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1 Introduction and overview

In recent years there has been an increasing interest in structured derivatives at the interface of
finance and insurance. Mortgage backed securities, risk bonds, and weather derivatives are the
end-product of a financial process called securitization that transforms non-tradable risks into
tradable assets. Developed in the 1970s, the original goal of securitization was to create securities
based on financial assets such as receivables on mortgage or auto loans. The idea of pooling and
selling insurance risk that cannot be hedged through investments in the capital markets alone
has since been extended to an array of non-financial assets including aircrafts and buildings and
- more recently - external risk factors such as weather and climate phenomena.

Insurance companies traditionally share their underwriting risk with re-insurers. Reinsurance
can be viewed as a form of risk sharing where insurers conclude agreements with the purpose of an
efficient redistribution of the commitments among them. The problem of efficient risk allocation
in a reinsurance market has first been studied in a seminal paper by Borch (1962). His model has
recently been extended in several important ways by, e.g., Hu, Imkeller & Müller (2005), Filopovic
& Kupper (2006) and Barrieu & El Karoui (2005). The latter also clarify the link between risk
sharing and indifference valuation for certain classes of translation invariant utilities.

Nowadays insurance companies and other institutional investors increasingly transfer their
exposure to non-financial risk to the capital markets by selling structured products to customers
that seek financial securities with low correlation with stock indices as additions to diversified
portfolios. Structured products are typically written on non-tradable underlyings so the market
for such products is generally incomplete. Typically, it is also quite illiquid with only a relatively
small number of market participants. In such an environment utility indifference valuation is
not always an appropriate pricing scheme: for the indifference value to be a transaction rather
than mere benchmark price price the demand for an asset must come form many individuals with
identical preferences and endowments while the supply must come from a single agent.

In this paper we propose a general equilibrium framework within which to price structured
derivatives. Our model is flexible enough to capture both the traditional case of risk sharing and
the more involved case of risk transfer. In a model of risk sharing individual risk exposures are
pooled and redistributed using an auxiliary asset that follows a forward dynamics with a given

volatility. In a model of risk transfer the exchange of risk takes place through trade in a derivative
security that follows a backward dynamics with an exogenous volatility.

We consider a partial equilibrium model with a finite set of economic agents that have dynamic
monetary utility functions, i.e., the utility of any cash amount added to a position is the cash
amount itself. Following the approach of Barrieu & El Karoui (2005) we consider utility functions
generated by the solution to a backward stochastic differential equation (BSDE). We assume
that the agents can trade a stock and a financial security (“risk bond”) whose payoff depends
on a non-financial risk factor and that agents maximize their utility from terminal consumption.
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Asset prices will follow an exogenous diffusion possibly depending on the external risk factor;
by contrast the risk bond will be priced endogenously by an equilibrium condition. In order to
prove existence and uniqueness of equilibrium prices, we first characterize a set of market prices
of risk that are consistent with the assumption of no-arbitrage in the stock and bond market. For
any such price of risk we then solve the agents’ optimization problem under the assumption that
the bond completes the market. The assumption of market completeness is always satisfied in a
model of risk sharing; for the case of risk transfer it imposes an additional restriction that needs
verification. Subsequently we characterize a candidate for the equilibrium market price of risk in
terms of a solution to a BSDE. For the special case of exponential utility functions and for market
prices of financial risk that satisfy a version of the Novikov condition we use the Clark-Haussmann
formula to obtain an explicit representation of the equilibrium bond price volatility. From this
representation we see that the market is indeed complete in equilibrium if the risk bond’s payoff
depends monotonically on the external risk factor. A similar condition has been derived by
Horst & Müller (2006) using a different method. Our approach via the Clark-Haussmann formula
appears more direct and requires weaker conditions.

