Invariant measures for non-minimal stationary Bratteli diagrams and aperiodic substitutions

Boris Solomyak

University of Washington

Northwest Dynamics Symposium

Based on joint work with S. Bezuglyi, J. Kwiatkowski, and K. Medynets.

DEFINITION. A *Bratteli diagram* is an infinite graph B = (V, E) with vertex set $V = \bigcup_{i \ge 0} V_i$ and edge set $E = \bigcup_{i \ge 1} E_i$:

- $V_0 = \{v_0\}$ is a single point;
- 2 V_i and E_i are finite sets;
- edges E_i connect V_i to V_{i+1} : there exist a range map r and a source map s from E to V such that $r(E_i) = V_i$, $s(E_i) = V_{i-1}$, and $s^{-1}(v) \neq \emptyset$, $r^{-1}(v') \neq \emptyset$ for all $v \in V$ and $v' \in V \setminus V_0$.
- F_n = incidence matrix of size $|V_{n+1}| \times |V_n|$.
- B is stationary if $F_n = F_1$ for $n \ge 2$.

Ordered Bratteli diagrams, Vershik maps

 X_B = the space of infinite paths in B from the root v_0 ; topology defined by cylinder sets.

 $\mathcal{R} = \text{ cofinal equivalence relation on } B$: two paths are cofinal if they have the same tail.

DEFINITION. A Bratteli diagram B = (V, E) is *ordered* if every set $r^{-1}(v)$ is linearly ordered.

- This defines a lexicographic order on X_B .
- The Vershik map, or adic transformation, φ_B, is the immediate successor transformation, defined on X_B \ X_B^{max}. The inverse φ_B⁻¹ is defined on X_B \ X_B^{min}.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

History (very incomplete...)

- Bratteli (1972): AF-algebras
- Elliott (1976), Effros, Handelman, Shen (1979-1981): dimension groups
- Vershik (1981-1982): 'adic transformation model theorem' in measurable dynamics
- Herman, Putnam, Skau (1992): 'Bratteli-Vershik model theorem' in topological dynamics
- Karl Petersen, students, and co-authors (X. Méla, S. Bailey Frick, I. Salama, M. Keane,...): Pascal adic, Euler adic, and generalizations

- $M_1(\mathcal{R}) = \{$ invariant probability measures for the cofinal equivalence relation \mathcal{R} on $X_B \}$
- $M_1(\mathcal{R})$ are called *central measures* by Kerov and Vershik
- M₁(R) =
 {normalized states on the dimension group associated with B}

Invariant measures for Bratteli diagrams (cont.)

- *B* is a *simple* diagram if it has only nonzero entries in the incidence matrices at each level, after 'telescoping'
- In the stationary case, 'simple' is equivalent to F being primitive.
- As far as we aware, systematic study of stationary non-simple diagrams has not been done till now. Although...
- Handelman (1982) considered the case of 2 irreducible components
- What is the connection with the work of Cuntz, Krieger, D. Huang, and others on reducible shifts of finite type?

• B — stationary Bratteli diagram, N vertices on each level

•
$$F$$
 — incidence matrix, $A = F^T$

- $E(v_0, w)$ the set of paths from v_0 to w, $h_w^{(n)} = |E(v_0, w)|$
- $X^{(n)}_w(\overline{e})$ cylinder set, where $w \in V_n$, $\overline{e} \in E(v_0, w)$

= ~~~

イロト 不得下 イヨト イヨト

Invariant measures for stationary diagrams (cont.)

