Tobias Lamm (UBC)

Parabolic systems with rough initial data

joint with H. Koch (Bonn)

Contents:

- 1.) Basics on parabolic equations
- 2.) Geometric motivations
- 3.) Formulation of results
- 4.) Proofs (Ideas)

1.) Basics on parabolic equations

The heat equation

A function $u : \mathbb{R}^n \times \mathbb{R}_0^+ \to \mathbb{R}$ solves the heat equation with initial value $u_0 : \mathbb{R}^n \to \mathbb{R}$ if

 $(\partial_t - \Delta)u(x,t) = 0$ in $\mathbb{R}^n \times (0,\infty)$ and $u(\cdot,0) = u_0.$

If for $f : \mathbb{R}^n \times \mathbb{R}_0^+ \to \mathbb{R}$ $(\partial_t - \Delta)u(x,t) = f(x,t)$ and $u(\cdot, 0) = u_0$ then u solves the inhomogeneous heat equation

Parabolic systems with rough initial data

Properties:

1) Fundamental solution $\Phi(x,t) = \frac{1}{(4\pi t)^{\frac{n}{2}}}e^{-\frac{|x|^2}{4t}}$ solves the heat equation with $u_0 = \delta_0$ (Note: For every t > 0, $\Phi(\cdot, t) \in C^{\infty}(\mathbb{R}^n, \mathbb{R})$)

2) Solution of the inhomogeneous equation $(u_0 \in C^0 \cap L^{\infty}(\mathbb{R}^n), f \in C^2(\mathbb{R}^n \times [0, \infty)))$

$$\begin{aligned} u(x,t) &= \int_{\mathbb{R}^n} \Phi(x-y,t) u_0(y) dy \\ &+ \int_0^t \int_{\mathbb{R}^n} \Phi(x-y,t-s) f(y,s) dy \ ds \\ &= S u_0(x,t) + V f(x,t) \quad \text{(Duhamel's principle)} \end{aligned}$$

3) Solutions are smooth for t > 0. In fact, for every t > 0 fixed, the map

$$x \to u(x,t)$$

is analytic. This is not true in general for the map

 $t \rightarrow u(x,t).$

4) Let T > 0. Solutions are unique in the class of all functions $u \in C^{2,1}(\mathbb{R}^n \times (0,T]) \cap C^0(\mathbb{R}^n \times [0,T])$ satisfying

$$|u(x,t)| \le Ae^{a|x|^2}$$
 $(x \in \mathbb{R}^n, t \in [0,T]),$

for constants A, a > 0.

Constant coefficients:

Now consider the more general equation

$$(\partial_t - \sum_{i,j=1}^n a_{ij} \partial_{ij}^2) u(x,t) = f(x,t) \text{ and } u(\cdot,0) = u_0,$$

with $a_{ij} = a_{ji} = const.$ and for some $\lambda > 0$ and all $\xi \in \mathbb{R}^n$

$$\sum_{ij} a_{ij} \xi_i \xi_j \ge \lambda |\xi|^2.$$

Nash '58, Fabes & Stroock '86: The fundamental solution Φ_a satisfies (for a constant $\delta > 0$)

$$|\partial_t^l D^{\gamma} \Phi_a(x,t)| \le c_{\gamma,l} t^{-\frac{n+2l+|\gamma|}{2}} e^{-\delta \frac{|x|^2}{t}}$$

 \Rightarrow all results from heat equation carry over to this case

Fully nonlinear equations: Consider the initial value problem

$$u_t = F(x, t, u, Du, D^2 u)$$
 in $\mathbb{R}^n \times (0, T)$, (1)
 $u(\cdot, 0) = u_0$,

where $F : \mathbb{R}^n \times \mathbb{R}_0^+ \times \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^{n^2} \to \mathbb{R}$ is elliptic and smooth, i.e. there exists $\lambda > 0$ such that

$$\frac{\partial F}{\partial q_{ij}}(x,t,z,p,q)\xi_i\xi_j \ge \lambda |\xi|^2.$$

<u>General result</u>: For $u_0 \in C^{\infty}(\mathbb{R}^n)$ there exists a number T > 0 and a smooth solution u of (1). Question: Can we do better than $u_0 \in C^{\infty}(\mathbb{R}^n)$?

2.) Geometric motivations

Smoothing of non-smooth geometric objects

a) Submanifolds

Let $F : \Sigma^n \to R^{n+1}$ be a smooth immersion (i.e. the differential is injective). We have the induced metric

$$g_x(v,w) = \langle DF(v), DF(w) \rangle$$

and the mean curvature

$$H\nu = \sum_{i,j} g^{ij} \partial_{ij}^2 F,$$

where ν is the normal vector

What about non-smooth immersions (not C^2)?

Example: A cone with vertex at the origin.

The standard immersion is Lipschitz but not C^2 . In this situation the mean curvature is only defined almost everywhere.

<u>Question</u>: Can we approximate a Lipschitz immersion F_0 by smooth ones?

