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Lectures

• Lecture 1- Background and theoretical/analytical development of the 
Monte Carlo method

• Lecture 2- Numerical simulation practices and common techniques used in 
modern modeling applications

• Lecture 3- A research project perspective: application to traffic flow



Historical background and general development

Monte Carlo simulation idea is older than the computer
MC method originally used to estimate pathological integrals as well as p. 
Comte de Buffon showed in 1777 that:

Wolf 1850 (3.1596) 
Smith 1855 (3.1553) 

Lazzarini 1901 (3.1415929)
William Thomson also describes an early 1901 MC method for the calculation of the 

motion of molecules undergoing collision in a gas (credit William Anderson). 
It is believed that the first real application of the statistical sampling method was 

undertaken by Enrico Fermi in the 1930s.
Ulam, Metropolis and von Neumann reinvented Fermi’s statistical sampling methods 

around 1947.
Nicolas Metropolis named the statistical sampling method used at the time Monte 

Carlo in a paper published in 1949
Dorrie in 1965 solves the equivalent of “Buffon’s needle” example using MC methods
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Beliefs and facts about Monte Carlo

“The only good Monte Carlo is a dead Monte Carlo” Trotter and Tukey 1954

“Anyone who considers arithmetic methods of producing random digits is, of course, in 
a state of sin” John Von Neumann, 1951

• Simple Monte Carlo – The direct modeling of a random process (queuing 
problems)

• Sophisticated Monte Carlo – Methods which recast deterministic problems in 
probabilistic terms



Monte Carlo Simulation: 
an archetypical example
Integrating pathological functions:  

The integral 

is bounded by

To use MC we choose 

• random number u distributed between 0 and x and another 

• random number v between 0 and 1. 

These will represent our horizontal and vertical coordinates on the plot of f(x). 

The probability that this point (u,v) will be below the line of f(x) is I(x)/x.

Thus for a large number N of these random points we count the number M of those 
bellow the line f(x) and obtain,
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Some facts to put things into perspective

• One liter of air at standard temperature and pressure contains about 3x10^22 
molecules (oxygen, nitrogen, carbon dioxide, etc…). 

• The atmosphere of the earth contains 4x10^21 liters of air or about  1x10^44 
molecules (all moving around and colliding).

• Clearly it is not feasible to solve Hamilton’s equations for these systems  
Too many equations

• Surprisingly however the macroscopic properties of air or gas are well-behaved 
and many times predictable. 

• We can conclude that there must be something special about the behavior of the 
solutions of these many equations which “averages” out and gives us a predictable 
behavior for the system.

This is where statistical mechanics is employed!



Facts About Simulating Large Systems

Let’s consider a system  which we wish to solve using a computational method.

• The most straightforward approach is to put this system into a lattice.

• Let’s assume a small system of 10x10 (2 dimensional) lattice arrangement

• Suppose that each spin on every lattice node is allowed to take only two values: 
+1, -1

• Thus this small system has a total 2^100=33,554,432 possible states

• Fact: even for a small problem it would be impossible to visit all states of the 
system!

• Imagine the situation even if we only wish to model just one liter of oxygen=10^22 
molecules. Furthermore, molecules change states at a rate of 10^9 collisions per 
second.

• At this rate it would take (10^10)^23 times the lifetime of the universe for our liter 
of gas to move through all its possible states.

It is therefore impossible to just visit all states in order to solve such a system! 
What do we do then? 



A general modeling paradigm for large 
interacting systems

• Our Hamiltonian system is fed by a thermal reservoir

• The thermal reservoir is an external system which acts as a source and sink of heat 
constantly exchanging energy with our system

• In general we think of the thermal reservoir as a weak perturbation of our 
Hamiltonian system which we ignore when calculating the energy levels of our 
system.

• Effects of the reservoir can be incorporated in our calculations by assigning the 
system a rule by which it can change from one state to another. This rule gives the 
system its dynamics

• There are several different types of dynamics – to be listed later- which can 
describe the physics for out system



Outline of what will follow

1. Markov Chain Monte Carlo (MCMC)

Task: sample from a given probability distribution 
where S denotes our state space

Idea: construct a discrete-time Markov Chain with a known probability matrix 

P= having p as a stationary (invariant) distribution. 

