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Lectures

• Lecture 1- Background and theoretical/analytical development of the 

Monte Carlo method

• Lecture 2- Numerical simulation practices and common techniques 

used in modern modeling applications

• Lecture 3- A research project perspective: application to traffic 

flow
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Outline

• The traffic model: properties and dynamics

• Calibration and parameter estimation

• Simulations and comparisons (one-lane highway)

• Deterministic closures and macroscopic models

• Multi-lane extensions

• Conclusions & References
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Proposed Traffic Model Properties/Attributes

• Asymmetric Simple Exclusion Process (ASEP)

• Arrhenius microscopic stochastic dynamics

• One directional flow

• Look-ahead interaction potential

• Retarded acceleration

• Timely braking

• Conservation of vehicles (assuming no entrances or exits)

• Numerical simulations via Kinetic Monte Carlo (KMC)

• Extensions to macroscopic traffic flow models and PDEs



February 28, 2006 University of Massachusetts 6

We let L denote a lattice of N cells. 

We also denote by s(x) the spin configuration at x.

We introduce the microscopic stochastic 

Ising process 

A spin configuration s is an element of the configuration space                    

and we write   

The stochastic process              is a continuous time jump Markov

process on              with generator
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The corresponding energy Hamiltonian is

where the interaction potential is given by  

where J denotes the local interaction potential      

Here                        and  L denotes the interaction radius.
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Equilibrium states of the stochastic model are described by the Gibbs 

measure           at the prescribed temperature T,

where                 and       

and
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The Mathematical Model

where

and         denotes a new lattice configuration
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Microscopic Arrhenius

Spin-Exchange Dynamics

The Arrhenius spin-exchange rate c(x,y,s)

With exchange rate constant,              

Here       denotes the characteristic time of the stochastic process.

Again recall that 

















otherwise  ,            0

,1)( and ,0)( if  ,  e

,0)( and ,1)( if  ,

),,( U(y)-

)(

yxc

yxec

yxc d

xU

d

ss

ss

s

0

1


dc

0


L




z
xz

zzxJxU )(),()( s



February 28, 2006 University of Massachusetts 16

The Arrhenius spin-flip rate c(x,s) at lattice site x and spin configuration s is given by

With adsorption/desorption constants,

Here       denotes the characteristic time of the stochastic process.
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We consider short vehicle potential interactions J,

where                  as usual ordains the range of microscopic Interactions. 

Here                       via,

Which enforces:

• Exclusion princile

• Vehicles do not go backward in traffic

• Local effect of the interactions 

(thus once again, more realistic traffic conditions)
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The Traffic Model
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or in more detail,

which based on the spin-exchange rate c(x,y,s) for y=x+1 gives,

The probability of a spin-exchange between x and y=x+1 during time [t, t+Dt] is
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A simple schematic describing the traffic model dynamics
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Free Parameters and Calibration

The model is characterized by the following three 

undetermined parameters:

• - the characteristic time of the stochastic process

• - the strength of the interactions

• - the interaction potential range       

Cell length is assumed to be 22 feet (average vehicle size plus 

safe distance).
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Flow-Density DiagramExperimental Data
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Recall the traffic flow model is,                                     or

where

In particular we pick                      for some fixed z in L and we can 

simplify                              as follows
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Therefore                                       becomes

where

Exact but not yet closed for

Suppose that J has uniform (J=Jo), weak long interactions.
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Finite Difference Scheme

The LLN formally applies and the fluctuations of                              about 

their mean will be small. 

Then in the long range interaction limit we have,

Let                                then we obtain an approximate 

semi-discrete finite difference scheme:

where 

For a periodic lattice this scheme is conservative.
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Comparisons between 

semi-discrete scheme and microscopic stochastic model



February 28, 2006 University of Massachusetts 38



February 28, 2006 University of Massachusetts 39

PDE model

Expanding in Taylor we obtain,

Rescaling time via                  in order to absorb h and omiting the             

term, we obtain the following macroscopic transport equation:
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Hierarchical Comparisons

Expanding the convolution,

we can approximate the exponential via,

The traffic model PDE                                           therefore becomes…
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The traffic model PDE,

Note:

• No interactions (J=0): 

Lighhill-Whitham/Burger’s eq.
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Lighthill-Whitham / 

Burgers flux
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The traffic model PDE,

Note:

• No interactions (J=0): 

Lighhill-Whitham/Burger’s eq.

• Long range (L=N) uniform (J=Jo) interactions:

Non-local flux

• Including terms up to Jo in the convolution,

Non-convex flux

• Terms up to 

Nonlinear diffusive LWR type

• Full model is higher order dispersive (KDV type?) 

with nonlinear coefficients

zzz

uJ

zz

uJ

z

uJ

t ueuuJcueuuJceuucu ])1([])1([])1([ 000

20100




0)1(0  uucut

0])1([ 0

0 


z

uJ

t euucu

0])1([ 0

0 


z

uJ

t euucu

1J



February 28, 2006 University of Massachusetts 46

Multi-lane extensions

• We assume a two-dimensional domain (multi-lane highway).

• We introducing preferred direction in lane-changing via an anisotropy 

type potential. Thus our total interaction potential now consists of:

where                                 with

• Calibrate parameters:
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Test case toy problem: an incident

• Assume a 3-lane highway

• Let anisotropy coefficients: Kr=2, Kl=2.6, Kf=8

• Block lanes 1 and 2  (i.e. an accident)
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Conclusions

 Presented a novel modeling approach based on 
microscopic Arrhenius spin-exchange dynamics

 Extended method to multi-lane traffic

 Studied deterministic closures of the microscopic stochastic model at 
different length scales

 Obtained formal hierarchical comparisons with other well-known models 
of traffic

 Presented Kinetic Monte Carlo simulations which allows for comparisons 
with actual traffic data as well as other PDE models
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