Idea: Use parabolic equation (here mean curvature flow)

(MCF) $\partial_t F = H\nu$ on $\Sigma \times (0,T)$ and $F(\cdot,0) = F_0$

Problem: Not elliptic (invariant under tangential diffeomorphisms)

Here: $M^n = \mathbb{R}^n$, $F_0(x) = (x, f_0(x))$ $(f_0 : \mathbb{R}^n \to \mathbb{R})$ (MCF) equivalent to

 $(GMCF) \qquad \partial_t f = g^{ij} \partial_{ij}^2 f, \quad f(\cdot, 0) = f_0,$ where $g_{ij} = \delta_{ij} + \partial_i f \partial_j f.$ Elliptic if $||\nabla f||_{L^{\infty}} \leq c.$ Known results:

1) m = 1 Ecker-Huisken '91: f_0 locally Lipschitz \Rightarrow \exists global smooth solution (see also Evans-Spruck) 2) $m \ge 1$ M.T. Wang '04: M compact, $||\nabla f_0||_{L^{\infty}}$ locally small $\Rightarrow \exists$ global smooth solution 3) m = n Chau-Chen-He '09: $f_0 = \nabla u_0$, $-(1 - \delta)id \le \nabla^2 u_0 \le (1 - \delta)id \forall \delta > 0 \Rightarrow \exists$ global smooth solution of Lagrangian MCF

4) for some n, m > 1 Lawson-Osserman '77: \exists minimal graph which is Lipschitz but not C^1

b) General manifolds

Let (M,g) be a smooth Riemannian manifold. Then we can define the (Ricci-) curvature of the manifold. In "nice" coordinates it is of the form

$$Ric_{ij} = -\frac{1}{2}\Delta_g g_{ij} + l.o.t.$$

Hence we need at least $g \in C^2$. Question: Can we approximate L^{∞} -metrics by C^{∞} ones?

Ricci-flow:

(*RF*) $\partial_t g = -2Ric_g$ on $M \times (0,T)$ and $g(\cdot,0) = g_0 \in L^{\infty}$ Problem: Not elliptic (invariant under diffeomorphisms)

Here: Ricci-DeTurck flow on
$$(\mathbb{R}^n, \delta)$$

$$(RDF) \qquad \partial_t g_{ij} = g^{ab} \nabla^2_{ab} g_{ij} + g^{-1} \star g^{-1} \star \nabla g \star \nabla g$$
$$g(\cdot, 0) = g_0,$$

where $g_0 \in L^{\infty}(\mathbb{R}^n)$. Defining $h = g - \delta$ we calculate

$$(\partial_t - \Delta)h_{ij} = \nabla_a ((g^{ab} - \delta^{ab})\nabla_b h_{ij}) + R_0[h],$$

where

$$R_0[h] = \left(1 + (\delta + h)^{-1}(\delta + h)^{-1}\right) \nabla h \star \nabla h$$

<u>Previous results:</u> Simon '04: local existence for $L^\infty\text{-perturbations of }C^2\text{-metrics}$ Schnürer, Schulze & Simon '08: $C^0\text{-perturbation of }\delta$ on \mathbb{R}^n

3.) Formulation of results

<u>Remember</u>: Goal was to study for which initial data u_0 do we get a local solution $u : \mathbb{R}^n \times [0,T) \to \mathbb{R}$ of (1) $u_t = F(x,t,u,Du,D^2u)$ in $\mathbb{R}^n \times (0,T)$, $u(\cdot,0) = u_0$, where F is smooth and elliptic.

Case 1: compare with (GMCF)

 $F(x, t, u, Du, D^2u) = a_{ij}(x, t, u, Du)\partial_{ij}^2u + f(x, t, u, Du)$ where $a_{ij}\xi_i\xi_j \ge \lambda |\xi|^2$ and $a_{ij}, f \in C^1$ bounded, with uniformly continuous and bounded derivatives. **Theorem 1.** Let $u_0 \in C^1(\mathbb{R}^n)$ have a uniformly continuous and bounded first derivative. Then there exists $T = T(u_0) > 0$ and a unique, analytic solution $u : \mathbb{R}^n \times (0,T) \to \mathbb{R}$ of (1). Moreover u depends analytically on u_0 .

<u>Bem.</u>: Theorem 2 remains true for weighted Lipschitzperturbations of u_0 as above. In particular this applies to (*GMCF*) for arbitrary $m \ge 1$.

Theorem 2. There exists $\varepsilon_0 > 0$, such that for all $u_0 \in C^{0,1}(\mathbb{R}^n)$ with $||u_0||_{C^{0,1}} < \varepsilon_0$ there exists a unique, global and analytic solution of (1).

<u>Case 2:</u> compare with (RDF), harmonic map flow $F(x, t, u, Du, D^2u) = \partial_i(a_{ij}(x, t, u)\partial_j u) + b_{ij}(x, t, u)\partial_i u\partial_j u + f(x, t, u)$ a_{ij}, b_{ij}, f as in Case 1 **Theorem 3.** Let u_0 be uniformly continuous with $|u_0(x) - u_0(y)| \le c(|x-y|+1) \ \forall x, y \in \mathbb{R}^n$. Then there exists T > 0and a unique, analytic soln $u : \mathbb{R}^n \times (0, T) \to \mathbb{R}$ of (1).

