GMCF) as
(0 — D) f = (g = §)o5f =: M[f], f(-,0) = fo
and consider the corresponding integral equation

f(xat) — SfO(wat> + VM[f](CC,t),

where

Sfole,t) = [ @@ -y, Dfoly)dy,

VMA@ = [ [ @yt - )M, )y ds
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Define Banach space
X ={f] [|Vf]lLo(R" x RT)

2
+ sup sup Rt ||v?2
zER™ R>0 | f||L"+4(BR(az)><(R—2,R2))

Remark: X, C%1 and (GMCF) invariant w.r.t. the scal-
ing

< oo}

falz,t) = A7 Ow, A% (A > 0)
Claim: 3 d,eg > 0 s.t. V fo with ||V fol|~ < €9 the map

Fpo: X0 = X0 ={f e X| |Ifllx <}
Fp (f) = Sfo+ VM[f]
IS a contraction.
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Step 1: [|Sfollx < ||V follpe
Follows from the heat kernel estimates.
Step 2: Forevery f e X7 (y < 1):

My < el flI%,
where

2
Y = sup sup Rnt+4 2
tl rcR” R>0 ||g||L”+4(BR(:v)><(R—,R2))

Follows from

109" — 8V flly <cllg™ = dllpollfllx < IV £ Le)IIf]1%-
Step 3: For every M € Y we have

< 00}.

|VM||x < c||M]]y.
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Remark: Theorem gives the existence of global unique

and analytic self-similar solutions for self-similar Lips-
chitz initial data with small norm

Analyticity in x and ¢: (cf. Angenent ‘90)

Let a € R™ be close to O and 7 € R close to 1. Same
arguments as above apply to the equation

O —A)f=7M[fl+ (t—1)Af —aVf
If fis the unique solution of (GMCF) fu.r(z,t) = f(x —
at, 7t) uniquely solves the above. By the analytic im-
plicit function theorem f, r depends analytically on a,
= Claim!
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Remarks on Thm. 1:
Proof uses almost the same Banach space and a local-
ization argument 4+ the estimate of Fabes & Stroock.

Current Projects:

1) Do everything on manifolds (compact or volume
doubling, i.e. vol(Bsog(x)) < Cvol(Bgr(x))).

Applications: for example, Local well-posedness for mean
curvature flow for initial data which are Lipschitz-perturbations
of Cl-immersions

2) In case 2 allow BMO initial data (Harmonic map
flow)



