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Lectures

• Lecture 1- Background and theoretical/analytical development of the 
Monte Carlo method

• Lecture 2- Numerical simulation practices and common techniques used 
in modern modeling applications

• Lecture 3- A research project perspective: application to traffic flow



Outline of lecture 1 from last week
We examined what it takes to create a Markov Chain Monte Carlo (MCMC)

The chain satisfies the Markov property (memoryless)

Task: sample from a given probability distribution  p 

and construct a discrete-time Markov Chain with a known probability matrix 

P= having p as a stationary (invariant) distribution. 

In that respect we:

 Define the transition probabilites P(mn)=g(mn) A(mn)

 Pick the selection probabilities g(mn) for a proposed move from m to n

 Discuss optimal acceptance ratios A(mn)

 Use ergodicity to ensure that it is the invariant distribution p we sample

 Condition the Markov Chain to satisfy detailed balance.
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The Ising Model and the Metropolis algorithm
An Ising model consists of micromagnets (dipoles) on a lattice. The magnetic spins are

allowed to take two values -1,1. The energy of this system is given by its Hamiltonian,

where J is the interaction energy 

<i,j> represent nearest neighbor spins 

with transition probabilities P(mn)=A(mn) g(mn), as follows

This is the Metropolis algorithm!
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Outline of what will follow

• Brief outline of overarching challenges in current computational problems 

• Description of different types of interaction potentials and dynamics

• Description of different types of Monte Carlo algorithms according to application

• A typical Monte Carlo pseudo-code

• Collecting data

• Generating random sequences/numbers

• Complications with data collection

• Phase transitions



Year Computer Name Power (Watts) Performance (adds/sec) Memory (kByte) Price 

(US dollars)

1951 UNIVAC I 124,500 1,900 48 $1,000,000

1964 IBM S360 10,000 500,000 64 $1,000,000

1965 PDP-8 500 330,000 4 $16,000

1976 Cray-1 60,000 166,000,000 32,768 $4,000,000

1981 IBM PC 150 240,000 256 $3,000

1991 HP 9000 500 50,000,000 16,384 $7,400

2005 IBM notebook 20 1,000,000,000 512,000 $1,900



Grand Challenges

Grand Challenges are the leading problems in science and engineering that can be 

solved only with the help of the fastest, most powerful computers. 

They address issues of great societal impact, 

such as 

biomedicine, 

the environment, 

economic competitiveness, and 

military. 



Typical Equations 

for Scientific Computing

Newton’s equation (with damping)

Diffusion or heat equation

Fourier transform

Schrödinger equation



Blood flow 

in heart 

from 

Navier-Stokes 

equation, NIH



Brain Chemistry: 

bi-layer sandwich of lipids

nitrogen (blue) 

phosphorous (gold) 

heads facing outward on 

both sides of filamentary 

tails (gray).

Patti Reggio,

UNC, Greensboro

Diane Lynch, 

Kennesaw State Univ. 



This thin-slice snapshot through the simulation volume, about 3 million light years 

thick by 4.5 billion light years on each side, shows the filament structure of dark-

matter clusters. Brightness corresponds to density.

Paul Bode and Jeremiah Ostriker, Princeton University



The infant universe hatching from its structureless shell. 

This map represents Edmund Bertschinger's simulations on the CRAY T3D at 

Pittsburgh. This map shows negative (blue) and positive (red) fluctuations of 0.0002 

degrees K. The simulation assumed a mixed hot and cold dark matter model with 5 eV 

neutrino mass.







Kelvin K. Droegemeier, University of Oklahoma at Norman.



Animation of a simulated earthquake in the San Fernando valley. 

Color depicts the peak magnitude of ground displacement. The 

simulation covered a 54 x 33 kilometer area, superimposed here 

on a satellite view of topography, to a depth of 15 km.