Remark.:

Theorem 4 true for small L^{∞} -perturbations of u_0 as above.

Theorem 4. $\exists \varepsilon_0 > 0$, *s.t.* $\forall u_0 \in L^{\infty}(\mathbb{R}^n)$ with $||u_0||_{L^{\infty}} < \varepsilon_0$ there exists a unique, global, analytic solution of (1).

<u>Case 3:</u> general elliptic F with uniformly continuous and bounded second derivatives

Theorem 5. Let $u_0 \in C^2$ with uniformly continuous and bounded 2nd derivatives. There exists T > 0 and a unique, analytic solution $u : \mathbb{R}^n \times (0,T) \to \mathbb{R}$ of (1).

<u>Remark.</u>: Further results for systems of higher order (Willmore flow, surface diffusion, etc.)

4.) Proofs: Navier-Stokes (Koch-Tataru 2001) Sketch of proof of Thm. 2 for (GMCF):

Rewrite (GMCF) as

$$(\partial_t - \Delta)f = (g^{ij} - \delta^{ij})\partial_{ij}^2 f =: M[f], \quad f(\cdot, 0) = f_0$$

and consider the corresponding integral equation

$$f(x,t) = Sf_0(x,t) + VM[f](x,t),$$

where

$$Sf_0(x,t) = \int_{\mathbb{R}^n} \Phi(x-y,t) f_0(y) dy,$$
$$VM[f](x,t) = \int_0^t \int_{\mathbb{R}^n} \Phi(x-y,t-s) M[f](y,s) dy \ ds.$$

Define Banach space

$$X = \{f \mid ||\nabla f||_{L^{\infty}} (\mathbb{R}^{n} \times \mathbb{R}^{+})$$

+
$$\sup_{x \in \mathbb{R}^{n}} \sup_{R > 0} R^{\frac{2}{n+4}} ||\nabla^{2} f||_{L^{n+4}(B_{R}(x) \times (\frac{R^{2}}{2}, R^{2}))} < \infty \}$$

<u>Remark:</u> X, $\dot{C}^{0,1}$ and (GMCF) invariant w.r.t. the scaling

$$f_{\lambda}(x,t) = \lambda^{-1} f(\lambda x, \lambda^2 t) \quad (\lambda > 0)$$

<u>Claim</u>: $\exists \delta, \varepsilon_0 > 0$ s.t. $\forall f_0$ with $||\nabla f_0||_{L^{\infty}} < \varepsilon_0$ the map

$$F_{f_0} : X^{\delta} \to X^{\delta} = \{ f \in X | ||f||_X < \delta \}$$

$$F_{f_0}(f) = Sf_0 + VM[f]$$

is a contraction.

Step 1: $||Sf_0||_X \leq c||\nabla f_0||_{L^{\infty}}$ Follows from the heat kernel estimates. **Step 2:** For every $f \in X^{\gamma}$ ($\gamma < 1$): $||M[f]||_Y \leq c||f||_X^2$,

where

$$Y = \{g | \sup_{x \in \mathbb{R}^n} \sup_{R>0} R^{\frac{2}{n+4}} ||g||_{L^{n+4}(B_R(x) \times (\frac{R^2}{2}, R^2))} < \infty \}.$$

Follows from

$$||(g^{ij} - \delta^{ij}) \nabla_{ij}^2 f||_Y \le c ||g^{-1} - \delta||_{L^{\infty}} ||f||_X \le c (||\nabla f||_{L^{\infty}}) ||f||_X^2.$$

Step 3: For every $M \in Y$ we have

 $||VM||_X \le c||M||_Y.$

<u>Remark:</u> Theorem gives the existence of global unique and analytic self-similar solutions for self-similar Lipschitz initial data with small norm

Analyticity in x and t: (cf. Angenent '90)

Let $a \in \mathbb{R}^n$ be close to 0 and $\tau \in \mathbb{R}$ close to 1. Same arguments as above apply to the equation

$$(\partial_t - \Delta)f = \tau M[f] + (\tau - 1)\Delta f - a\nabla f$$

If f is the unique solution of (GMCF) $f_{a,\tau}(x,t) = f(x - at, \tau t)$ uniquely solves the above. By the analytic implicit function theorem $f_{a,\tau}$ depends analytically on $a, \tau \Rightarrow$ Claim!

Remarks on Thm. 1:

Proof uses almost the same Banach space and a localization argument + the estimate of Fabes & Stroock.

Current Projects:

1) Do everything on manifolds (compact or volume doubling, i.e. $vol(B_{2R}(x)) \leq Cvol(B_R(x))$). <u>Applications:</u> for example, Local well-posedness for mean curvature flow for initial data which are Lipschitz-perturbations of C^1 -immersions

2) In case 2 allow BMO initial data (Harmonic map flow)