We will:

 Define the transition probabilites P(mn)=g(mn) A(mn)

 Pick the selection probabilities g(mn) for a proposed move from m to n

 Discuss optimal acceptance ratios A(mn)

 Use ergodicity to ensure that it is the invariant distribution p we sample

 Condition the Markov Chain to satisfy detailed balance.
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2. Continuous Time Monte Carlo (CTMC) – Kinetic Monte Carlo

We similarly can construct a continuous-time Monte Carlo Chain with invariant 
measure p

Note that 

• The random jump time is known (exponentially distributed, etc.) and defines the 
time step dt of the simulator

• No rejected moves!

• Drawback: algorithmically difficult to implement and computer memory intensive. 

• CTMC is “real” dynamics



Some useful definitions

1. We say that states                  communicate if

If all states communicate the Markov chain is called irreducible.

2. Suppose,

we define the period of a state n to be the greatest common divisor of all k greater 
than or equal to 1. 

A Markov chain is called aperiodic if each state has period 1.

3. If state              is revisited with probability 1 at some finite time then it is called 
recurrent; otherwise the state is called transient.
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Markov Processes-building the Markov Chain
For purposes of MC methods a Markov Process is a mechanism by which a system is taken 

from one state to another in a random fashion. 

The probability of changing from state m to state n is called the transition probability and is 
denoted by P(mn). Transition probabilities are responsible for building the Markov 
Process. Transition probabilities must satisfy three conditions:

• Stay constant over time

• Depend only on the current states m, n (memoryless property), using the Markov 
property: supppose a Markov sequence Xn takes the vales a1…aN:

•

Note that it is possible to go from state m back to the same state m with a non-zero 
probability.

During a MC simulation we will use this mechanism to generate a Markov Chain.

Main idea will be to run this mechanism long enough so that new states will appear with 
probabilities given by their corresponding Boltzmann distribution. 
When that happens we say that the system has equilibrated.
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System description

We assume that our systems starts at a given state m and define the rates P(m->n). 

Thus P(mn)Dt is the probability that is will be in state n at time Dt later.

We also define a set of weights Wm(t) which represent the probability that the system 
will be in state m at time t.

The system is described by the following Master Equation which is a rule for the 
evolution of the weights Wm(t) in terms of the rates P(mn):

subject to 

Statistical mechanics deals with these weights and represent our entire knowledge of 
the state of the system. 
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Some statistical mechanics concepts.
Equilibrium:

Define the equilibrium probabilities:

Boltzmann distribution – [Gibbs, 1902]:

Z is known as the partition function.
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In terms of measuring quantities of interest, once we obtain the solution  for Wm(t) we 
can also obtain information for quantities of interest, say Q,

At equilibrium                                 this becomes,

for ALL states

Question: Can we really calculate this quantity?

Answer: Not really!
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Example: suppose a small 3D system 10x10x10. This system is so small that is actually 
of no use towards realistic predictions. Still, this system would have a total of 
2^1000= 10^300 states. 

What is currently possible? It is possible, in a very fast computer, to sample 10^10 
states given a few hours. In other words we would only sample 1 in every 10^290 
states. 

Problem: in cases of low temperature however very few states are responsible for the 
majority of the behavior of this system.

Clearly not possible to sample over all states that a system may visit…

A toy example



How Monte Carlo Works:

Monte Carlo techniques work by sampling only a subset of all possible states…. 

Question: is it enough to just sample a finite number, M, of those states?

 BAD IDEA

Answer:  Yes, but not exactly as given in the formula above! 

Questions: 
But which M states should we choose? 
Do any M states work?  
How do we choose the important few states which are responsible for the majority 
of the behavior for this system? 

Answer: Importance Sampling! That is how Monte Carlo works.
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Importance Sampling
Which states are the most important?

What is importance sampling?