Our analysis of equilibrium is based on a representative agent approach. The idea is to
consider a social planer and let her share the aggregate risk among individual agents in a Pareto
optimal way is standard in the framework of complete markets. A landmark paper that uses the
representative agent approach to establish existence and uniqueness of the equilibrium results in
a stochastic consumption/production economy with continuous trade is Karatzas et al. (1990). In
their model the representative agent’s preference is given by a weighted average of the individual
agents’ utilities where the weights are part of the solution of the equilibrium. The weights are
chosen so that markets clear; the existence/uniqueness of an equilibrium is then achieved by a
fixed point argument.1 The analysis is much simpler when preferences are monetary. In that case
the representative agent turns out to be independent of the equilibrium to be supported.

The application of the representative agent approach to the case of dynamic monetary utilities
is new to the best of our knowledge. Filipovic & Kupper (2006) studied a static model; Barrieu
& El Karoui (2004, 2005) and Hu, Imkeller & Müller (2005) considered dynamic models, but
restricted themselves to the simpler case of risk sharing. Horst & Müller (2006) analyzed the
equilibrium for a particular class of dynamic monetary utilities, the entropic one. Their method
relied on the closed form representation of the optimal solution of an agent’s optimization problem
as computed by duality methods. We characterize the representative agent’s preferences in terms
of a convolution of individual utility functions, solve her optimization problem, and show that
equilibrium prices in the representative agent economy are equilibrium prices of the underlying

1We notice that Karatzas et al. (1990) studied the problem of reallocating a perishable good by trading a financial

security in zero net supply. Hence their model cannot be applied to our framework of risk transfer where the goal

is to price a dividend paying asset in unit net supply.
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competitive economy. It turns out that an equilibrium market price of risk can be characterized
in terms of a solution to a BSDE. For the case of dynamic entropic risk measures we show that
the equilibrium market price is risk can be characterized in terms of a solution to a BSDE with
quadratic growth2. We establish boundedness properties of the integrand and a representation of
the integrand in terms of a Lipschitz continuous function of the forward process from which we
then deduce uniqueness of equilibrium in a certain class.

The model of this paper is much more general than that of Horst & Müller (2006). They
considered a benchmark case with a deterministic market price of financial risk. The representative
agent framework proposed in this paper allows us to go a lot further. Our approach is flexible
enough to capture market prices of financial risk that are bounded functions of the stock price.
It also applies to certain class of stochastic volatility models with unbounded market prices of
financial risk and to the case where the market price of financial risk depends on the external
risk factor. The latter captures a dependence of asset prices on non-financial sources of risk.
To deal with these cases we establish existence and differentiability of quadratic BSDE results
with unbounded terminal values that extend some of the results of Anlirchner, Imkeller & dos
Reis (2007). We also report an array of numerical results that shed additional light on the
structure of our equilibrium pricing problem and the quantitative differences between risk sharing
and risk transfer. Our simulations suggest that, at least within our framework, risk transfer is
more beneficial for the agents than risk sharing and that a dependence of the market price of
financial risk on the external risk factor may generate a significant dependence of stock prices on
non-financial risk factors.

The remainder of this paper is organized as follows. We specify our microeconomic setup in
Section 2 and solve the individual agent’s optimization problem in Section 3. For the special case
of exponential utility function the solution is given in closed form in Section 4. Section 5 performs
the representative agent analysis and gives sufficient conditions for existence and uniqueness (in
a certain class) of competitive equilibria. A model with an unbounded market price of financial
risk where all these assumptions can be verified is studied in Section 6. Numerical simulations of
equilibrium prices and optimal utilities the are reported in Section 7; Section 8 concludes.

2 The microeconomic setup

We consider a partial equilibrium model with a finite set A of economic agents. The agents can
trade a stock whose price process (St) follows an exogenous diffusion and a structured derivative
whose payoff depends on a non-tradable risk factor described by the stochastic process (Rt). The
structured derivative is in fixed supply and will be priced by equilibrium considerations. The

2The dynamics of an agent’s optimal wealth for given pricing scheme, i.e., a given market price of external risk

follows a linear BSDE. In equilibrium this linear BSDE turns into a quadratic BSDE so the analysis of equilibrium

is mathematically much more involved than the utility optimization problem.
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processes (St) and (Rt) are driven by independent Brownian motions WS and WR defined on a
filtered probability space (Ω,F , (Ft),P). More precisely, we assume that

dSt

St
= µS

t dt + σS
t dWS

t (1)

where the diffusion coefficients µS and σS are adapted to the filtration generated by WS and WR.
This allows for a feedback from the external risk factor into the dynamics of asset prices. The
external risk process (Rt) is assumed to follow a Brownian motion with deterministic drift and
volatility driven by WR:

dRt = atdt + bdWR
t . (2)