Theorem. Let μ be a Borel probability \mathcal{R} -invariant measure on X_B . Set

$$\overline{
ho}^{(n)} = (\mu(X^{(n)}_w(\overline{e})))_{w \in V_n}$$
 for any $\overline{e} \in E(v_0,w)$

Then

(1)
$$\overline{p}^{(n)} = A\overline{p}^{(n+1)}, n \ge 1;$$

(2) $\overline{p}^{(n)} \in core(A) := \bigcap_{k\ge 1} A^k(\mathbb{R}^N_+), n \ge 1;$
(3) $\sum_{w\in V_n} h_w^{(n)} p_w^{(n)} = 1, n \ge 1.$
Conversely, if $\{\overline{p}^{(n)}\} \in \mathbb{R}^N_+$ satisfy (1)–(3), then there exists an invariant probability μ on X_B with $p_w^{(n)} = \mu(X_w^{(n)}(\overline{e})).$

$$core(A) := \bigcap_{k \ge 1} A^k(\mathbb{R}^N_+)$$

Assume that the irreducible components of A are primitive (mixing, aperiodic); this can be achieved by raising A to a power (telescoping the diagram).

Theorem. [Frobenius 1912, Victory 1985, Schneider 1986] Suppose A is non-negative, with a positive spectral radius, with primitive irreducible components. Then

core(A) is a simplicial cone with extreme rays corresponding to non-negative eigenvectors of A;

- For an irreducible component A_{α} let $\lambda_{\alpha} = \rho(A_{\alpha})$
- Write $\beta \succ \alpha$ if component β "has access to" α (communicates with α), but $\alpha \neq \beta$
- \bullet irreducible component α is distinguished if

$$\lambda_{\alpha} > \lambda_{\beta}, \quad \forall \ \beta \succ \alpha$$

Frobenius Theorem continued: non-negative eigenvectors of A are in 1-1 correspondence with distinguished irreducible components.

Corollary.

- If F has aperiodic irreducible components and ρ(F) > 0, then the ergodic invariant probabilities measures for (X_B, R) are in 1-1 correspondence with the distinguished irreducible components.
- Onceover, if α is such a component, then the corresponding measure μ_α is supported on the set of paths which are cofinal to paths in that component.

Examples

(1)
$$A = \begin{pmatrix} a_{11} & a_{12} \\ 0 & a_{22} \end{pmatrix}$$
 with all $a_{ij} > 0$.

If $a_{22} > a_{11}$, then there are two ergodic measures, otherwise, there is a unique invariant measure, supported on the minimal component.

(2)
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{pmatrix}$$
, with all $a_{ij} > 0$.

<u>Case 1</u>: $a_{11} < a_{22} < a_{33}$, three ergodic measures; <u>Case 2</u>: $a_{11} < a_{22} \ge a_{33}$ or $a_{22} \le a_{11} < a_{33}$, two ergodic measures; <u>Case 3</u>: $a_{11} \ge a_{22} \ge a_{33}$, one ergodic measure.

- Suppose F has aperiodic irreducible components and ρ(F) > 0.
- Let α be an irreducible component, with a positive spectral radius, and B_{α} is the corresponding simple sub-diagram, $X_{\alpha} = X_{B_{\alpha}}$.
- There is a unique invariant probability ν_{α} on X_{α} .
- Extend the measure to the set of paths cofinal to those in X_{α} (in a unique way, if it is invariant).
- The resulting measure is finite iff α is a distinguished component for $A = F^{T}$; otherwise, it is σ -finite. It is non-atomic if $\lambda_{\alpha} > 1$.

- 4 周 ト 4 日 ト 4 日 ト

Theorem. Suppose F has aperiodic irreducible components, each with a spectral radius greater than one. Then every ergodic σ -finite invariant measure for X_B , which is positive and finite on some cylinder set, arises from a non-distinguished component of $A = F^T$.

<u>Proof Sketch.</u> We can equip the diagram with *any* stationary order. Then the Vershik map is defined on the complement of a countable set (the half-orbits of the maximal and minimal paths).

The Vershik map on X_{α} induces a primitive (integral) transformation on a subset of X_B . The induced measure is finite iff the time of first return is integrable, which happens iff $\rho(A_{\alpha})$ is greater than the spectral radii of the components which have access to it.

