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Motivation

 Pure Stochastic

• Micromagnetics (P. Plechac)

• Traffic Flow       (N. Dundon, T. Alperovich)

• Epidemiology    (R. Jordan)

 Coupled Systems

• Catalytic Reactors (M. Katsoulakis, D. Vlachos)

• Climate Modeling (M. Katsoulakis, A. Majda)

• General Biological Systems

• …

phase Gas

Surface
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Some challenges and questions:

• Disparity in scales and models; 

DNS require ensemble averages for large systems

• Model reduction, however no clear scale separation;

need hierarchical coarse-graining

• Deterministic vs stochastic closures; 

when is stochasticity important?

• Error control, stability of the hybrid algrithm; 

efficient allocation of computational resources 

adaptivity, model and mesh refinement
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A mathematical prototype hybrid model

• We introduce the microscopic spin flip 

stochastic Ising process 

• Coupled to a PDE/ODE that serves as 

a caricature of an overlying gas phase 

dynamics.
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• We assume a lattice L and denote by 

(x) the value of the spin at location x 

• A spin configuration  is an element of 

the configuration space                    

and we write

• The stochastic process              is a 

continuous time jump Markov process 

on              with generator L
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The Arrhenius spin-flip rate c(x,s) at lattice site x and spin configuration  is given by

with interaction potential

and local interaction via

Parameters/Constants:

• where      is the characteristic time of the stochastic process 

• L  denotes the interaction radius 

• V  is usual taken to be some uniform constant
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Equilibrium states of the stochastic model are described by the Gibbs measure at the 

prescribed temperature T

where                                                is the energy Hamiltonian for       

and                                               with
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The probability of a spin-flip at x during time [t, t+Dt] is

The dynamics as described here leave the Gibbs measure invariant since they satisfy 

detailed balance,

where
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Some examples for the ODE

CGL:

Bistable:

Saddle:

Linear:

where           depends linearly on  
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The stochastic system and the ODE are coupled via, respectively: 

• The external field,

• The area fraction (or total coverage) defined as the spatial average 

of the stochastic process ,
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Part I. Deterministic Closure

The main requirement is the ergodicity property of the stochastic process 
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• On an arbitrary bounded time interval [0, T] with fixed N and c we have:
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Suppose                      is the solution of the

hybrid system:

And                is the solution of the 

(reduced) averaged system: 

Part I. Deterministic Closure
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Stability and Potential Wells
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Solutions of the coupled system 

Direct Numerical Simulation vs Deterministic Closure



Alexandros Sopasakis, UNCC

A Rare Event

Direct Numerical Simulation vs Deterministic Closure

Deterministic closures can fail in extended time simulations. 
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Another example: Coupled system with Hopf ODE
Direct Numerical Simulation vs Deterministic Closure

Deterministic 

closures 

can fail if      1

Fast Stochastic Case Equivalent Characteristic Times

Slow Stochastic Case
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Part II. Stochastic Closures

We define the coarse random process, for k=1, … m

and with and  N=mq 

where (naturally )
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The coarse grained generator for the Markovian process  is defined to be,

For any test function                               where the coarse level 
adsorption/desorption rates are,

With a corresponding coarse potential
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Compare Stochastic Transient and Equilibrium Dynamics.
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Coarse Grained Stochastic Closure

Our Coarse Grained system therefore becomes,

and gives a stochastic closure at this level.

• This stochastic closure is expected to be valid for all time since no 

linearization arguments or use of expected values are involved.

• This stochastic closure is an approximation to the original hybrid system
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Direct Numerical Simulation vs Stochastic Coarse Grained Closure (q=20). 

Fast Stochastic Case

Equivalent Characteristic Times

Slow Stochastic Case



Alexandros Sopasakis, UNCC

Hopf Bifurcation

Direct Numerical Simulation vs Stochastic Coarse Grained Closure (q=20)
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Rare events

and 

Phase Transitions
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Revisit the rare event: Direct Numerical Simulation vs Stochastic Coarse Grained Closure

We can capture the rare event
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In the case of phase transitions the Coarse Grained closure 

still agrees with the DNS solution. 

q DNS 2 4 5 10 20 25 50 100

Rel Error % 0 .01 .22 .38 .82 3.42 4.91 17.69 77.73

CPU(sec) 309647 132143 85449 58412 38344 16215 7574 4577 345

to error estimate
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Externally Driven Phase Transitions
Direct Numerical Simulation vs Coarse Grained  Closure (for q = 10)
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Externally Driven Phase Transitions
Direct Numerical Simulation vs Coarse Grained Closure (q=50, 100)
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Theorem: Suppose the process               defined by the coarse generator     is the coarse

approximation of the microscopic process                then for any q < L and N where mq=N 

The information loss as q/L -> 0 is

Theorem: Let                  be a test function on the coarse level s.t there exist a test function 

with property                       Given the initial configuration        we define the coarse 

configuration                Assume the microscopic process                     with the initial condition 

and the approximating coarse process                   with the initial condition                 then

the weak error satisfies for final time T,                  
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Intermittency and 

Metastability Phenomena
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Phase transitions II Strong particle/particle interactions (FhN equation)

Step 1: Mean field approximations (ODEs):

Bistable, excitable, oscillatory regimes (strong interactions)
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to end
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Conclusions

 Presented a coupled Prototype Hybrid System consisting of:

capable of describing the behavior of several different physical systems

 Studied two types of closures for this system:
a) Deterministic (averaging principle, mean field)
b) Stochastic (coarse grained Monte Carlo)

 Examined solutions under extreme phenomena exhibiting 
• rare events, 

• phase transitions and 

• intermittency/metastability effects.

 Deterministic type closures (averaging principle / mean field) are valid for finite 
time intervals                 and for the case of fast stochastic dynamics            
relative to the ODE 

 The (stochastic) Coarse Grained Monte Carlo closure seems to be always valid 
under certain conditions: 


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•Last but not least  the CGMC method offers much more than just 

agreement in average quantities. 

There is spatial agreement as well
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Microscopic System vs Coarse Grained Closure

Spatial Lattice Simulations (non-averaged)

through a phase transition!
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