2.1 Payoffs and preferences

We think of the structured derivative (“bond”) as being issued by an institutional investor with
the intention of shifting some of its exposure to non-financial risk to the capital markets. The
exposure can be direct through, for instance, a dependence of an insurer’s underwriting risk on
weather derivatives or indirect through a dependence of its financial risk on external events.

2.1.1 Payoffs

The bond’s terminal payoff (hI) and “yield curve” (ϕI) may depend on both S and R. This
allows the issuer to adjust coupon payments in reaction to financial losses due to external events.
Since the bond is in fixed supply, accumulated interest payments cannot be reinvested in the bond
market in the same way interest payments are usually reinvested in a savings account. Under the
simplifying assumption that the risk-free interest rate equals zero the bond’s accumulated payoff
HI up to maturity is thus given by

HI = hI(T, RT , ST ) +
∫ T

0
ϕI(u,Ru, Su) du. (3)

The income Ha of the agent a ∈ A may also be exposed to financial and non-financial risk.
More specifically, we assume that

Ha = ha(T, RT , ST ) +
∫ T

0
ϕa(u,Ru, Su)du. (4)

Assumption 2.1. All the payoff functions are bounded with uniformly bounded Lipschitz deriva-
tives with respect to the non-financial risk factor.

2.1.2 Preferences

We assume that the agents have monetary utility functions. This allows us to measure their well-
being on a common scale. More specifically, we assume that - up to a change of sign - the utility
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function of the agent a ∈ A is given by a dynamic convex risk measure generated by the solution to
a backward stochastic differential equation (BSDE); for more details on the link between BSDEs
and convex measures of risk see Section 6.2 in Barrieu & El Karoui (2005)).

Definition 2.2. (i) A backward stochastic differential equation is an equation of the form

Yt = H −
∫ T

t
ZsdWs +

∫ T

t
F (s, Ys, Zs)ds (0 ≤ t ≤ T ) (5)

where W is a standard n-dimensional Brownian motion on a probability space (Ω,F ,P)
equipped with the standard Brownian filtration (Ft). The time T is called the terminal time,
while the random function F and the FT -measurable random variable H are referred to as
the driver and terminal condition, respectively.

(ii) A solution consists of an adapted process Y and an adapted integrand Z that satisfy the
integral equation (5).

Backward stochastic differential equations have recently attracted much attention as a math-
ematical framework for modelling the evolution of risk assessments and expected utilities when
an agent’s income at maturity is a known function of some underlying diffusion process (called
the forward process). We shall assume that the dynamics of the risk assessment (Y a

t ) of the agent
a ∈ A can be described by a BSDE with driver ga and terminal condition ξa. More precisely,

−dY a
t = ga(t, Zt)dt− Za

t dWt with YT = −ξa. (6)

The driver ga completely specifies the agent’s risk preferences. It is assumed to be convex and
differentiable in z. In the absence of any trading opportunities the terminal condition −ξa is
given by the agent’s initial endowment −Ha. In general, it will be given by the sum of the agent’s
random income and her gains or losses from trading.

2.2 Pricing rules and the market price of external risk

The bond price process will be derived endogenously by an equilibrium condition. Pricing the
bond by market considerations requires the price process to be determined by a linear pricing
rule - otherwise the agents have an incentive to trade the bond on a secondary market. A linear
pricing scheme on L2 can be identified with an 2-dimensional predictable process θ that makes
the process (Zθ

t ) defined by

Zθ
t = exp

(
−

∫ t

0
θsdWs − 1

2

∫ t

0
θ2
sds

)
(7)

a uniformly integrable martingale; see, e.g. Horst & Müller (2006). For any such process we denote
by Pθ a probability measure equivalent to P with density Zθ and introduce the Pθ-Brownian motion

W θ
t = Wt +

∫ t

0
θs ds.

