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1.) Basics on parabolic equations

The heat equation

A function u : Rn × R
+
0 → R solves the heat equation

with initial value u0 : Rn → R if

(∂t − ∆)u(x, t) = 0 in R
n × (0,∞) and

u(·,0) = u0.

If for f : Rn × R
+
0 → R

(∂t − ∆)u(x, t) = f(x, t) and u(·,0) = u0

then u solves the inhomogeneous heat equation
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Properties:

1) Fundamental solution Φ(x, t) = 1

(4πt)
n
2
e−

|x|2

4t solves

the heat equation with u0 = δ0
(Note: For every t > 0, Φ(·, t) ∈ C∞(Rn, R))

2) Solution of the inhomogeneous equation

(u0 ∈ C0 ∩ L∞(Rn), f ∈ C2(Rn × [0,∞)))

u(x, t) =
∫

Rn
Φ(x − y, t)u0(y)dy

+
∫ t

0

∫

Rn
Φ(x − y, t − s)f(y, s)dy ds

=Su0(x, t) + V f(x, t) (Duhamel’s principle)
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3) Solutions are smooth for t > 0. In fact, for every

t > 0 fixed, the map

x → u(x, t)

is analytic. This is not true in general for the map

t → u(x, t).

4) Let T > 0. Solutions are unique in the class of all

functions u ∈ C2,1(Rn×(0, T ])∩C0(Rn×[0, T ]) satisfying

|u(x, t)| ≤ Aea|x|2 (x ∈ R
n, t ∈ [0, T ]),

for constants A, a > 0.
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Constant coefficients:

Now consider the more general equation

(∂t −
n

∑

i,j=1

aij∂
2
ij)u(x, t) = f(x, t) and u(·,0) = u0,

with aij = aji = const. and for some λ > 0 and all ξ ∈ Rn

∑

ij

aijξiξj ≥ λ|ξ|2.

Nash ’58, Fabes & Stroock ’86: The fundamental so-

lution Φa satisfies (for a constant δ > 0)

|∂l
tD

γΦa(x, t)| ≤ cγ,lt
−

n+2l+|γ|
2 e−δ

|x|2

t

⇒ all results from heat equation carry over to this case
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Fully nonlinear equations:

Consider the initial value problem

ut =F (x, t, u, Du, D2u) in R
n × (0, T ), (1)

u(·,0) =u0,

where F : Rn × R
+
0 × R × Rn × Rn2

→ R is elliptic and

smooth, i.e. there exists λ > 0 such that

∂F

∂qij
(x, t, z, p, q)ξiξj ≥ λ|ξ|2.

General result: For u0 ∈ C∞(Rn) there exists a number

T > 0 and a smooth solution u of (1).

Question: Can we do better than u0 ∈ C∞(Rn)?
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2.) Geometric motivations

Smoothing of non-smooth geometric objects

a) Submanifolds

Let F : Σn → Rn+1 be a smooth immersion (i.e. the

differential is injective). We have the induced metric

gx(v, w) = 〈DF (v), DF (w)〉

and the mean curvature

Hν =
∑

i,j

gij∂2
ijF,

where ν is the normal vector
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What about non-smooth immersions (not C2)?

Example: A cone with vertex at the origin.

The standard immersion is Lipschitz but not C2.

In this situation the mean curvature is only defined al-

most everywhere.

Question: Can we approximate a Lipschitz immersion

F0 by smooth ones?
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Idea: Use parabolic equation (here mean curvature flow)

(MCF ) ∂tF = Hν on Σ × (0, T ) and F (·,0) = F0

Problem: Not elliptic (invariant under tangential diffeo-

morphisms)

Here: Mn = Rn, F0(x) = (x, f0(x)) (f0 : Rn → R)

(MCF) equivalent to

(GMCF ) ∂tf = gij∂2
ijf, f(·,0) = f0,

where gij = δij + ∂if∂jf .

Elliptic if ||∇f ||L∞ ≤ c.
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Known results:

1) m = 1 Ecker-Huisken ‘91: f0 locally Lipschitz ⇒

∃ global smooth solution (see also Evans-Spruck)

2) m ≥ 1 M.T. Wang ‘04: M compact, ||∇f0||L∞ locally

small ⇒ ∃ global smooth solution

3) m = n Chau-Chen-He ‘09: f0 = ∇u0, −(1 − δ)id ≤

∇2u0 ≤ (1− δ)id ∀ δ > 0 ⇒ ∃ global smooth solution of

Lagrangian MCF

4) for some n, m > 1 Lawson-Osserman ‘77: ∃ minimal

graph which is Lipschitz but not C1
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b) General manifolds

Let (M, g) be a smooth Riemannian manifold. Then

we can define the (Ricci-) curvature of the manifold.

In “nice” coordinates it is of the form

Ricij = −
1

2
∆ggij + l.o.t.

Hence we need at least g ∈ C2.

Question: Can we approximate L∞-metrics by C∞ ones?

Ricci-flow:

(RF ) ∂tg = −2Ricg on M × (0, T ) and g(·,0) = g0 ∈ L∞

Problem: Not elliptic (invariant under diffeomorphisms)
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Here: Ricci-DeTurck flow on (Rn, δ)

(RDF ) ∂tgij =gab∇2
abgij + g−1 ⋆ g−1 ⋆ ∇g ⋆ ∇g

g(·,0) =g0,

where g0 ∈ L∞(Rn).