Carnegie Mellon University



Computational Needs- Biology & Bioinformatics

Problem Component Computing Speed Storage

Genome Assembly
>10 TeraFlops sustained to 

keep up with expected 
sequencing rates

300 TB of trace files per 
genome

Protein Structure Prediction >100 TeraFlops per protein set 
in one microbial genome Petabytes

Classical Molecular Dynamics 100 TeraFlops per DNA-protein 
interaction 10s of Petabytes

First Principles Molecular 
Dynamics

1 PetaFlops per reaction in 
enzyme active site 100s of Petabytes

Simulations of Biological 
Networks

>1 TeraFlops for simple 
correlation analyses of

small biological networks 
1000s of Petabytes



TOP 10 

Sites for June 2006

Site System Family # Processors

DOE/NNSA/LLNL

United States 

Blue Gene L

IBM

131 072

IBM Watson

United States

Blue Gene L

IBM

40 960

DOE/NNSA/LLNL

United States

ASCPurple (p –series)

IBM

12 208

NASA/Ames 

United States

Altix

SGI

10 160

CEA

France

Tera-10 (SMP cluster)

Bull

8 704

Sandia Nat. Lab.

United States

PowerEdge

Dell

9 024

Tokyo Inst. Tech.

Japan

Sun Fire

NEC/Sun

10 368

FZ Juelich

Germany

Blue Gene L

IBM

16 384

Sandia Nat. Lab.

United States

XT3

Cray

10 880

Earth Simulation

Japan

NEC Vector

NEC

5 120

www.top500.org



An example of a typical 
energy landscape over a given lattice



System energy tendencies



Implementation and Pseudo-code 
for Metropolis single spin-flip

1. Start simulation with an initial condition for all spins (typical T=0, T=infinity). 
Calculate the system energy Em at this state m

2. Choose a spin, with equal probability, from the lattice and calculate the new 
system energy En from flipping that spin. 

3. Calculate difference in energy between old and new states Em-En.

4. Pick a random number r between 0 and 1

5. Use the acceptance ratio to either move to the new state n or not as follows:
move to the new state n if Em-En <0  
mote to the new state n if r < A(mn) 

6. Continue until statistics of interest have been collected



System energy tendencies



In terms of measuring quantities of interest, 

say Q, we are interested at evaluating

Once we obtain the solution  for Wm(t) from

then 

and we can use the following estimator for <Q> 

Thus                              
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Complications in collecting reliable statistics



The phase transition phenomenon
Ising model

J
J

Tc 269.2
)21log(

2



 Onsager 1944, 1949, Yang 1952



Example:  
the area of a circle

• Sample points randomly from square 
surrounding circle of radius 5

• 10,000 sample points

• Acceptance criterion:  inside circle

• Actual area:  78.54

• Calculated area:  78.66
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Equilibrium and Autocorrelation
One way to obtain reliable information, such as calculating an expected value, about 

quantities of interest is to obtain 

This also  reveals the correct MC time t necessary for equilibration.

Usually we are supposed to re-run our simulation a number of times at the end of 
which we should collect our data.

As a rule of thumb we can use the resulting MC simulation and collect independent 

statistics for our parameters of interest every 2t. 
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Generating Random Numbers

“Anyone who considers arithmetic methods of producing random digits is, of course, in 
a state of sin” John Von Neumann, 1951

RNG are designed to produce an unbiased sequence of numbers which appear to lack 
any pattern.

Reality: there are always patterns which somehow connect our random numbers

In practice: do not use the sequence past its cycle.

Ancient physical methods of generating random sequences: dice, flipping coins, 
wheels used as roulettes , Yi Jing (Classic of Changes). 

Modern computational methods: pseudo-random number generators

RNG are initiated using a computer real time clock.



A congruential generator

As an example consider the following sequence which generates a sequence with 
maximum number m. We use a linear congruential generator [Knuth 1981]

The values of  the multiplier a the increment b and the modulus m are critical towards 
the quality of the random number produced.

Example 1. a = 1277, b=0, m=131072

mbaII kk mod)( 1  



Example 1. 
a = 1277, b=0, m=131072 
The following scatter plot for 2000 pairs from this generator shows linear bands. 



A congruential generator

As an example consider the following generator which produces a sequence with 
maximum number m. We use a linear congruential generator [Knuth 1981]

The values of  the multiplier a the increment b and the modulus m are critical towards 
the quality of the random number produced.

Example 1. a = 1277, b=0, m=131072 (naive example)

Example 2. a=16807, b=0, m=2147483647 [Park and Miller 1988]

Known as the minimal standard RNG. Mostly used for the RNG function in compilers

Example 3. Mersenne twister

Holds the record for longest period: 2^19937-1 (it is also very fast)

mbaII kk mod)( 1  



Major Algorithms

• Metropolis (1949): flipping single spins per time increment

• Wolff (1989): flipping a cluster instead of a single spin

• Swendsen-Wang (1987), Niedermayer’s (1988): decide on flipping (or not) all 
clusters at once (with probability ½).