6



Remark 2.3. The density process Zθ is a uniformly integrable martingale if, for instance, the
process θ satisfies Novikov’s condition or, more generally, if it belongs to the class of P-BMO
processes. Loosely speaking this means that the process θ defines a good measure change. We refer
to Kazamaki (1994) for an extensive discussion of BMO-martingales.

Following Horst & Müller (2006) we refer to the first component (θS) of the vector θ = (θS , θR)
as the market price of financial risk. This process is exogenous because the agents’ demand does
not affect the dynamics of stock prices. It is given by

θS
t =

µS
t

σS
t

. (8)

The second component (θR) is called the market price of external risk. It will be derived by an
equilibrium approach. For a given price of external risk the initial bond price is Bθ

0 = Eθ[HI ].
This expectation makes sense because HI is bounded. To exclude arbitrage opportunities bond
prices (Bθ

t ) need to be defined as the conditional discounted expected payoffs under Pθ so

Bθ
t = Eθ

[
hI(T, RT , ST ) +

∫ T

0
ϕI(s,Rs, Ss)ds|Ft

]
.

Representing the random variables Bθ
t as stochastic integrals with respect to the Pθ-Brownian

motion W θ yields an adapted process κθ = (κθ,S , κθ,R) such that

Bθ
t = Eθ[HI ] +

∫ t

0
κθ

sdW θ
s

= Eθ[HI ] +
∫ t

0
κθ,S

s (dWS
s + θS

s ds) +
∫ t

0
κθ,R

s (dWR
s + θR

s ds).
(9)

2.3 Equilibrium pricing rules

Our goal is to characterize a class of equilibrium pricing rules for the risk bond. We shall dis-
tinguish two notions of equilibrium: equilibrium in a model of risk sharing and equilibrium in
models of risk transfer. In models of risk sharing the agents pool their risks and redistribute them
by trading a fictitious non-dividend paying asset. In a model of risk transfer income streams are
exchanged through decentralized markets by trading a dividend-paying risk bond3.

2.3.1 Equilibrium in a model of risk sharing

Much of the mathematical finance literature is concerned with models of optimal or equilibrium
risk sharing. In this section we show how this case fits within our framework. To this end, we
introduce, for any given market price of risk θ a forward price process

dB̄θ
t = dWR

t + θR
t dt, B̄θ

0 = 0. (10)
3The fictitious asset can be viewed as a form of mutual contract through which the exchange of risk exposures

takes place so it is natural to assume that it is in zero net supply.
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We view the process (B̄θ
t ) as the price process of a non-dividend paying (auxiliary, fictitious)

asset in zero net supply and denote the holdings of the agent a ∈ A in the stock and fictitious asset
at time t by πa,1

t and πa,2
t , respectively. Introducing the additional asset completes the market

because its volatility is strictly positive; in fact, it is with no loss of generality normalized to one.
The gains or losses from trading are then given by

V̄ a,θ
t (πa) =

∫ t

0
πa,1

s dSs +
∫ t

0
πa,2

s dB̄θ
s (11)

and the dynamics of the resulting risk process is described by a backward stochastic differential
equation

−dȲ a
t (πa) = ga(t, Za

t )dt− Za
t dWt with Ȳ a

T (πa) = −Ha − V̄ a,θ
T (πa). (12)

The following notion of admissible trading strategies guarantees that there is no arbitrage in
the extended market and that the agent’s utility for an admissible trading strategy is well defined.

Definition 2.4. For a given pricing measure Pθ we denote by S̄θ the class of all trading strategies
π̄ that are (Ft)-adapted and satisfy

E
∫ T

0
||π̄s||2d〈B̄θ, S〉s < ∞,

where || · || stands for the Euclidean norm. A trading strategy π̄ ∈ S̄θ is admissible if the BSDE
(12) has a unique solution. The set of all admissible strategies is denoted S̄θ.