Defining h = g − δ we calculate

(∂t − ∆)hij =∇a

(

(gab − δab)∇bhij

)

+ R0[h],

where

R0[h] =
(

1 + (δ + h)−1(δ + h)−1
)

∇h ⋆ ∇h

Previous results: Simon ’04: local existence for

L∞-perturbations of C2-metrics

Schnürer, Schulze & Simon ‘08: C0-perturbation of δ

on Rn
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3.) Formulation of results

Remember: Goal was to study for which initial data

u0 do we get a local solution u : Rn × [0, T ) → R of

(1) ut = F (x, t, u, Du, D2u) in R
n × (0, T ), u(·,0) = u0,

where F is smooth and elliptic.

Case 1: compare with (GMCF)

F (x, t, u, Du, D2u) = aij(x, t, u, Du)∂2
iju + f(x, t, u, Du)

where aijξiξj ≥ λ|ξ|2 and aij, f ∈ C1 bounded, with uni-

formly continuous and bounded derivatives.
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Theorem 1. Let u0 ∈ C1(Rn) have a uniformly con-

tinuous and bounded first derivative. Then there ex-

ists T = T (u0) > 0 and a unique, analytic solution

u : Rn × (0, T ) → R of (1). Moreover u depends analyt-

ically on u0.

Bem.: Theorem 2 remains true for weighted Lipschitz-

perturbations of u0 as above. In particular this applies

to (GMCF ) for arbitrary m ≥ 1.

Theorem 2. There exists ε0 > 0, such that for all u0 ∈

C0,1(Rn) with ||u0||C0,1 < ε0 there exists a unique, global

and analytic solution of (1).
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Case 2: compare with (RDF), harmonic map flow

F (x, t, u, Du, D2u) = ∂i(aij(x, t, u)∂ju)+bij(x, t, u)∂iu∂ju+f(x, t, u)

aij, bij, f as in Case 1

Theorem 3.Let u0 be uniformly continuous with |u0(x)−

u0(y)| ≤ c(|x−y|+1) ∀x, y ∈ Rn. Then there exists T > 0

and a unique, analytic soln u : Rn × (0, T ) → R of (1).

Remark.:

Theorem 4 true for small L∞-perturbations of u0 as

above.

Theorem 4. ∃ ε0 > 0, s.t. ∀ u0 ∈ L∞(Rn) with ||u0||L∞ <

ε0 there exists a unique, global, analytic solution of (1).
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Case 3: general elliptic F with uniformly continuous

and bounded second derivatives

Theorem 5. Let u0 ∈ C2 with uniformly continuous

and bounded 2nd derivatives. There exists T > 0 and

a unique, analytic solution u : Rn × (0, T ) → R of (1).

Remark.: Further results for systems of higher order

(Willmore flow, surface diffusion, etc.)
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4.) Proofs: Navier-Stokes (Koch-Tataru 2001)

Sketch of proof of Thm. 2 for (GMCF):

Rewrite (GMCF) as

(∂t − ∆)f = (gij − δij)∂2
ijf =: M [f ], f(·,0) = f0

and consider the corresponding integral equation

f(x, t) = Sf0(x, t) + V M [f ](x, t),

where

Sf0(x, t) =
∫

Rn
Φ(x − y, t)f0(y)dy,

V M [f ](x, t) =
∫ t

0

∫

Rn
Φ(x − y, t − s)M [f ](y, s)dy ds.
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Define Banach space

X ={f | ||∇f ||L∞(Rn × R
+)

+ sup
x∈Rn

sup
R>0

R
2

n+4||∇2f ||
Ln+4(BR(x)×(R2

2 ,R2))
< ∞}

Remark: X, Ċ0,1 and (GMCF) invariant w.r.t. the scal-

ing

fλ(x, t) = λ−1f(λx, λ2t) (λ > 0)

Claim: ∃ δ, ε0 > 0 s.t. ∀ f0 with ||∇f0||L∞ < ε0 the map

Ff0
: Xδ → Xδ = {f ∈ X| ||f ||X < δ}

Ff0
(f) = Sf0 + V M [f ]

is a contraction.
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Step 1: ||Sf0||X ≤ c||∇f0||L∞

Follows from the heat kernel estimates.

Step 2: For every f ∈ Xγ (γ < 1):

||M [f ]||Y ≤ c||f ||2X ,

where

Y = {g| sup
x∈Rn

sup
R>0

R
2

n+4||g||
Ln+4(BR(x)×(R2

2 ,R2))
< ∞}.

Follows from

||(gij − δij)∇2
ijf ||Y ≤c||g−1 − δ||L∞||f ||X ≤ c(||∇f ||L∞)||f ||2X .

Step 3: For every M ∈ Y we have

||V M ||X ≤ c||M ||Y .
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Remark: Theorem gives the existence of global unique

and analytic self-similar solutions for self-similar Lips-

chitz initial data with small norm

Analyticity in x and t: (cf. Angenent ‘90)

Let a ∈ Rn be close to 0 and τ ∈ R close to 1. Same

arguments as above apply to the equation

(∂t − ∆)f = τM [f ] + (τ − 1)∆f − a∇f

If f is the unique solution of (GMCF) fa,τ(x, t) = f(x−

at, τt) uniquely solves the above. By the analytic im-

plicit function theorem fa,τ depends analytically on a, τ

⇒ Claim!
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Remarks on Thm. 1:

Proof uses almost the same Banach space and a local-

ization argument + the estimate of Fabes & Stroock.

Current Projects:

1) Do everything on manifolds (compact or volume

doubling, i.e. vol(B2R(x)) ≤ Cvol(BR(x))).

Applications: for example, Local well-posedness for mean

curvature flow for initial data which are Lipschitz-perturbations

of C1-immersions

2) In case 2 allow BMO initial data (Harmonic map

flow)