Program: from minimal to aperiodic

Cantor minimal systems

- Herman, Putnam, Skau (1992): topological Bratteli-Vershik model
- Giordano, Putnam, Skau (1995): orbit equivalence
- Forrest (1997), Durand, Host, Skau (1999): stationary **Cantor minimal** Bratteli-Vershik maps are either odometers or primitive substitutions

Aperiodic Cantor systems

- Bezuglyi, Dooley, Medynets (2005): Rokhlin Lemma for homeomorphisms of a Cantor set
- Medynets (2006): topological Bratteli-Vershik model
- Bezuglyi, Medynets, Kwiatkowksi (2008): aperiodic substitution systems and their Bratteli-Vershik models

(人間) とうき くうとう う

- Alphabet: $\mathcal{A} = \{1, \dots, m\}$, $\mathcal{A}^+ = \cup_{n \geq 1} \mathcal{A}^n$
- Substitution (=non-erasing morphism) $\zeta : \mathcal{A} \to \mathcal{A}^+$
- Standing assumption (*): $|\zeta^n(\alpha)| \to \infty$, as $n \to \infty$, for all $\alpha \in \mathcal{A}$.
- Substitution space:

 $X_{\zeta} = \{x \in \mathcal{A}^{\mathbb{Z}} : \text{ every subword of } x \text{ occurs in some } \zeta^{n}(\alpha)\}.$

• Substitution Dynamical System: (X_{ζ}, σ) , where σ is the left shift.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Substitution Matrix, Primitive Substitutions

- Substitution matrix: M_ζ(i, j) = the number of times the letter i occurs in ζ(j).
- Substitution ζ is primitive if M_ζ is primitive, i.e. M^k_ζ > 0 for some k ≥ 1.
- Theorem. Assuming (*), (X_{ζ}, σ) is minimal iff ζ is primitive.

Theorem. [Michel 1974] *Primitive substitution dynamical systems are uniquely ergodic.*

イロン 不良 とくほう イヨン 二日

Theorem. Let ζ be a substitution satisfying (*), without periodic points, and such that the substitution matrix has primitive irreducible components with spectral radius greater than 1. Then the ergodic invariant probability measures for (X_{ζ}, σ) are in 1-1 correspondence with the distinguished components of M_{ζ} .

Proof uses Bratteli-Vershik realization from [BKM 2008].

$$\mathbf{1} \hspace{0.2cm} a \rightarrow abb, \hspace{0.2cm} b \rightarrow ab, \hspace{0.2cm} c \rightarrow accb, \hspace{0.2cm} \left(\begin{array}{ccc} 1 \hspace{0.2cm} 1 \hspace{0.2cm} 1 \hspace{0.2cm} 1 \\ 2 \hspace{0.2cm} 1 \hspace{0.2cm} 1 \\ 0 \hspace{0.2cm} 0 \hspace{0.2cm} 2 \end{array} \right)$$

Uniquely ergodic (measure supported on the minimal component).

$$\mathbf{2} \hspace{0.1in} \textbf{a} \rightarrow \textbf{abb}, \hspace{0.1in} \textbf{b} \rightarrow \textbf{ab}, \hspace{0.1in} \textbf{c} \rightarrow \textbf{acccb}, \hspace{0.1in} \left(\begin{array}{ccc} 1 \hspace{0.1in} 1 \hspace{0.1in} 1 \\ 2 \hspace{0.1in} 1 \\ 0 \hspace{0.1in} 0 \end{array} \right)$$

Two ergodic measure (one supported on the minimal component and one supported on the complement).

- 4 同 6 4 日 6 4 日 6

- A. Fisher (1992): $0 \rightarrow 000$, $1 \rightarrow 101$ generates the integer Cantor set 10100010100000000101000101..., there is a unique non-atomic invariant measure normalized by $\mu([1]) = 1$, which is σ -finite. Proved an order-two ergodic theorem for this system.
- H. Yuasa (2007): "almost primitive" substitutions, generalizes the above (has two irreducible components, communicating, with a single minimal component 1 × 1; ∃ a, with ζ(a) = a^p).

Open questions and further directions

- Orbit equivalence, K-theory, C*-algebras
- Is Ergodic theory, spectral properties, diffraction spectrum.
- **3** \mathbb{Z}^d actions, tilings.
- Order-two ergodic theorems.