The agent’s goal is to minimize her terminal risk (maximize her terminal utility) from trading
in the stock and auxiliary market. Her optimization problem is thus given by

min
π̄a∈S̄θ

Y a
0 (π̄a). (13)

We call θ∗ an equilibrium market price of risk if the optimal utilities are attained and the market
clearing condition of zero total excess demand in the auxiliary asset holds at any point in time.

Definition 2.5. A market price of external risk θ∗ that makes the density process in (7) a uni-
formly integrable martingale is an equilibrium market price of risk in a model of risk sharing if
there exist optimal admissible trading strategies π̃a for all agents a ∈ A such that the auxiliary
market clears at all times in all the states of the world, i.e., almost surely

∑

a∈A
π̃a,2

t ≡ 0 (0 ≤ t ≤ T ).
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2.3.2 Equilibrium in a model of risk transfer

The goal of this paper is to go a step further and address the more involved problem of risk

transfer. Here the exchange of risk exposures takes place through trade in a dividend-paying risk
bond. In this case the bond price process follows a backward (not forward) dynamics and its
volatility is endogenously determined by the equilibrium condition4. We denote the holdings of
the agent a ∈ A in the stock and bond market at time t by πa,1

t and πa,2
t , respectively, so in this

case her gains from trading are given by

V a,θ
t (πa) =

∫ t

0
πa,1

s dSs +
∫ t

0
πa,2

s dBθ
s . (14)

The associated risk process evolves according to the BSDE

−dY a
t (πa) = ga(t, Zt)dt− ZtdWt with Y a

T (πa) = −Ha − V a,θ
T (πa). (15)

Definition 2.6. For a given pricing measure Pθ we denote by Sθ the class of all trading strategies
π that are (Ft)-adapted and satisfy

E
∫ T

0
||πs||2d〈Bθ, S〉s < ∞.

A trading strategy π ∈ Sθ ∈ is called admissible if the BSDE (15) has a unique solution. The set
of all admissible strategies is denoted Sθ.

The process θ∗ will be called an equilibrium market price of risk in a model of risk transfer if
at any point in time the total demand for the bonds equals one, i.e., if the bond market clears.

Definition 2.7. A market price of external risk θ∗ that makes the density process in (7) a uni-
formly integrable martingale is an equilibrium market price of risk in the model of risk transfer if
there exist optimal admissible trading strategies π̃a such that

∑

a∈A
π̃a,2

t ≡ 1 (0 ≤ t ≤ T ).

In order to have a unified presentation and to simplify the exposition of the results we shall
from now on use the notation of this subsection with the understanding that κθ,S ≡ 0 and κθ,R ≡ 1
in (9) in the case of risk sharing.

3 The individual optimization problems

In order to establish the existence of a competitive equilibrium we first consider a single agent’s
optimization problem. To this end, we fix a market price of risk θ and denote by Pθ the corre-
sponding pricing measure. For the optimization problem to have a solution we need to assume

4In a model of risk sharing it is normalized to unity.
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that fluctuations in the external risk process translate into fluctuations of bond prices, i.e., that
the bond price volatility does not vanish. Thus, for the rest of this section we work under the
following assumption:5

Assumption 3.1. After the bond has been issued the market is complete, i.e., the volatility process
{κθ,R

t }t∈[0,T ] is P-a.s. strictly positive.

We consider examples where the preceding assumption can be verified for the equilibrium
market price of risk below. At this point our goal is to characterize a candidate for the agents’
optimal trading strategy in terms of a solution to a backward equation. To this end, we first
observe that the problem of risk minimization is equivalent to minimizing the residual risk. For
an admissible trading strategy πa the associated residual risk Ŷ a

t (πa) at time t ∈ [0, T ] is given
by

Ŷ a
t (πa) = Y a

t (πa) + V a,θ
t (πa). (16)

With the change of variables

Z̄s , Zs + πa,1
s

(
σS

s Ss

0

)
+ πa,2

s κθ
s (17)

its dynamics is captured by the backward equation

Ŷ a
t (πa) = −Ha +

∫ T

t
Ga(s, πs, Z̄s) ds−

∫ T

t
Z̄s dWs,

with terminal condition −Ha and driver

Ga(s, πs, Z̄s) , ga

(
s, Z̄s − πa,1

s

(
σS

s Ss

0

)
− πa,2

s κθ
s

)
− πa,1

s σS
s Ssθ

S
s − πa,2

s κθ
s · θs. (18)

Since ga(t, ·) depends in a strictly convex manner on the space variable, it is almost everywhere
differentiable. We denote by gzi the derivative with respect to the corresponding component of
the space variable z = (z1, z2) and put

π̃a
s = arg min

π∈R2
Ga(s, π, z).