Pick each state m based on its Boltzmann probability  

Note that QM is a good estimator for <Q> since in fact
QM  <Q>  as M  all states

Question: still… how do we really pick these states with their correct Boltzmann 
probabilities?
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Ergodicity-Reaching all states

Note that states do not all need to have a non-zero probability assigned to them. In 
practice most transition probabilities are set to zero as long as there are exist paths 
which connect any state to any other one.

Our Markov Chain must be able to reach all states of the system – otherwise we will 
not be able to produce new states with their correct Boltzmann probabilities. 
Reaching all states from any starting state is the property of ergodicity.



Detailed Balance-ensuring equilibrium 
distribution

Detailed balance is responsible for ensuring that it is the Boltzmann probability which 
we generate, instead of any other distribution. This is equivalent in fact to saying 
that the system is in equilibrium.

We can achieve this by simply allowing the rates by which the system transitions into 
and out of state m to  be equal:
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The probability Wn(t+1) of being in state n at time t+1 is given by,

In matrix notation this becomes

Simple Equilibrium:

Dynamic Equilibrium (limit cycle):

Guaranteeing the desired probability distribution

This also enforces Detailed Balance!  
Note that detailed balance inherently forbids the appearance of limit cycles.
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Once the limit cycles are removed we can prove that 
as tinfinity the w(t)  exponentially towards the eigenvector corresponding to 
the largest eigenvalue of the stochastic matrix P.

Note also that from we can get

Which, given that gives

As a result, one possible choice for the transition probabilities would be

This however is not really a very good choice….
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Acceptance Ratios or 
How to construct an efficient MC algorithm

Let’s start by defining the transition probability as follows,

where 

g(mn) represents the selection probability (0<=g<=1)

A(mn) is the acceptance ratio (0<=A<=1)

So now we have the freedom to choose higher acceptance rations:

Note that the ratio  

while can take any values
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Good MC algorithm practices

We wish to maximize our chance of accepting a new state A(mn) (near 1)while at the 
same time satisfying the previous equation. This will ensure that at least in one 
direction the acceptance ratio will be as high as possible.

Ideal algorithm: new states selected with the correct transition probabilities while the 
acceptance ratio is always 1.

Good algorithm: again correct transition probabilities and acceptance ratios close to 1.



An example on picking acceptance ratios and 
selections probabilities: The Ising Model

An Ising model consists of micromagnets (dipoles) on a lattice. The magnetic spins are 
only allowed to take two values 0,1 which represent the magnetic charge of the 
dipole. If the lattice has N nodes then the system can be in any of 2^N possible 
states at any given time.



The Ising Model

An Ising model consists of micromagnets (dipoles) on a lattice. The magnetic spins are 
only allowed to take two values 0,1 which represent the magnetic charge of the 
dipole. If the lattice has N nodes then the system can be in any of 2^N possible 
states at any given time.

The energy of this system is given by its Hamiltonian:

where J is the interaction energy 

<i,j> represent nearest neighbour spins 

h is a given external field (for now we will assume h=0)

We typically wish to examine the average magnetization m as well as the specific heat 
c for this system
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The Metropolis algorithm 
for single spin-flip Ising Model dynamics

In the Metropolis algorithm all selection probabilities are chosen to be equal. In fact 
one such natural choice is to let them be 1/N where N represents the total number 
of nodes in the lattice

Revisiting now our ratio of transition probabilities we obtain,

Recall that  and 

Question: how big a constant Ao can we choose to maximize the acceptance ratio?
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Thus for a lattice node with four neighbors the difference of Em-En can be as big as 8J. 

Thus the acceptance ratio

can be as big as

Therefore in order to maximize the acceptance ratio A(mn) (close to 1) we choose

Thus the best possible acceptance ratio is

The Metropolis algorithm (continuous)
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To make this more efficient we choose a different strategy:

This is the Metropolis algorithm!



 





otherwise                 1

  if  
)(

)(

mn

 mn

nm
EEe

A

EE



Equilibrium and Autocorrelation

One way to obtain reliable information, such as calculating an expected value, about 
quantities of interest is to obtain 

This also  reveals the correct MC time t necessary for equilibration.

As a rule of thumb we can use the resulting MC simulation and collect independent 

statistics for our parameters of interest every 2t. 
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