• Multigrid Methods (Kandel 1989) – reduce critical slowing down by grouping 
clusters of spins into single blocks and flipping them using Metropolis

• Kawasaki (1965) – used for conservative systems together with spin-exchange type 
dynamics

• Kinetic Monte Carlo (1979): variable time step within which a single spin is flipped



Algorithms according to 
type and number of spins flipped

• Single spin-flip: every step involves switching or not a single spin on the lattice

• Cluster: randomly choose a spin on the lattice and create a cluster of similar such 
spins around it. Probability to be added to cluster is given by

• Potts models: allow spins to take values between 0 and q.

• Heat Bath: choose a random spin on lattice and regardless of its value change it to 
a new value, say l, where

Then switch or not based on probability:

This is much more efficient than Metropolis for large q values).

• Cluster for Potts: Use the probability                               for a spin to be added to the 
clusters and allow spins to take values between 0 and q.

• Continuous spin - XY and Heisenberg: allow the spins to take all the values 
possible in the xy plane or the sphere.
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desorption

islands

diffusion

nucleation 

adsorption /

deposition

downward diffusion

edge diffusion

Examples of different types of microscopic processes on a growing surface

+more:   incorporation, knockout

attachment to edges / islands 

detachment processes, ...



Interaction Potential Dynamics

Suppose a general spin-flip rate 

Then the following is a short list of the possible choices for dynamics

Glauber

Metropolis/Arrhenius

Kawasaki
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Kinetic Monte Carlo pseudocode   (rejection free)

·  perform the selected event      

(evaluate physical real time step)                    

· provide initial configuration of the system 

· catalogue all relevant processes i=1,2,...n   

and corresponding Arrhenius rates

R1

R2

R3

Rn

... ra
te

s
 ...

·  pick one of the possible events

with probability                                  pi  Ri

0

1

· update the catalogue of processes 

and associated energy barriers and rates        

R3



Advanced Topics

• Adaptive Monte Carlo

• Accelerating methods for MC and tau-leaping techniques

• Simulated annealing / tempering for global optimization

• Metropolis-Hastings algorithm – allows use of non-symmetric trial distributions in 
order to improve efficiency

• Hybrid systems of stochastic / deterministic systems



Recap and next talk

In this talk we presented the following topics:

• Acceptance ratios for Metropolis algorithm

• Different types of dynamics 

• Different types of algorithms 

• Outlined a general pseudo-code for Monte Carlo

• Examined random number generators

In the next talk we present hybrid systems consisting of deterministic stochastic 
components usually modeling different types of chemical or biological processes 
involving some kind of well described transport/diffusion coupled to noisy 
microscopic type boundary contributions. This multi-scale system will be examined 
in the microscopic as well as the macroscopic regimes for behavior and solutions 
during critical phenomena such as metastability, phase transitions, etc.



Books and other useful references

Books:

M. E. Kalos and P. A. Whitlock, 1986, Monte Carlo Methods, Volume 1: Basics, Wiley, New York.

K. Binder and D. W. Heermann, 1992, Monte Carlo simulation in statistical physics, Springer-Verlag, Berlin.

M. E. J. Newman and G. T. Bakerma, 1999, Monte Carlo Methods in Statistical Physics, Clarendon Press-Oxford.

D.E. Knuth, 1981, The art of computer programming, Vol 2, Seminumerical Algorithms, Addison Wesley, 
Reading Mass.

More General Books: 

Gibbs, 1902, Elementary principles in statistical mechanics(reprinted: 1981, Ox. Bow Press, Woodridge)

H. Dorrie, 1965, One hundred great problems of elementary mathematics, Dover, New York.

E. Segre, 1980, From X-Rays to Quarks, Freeman, San Fransisco

Most Important Scientific Papers:

N. Metropolis and S. Ulam, 1949, J. Am. Stat. Assoc., 44, 335. 

Bortz, Kalos and Lebowitch, 1975, J. Comput. Phys. 17, 10.

Swendsen and Wang, 1987, Phys. Rev. Lett., 58, 86.

Kawasaki, 1965, Phys. Rev. 145, 224.

Sweeny, 1983, Phys. Rev. B, 27, 4445.

Wolff, 1989, Phys. Rev. Lett. 62, 361.