A candidate for the optimal trading strategy is now defined implicitly in terms of the following
first order conditions:

ga
z1

(
s, z − π̃a,1

s

(
σS

s Ss

0

)
− π̃a,2

s κθ
s

)
= −θS

s , (19)

5This assumption is void in the case of risk sharing; it will be verified for certain classes of risk transfer models

below.
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and

ga
z2

(
s, z − π̃a,1

s

(
σS

s Ss

0

)
− π̃a,2

s κθ
s

)
= −θR

s . (20)

The two-dimensional process defined by the previous conditions is of the form π̃a
t = Πt(z). Plug-

ging the random function Πt(z) into the driver Ga we obtain that

Ga(t,Πt(z), z) ≤ Ga(t, πt, z) for any pair (π, z) ∈ R4. (21)

Let us now assume that the BSDE with driver Ga(t, Πt(z), z) and terminal condition −Ha has a
unique solution (Y a, Za) and define a trading strategy π̃a

t by

π̃a
t = Πt(Za

t ). (22)

This yields an optimal trading strategy provided that the BSDEs associated with the agents’
optimization problems satisfy the following comparison principle.

Definition 3.2. The BSDEs associated with the risk minimization problems satisfy a comparison
principle if for any admissible trading strategy π the solutions (Ŷ a, Za) and (Ŷ a(πa), Za(πa)) of
the BSDEs with drivers Ga(t, Πt(z), z) and Ga(t, πt, z), respectively, satisfy

Ŷ a
0 ≤ Ŷ a

0 (πa).

We are now ready to state the main assumption on the agents’ preferences which guarantee
that the risk minimization problem has a solution.

Assumption 3.3. (i) The first order conditions (19) and (20) have a solution.

(ii) The BSDE with driver Ga(t, Πt(z), z) and terminal condition −Ha has a unique solution.

(iii) The candidate process π̃a defined by (22) is admissible.

(iv) The BSDEs associated with an agent’s optimization problem satisfy a comparison principle.

The main result of this section now follows.

Proposition 3.4. If Assumption 3.3 is satisfied, then the agents’ optimization problems have a
unique solution.

The preceding considerations suggest that a first step in solving the problem of existence of
equilibria consists in establishing a-priori integrability conditions on the equilibrium market price
of risk that guarantee that the BSDE with driver Ga(t, πt(z), z) has a unique solution. Subse-
quently one needs to impose restrictions on the trading strategies that guarantee a comparison
principle. A final step consists of a characterization of an equilibrium market price of external risk
and in verifying the a priori conditions on θ. For the entropic case the solution to the optimization
problem can be given in closed form; this is the topic of the next section.
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4 The case of entropic utilities

In this section we illustrate how to solve the individual optimization problem in a situation where
the agents’ risk preferences are described by dynamic entropic risk measures, i.e., where the drivers
ga take the quadratic form

ga(t, z) =
1

2γa
||z||2. (23)

Here γa > 0 is the agent’s coefficient of risk tolerance. For a given trading strategy π the associated
backward equation is given by

−dY a
t (π) =

1
2γa

||Zt||2dt− ZtdWt with Y a
T (π) = −Ha − V a,θ

T (π). (24)

For bounded market prices of financial risk the problem of risk minimization in an entropic
framework has previously been studied by, e.g. Hu, Imkeller & Müller (2005). Several other
authors including Barrieu & El Karoui (2005) have studied this problem under boundedness
assumption on the terminal condition, i.e., under boundedness conditions on the gains process.
As soon as one relaxes these conditions the analysis becomes more involved as we show in the
sequel.

4.1 The candidate strategy

In a first step we are now going to characterize a set of admissible trading strategies and identify
the candidate for the optimal trading strategy.

4.1.1 The set of admissible strategies

We divide the backward equation (24) by the parameter of risk tolerance and perform the change
of variable z → γaz to get a new BSDE:

−dY a
t (π) =

1
2
||Zt||2dt− ZtdWt with Y a

T (π) = γ−1
a (−Ha − V a,θ

T (π)).

With the exponential change of variables y = exp(Y ) we can rewrite this as

yt = eζ −
∫ T

t
zs dWs where ζ = γ−1

a (−Ha − V a,θ
T (π)).

The preceding equation has a unique solution (in a certain space) given by the martingale repre-
sentation theorem if eζ is square integrable. In this case

yt = E[eζ |Ft].

Moreover, the process z belongs to L2(dt⊗ dP) and by the Burkholder-Davis-Gundy inequality

E

[
sup

u∈[0,T ]
yu

]2

< ∞.
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Thus, by the boundedness of Ha the following is a set of admissible trading strategies:

Sθ =
{

π ∈ Sθ : E
[
exp(−2γ−1

a V a,θ
T (π))

]
< ∞

}
. (25)

In the next subsection we identify the candidate strategy π̃a. Subsequently we give a sufficient
condition on the market price of risk that guarantees that π̃a belongs to Sθ.

4.1.2 The candidate for the optimal trading strategy

By the change of variables (17), the BSDE (24) can be transformed into a backward equation
that describes the dynamics of the residual risk. Its driver is given by

Ga(t, πt, Zt) =
1

2γa
||(z1 − πa,1σSSs − πa,2κθ,S

s , z2 − πa,2κθ,R
s )||2

−
(
πa,1

s σS
s Ssθ

S
s + πa,2

s κθ,S
s θS

s + πa,2
s κθ,R

s θR
s

)
.

The corresponding first order conditions yield

π̃a,1
s =

γa[θS
s κθ,R

s − θR
s κθ,S

s ] + z̄1
sκθ,R

s − z̄2
sκθ,S

s

σS
s Ssκ

θ,R
s

and π̃a,2
s =

γaθ
R
s + z̄2

s

κθ,R
s

, (26)

with Z̄ = (z̄1, z̄2) being the integrand part of the unique solution to the BSDE with terminal
condition −Ha and linear driver

Ga(s,Πs(Z), Z) = −z1θS
s − z2θR

s −
γa

2
[(θS

s )2 + (θR
s )2]. (27)

4.2 Sufficient conditions for admissibility

We are now going to give sufficient conditions on the market price of risk that guarantee that
the candidate for the optimal trading strategy is admissible. This means that the BSDE with
the linear driver (27) and terminal condition −Ha has a unique solution and that the associated
terminal wealth satisfies an exponential integrability condition. To this end, we first derive the
closed form representation of the optimal gains/losses from trading. The straightforward way to
do this is by means of duality but we prefer to use a BSDE approach. In the light of (26) we have

V a,θ
T (π̃a) ,

∫ T

0
π̃a,1

s dSs +
∫ T

0
π̃a,2

s dBθ
s

=
∫ T

0
(γaθ

S
s + z̄1

s )dWS
s +

∫ T

0
(γaθ

R
s + z̄2

s )dWR
s

+
∫ T

0
γa[[(θS

s )2 + (θR
s )2] + z̄1θS

s + z̄2θR
s ]ds.

In view of (27)
∫ T

0
z̄1
sdWS

s +
∫ T

0
z̄2
sdWR

s = −Ha + const +
∫ T

0

[
−z̄1θS

s − z̄2θR
s −

γa

2
[(θS

s )2 + (θR
s )2]

]
ds

13



so the optimal terminal wealth is given by

V a,θ
T (π̃a) = −Ha + const + γa

∫ T

0
θS
u

(
dWS

u +
1
2
θS
u du

)
+ γa

∫ T

0
θR
u

(
dWR

u +
1
2
θR
u du

)
, (28)

provided the candidate strategy is admissible. In order to give a condition for admissibility, we
set

NT ,
∫ T

0
θS
u

(
dWS

u +
1
2
θS
u du

)
+

∫ T

0
θR
u

(
dWR

u +
1
2
θR
u du

)
.

From (28) we see that
γ−1

a (−Ha − V a,θ
T (π̃a)) = −NT + const.

Thus, for π̃a to belong to the class (25) of admissible strategies we should have that

E [exp(−2NT )] < ∞. (29)

Lemma 4.1. A sufficient condition for (29) is

E
[
exp

(
6

∫ T

0
‖θs‖2ds

)]
< ∞. (30)

Proof. We have that exp(−2NT ) = ζT exp
(
3

∫ T
0 ((θS)2u + (θR)2u) du

)
, where the process (ζt)

is defined by

ζt = exp
(∫ t

0
(−2θS

u )
(
dWS

u − 2θS
u du

)
+

∫ t

0
(−2θR

u )
(
dWR

u − 2θR
u du

))
.

The process (ζ2
t ) is a supermartingale (as a positive local martingale) so

E[ζ2
T ] ≤ ζ2

0 = 1.

Therefore condition (30) and Hölder’s inequality prove (29). 2

Under the assumption that (30) is satisfied, the Novikov condition holds so the BSDE with
driver (27) has a unique solution (in a certain class), given by the conditional expectation of the
terminal condition under the equivalent measure Pθ with respect to which

W θ
t = Wt +

∫ t

0
θsds,

is a Brownian motion; the integrand comes from the martingale representation theorem under Pθ.
Hence (30) is indeed sufficient for the candidate strategy to be admissible.

14



4.3 Optimality of the trading strategy

In order to establish optimality of the trading strategy π̃a under (29) it is convenient to work
under Pθ. Since the Novikov condition is satisfied, W θ is a Brownian motion with respect to
the original filtration so it makes sense to consider the BSDE that describes the dynamics of the
agent’s risk assessment under Pθ ≈ P. Under the new measure the driver is given by

Gθ,a(t, π, z) = Ga(t, π, z)+ < z, θ > .

Since the functions π 7→ Gθ,a(t, π, z) and π 7→ Ga(t, π, z) have the same minimizers it is enough
to establish the comparison principle under Pθ. The key observation is that after plugging in
the optimal strategy, the resulting driver does not depend on Z. Thus, given the solution (Ỹ , Z̃)
associated with the trading strategy π̃ and some solution (Y (π), Z(π)) coming from another
admissible strategy π, we have that

Ga(t, π̃, Z̃t) = Ga(t, π̃t, Zt(π)) ≤ Ga(t, πt, Zt(π)).

As a result, (
Ỹ0 − Y0(π)

)
≤

∫ T

0

(
Z̃u − Zu(π)

)
dW θ

u Pθ-a.s. (31)

Since all the payoff functions are bounded, the process
(∫ ·

0 Z̃dW θ
)

is a (true) Pθ-martingale.

The following lemma shows that
(∫ ·

0 Z(π)dW θ
)

is also a Pθ-martingale. Taking expectation with
respect to Pθ in (31) therefore shows that

Ỹ0 ≤ Y0(π) Pθ-a.s. and hence P-a.s.

so that the comparison principle is indeed satisfied.

Lemma 4.2. The process M θ
t ,

∫ t
0 Zs(π) dW θ

s is a Pθ-martingale.

Proof. Let (Y,Z) be the unique solution to the BSDE (24) and put

Mt ,
∫ t

0
Zs dWs and M∗

t , sup
u∈[0,t]

|Mu|.

In order to prove the assertion it suffices to show that

Eθ
√
〈M θ〉T < ∞.

In fact, it is enough to show that
Eθ

√
〈M〉T < ∞ (32)

because 〈M〉 = 〈M θ〉. To this end, we observe first that due to the Burkholder-Davis-Gundy
inequality there exists a constant k such that

E〈M〉T ≤ kE[M∗
T ]2.

15



In order to see that the latter quantity is finite let us put ξa = −Ha − V a,θ(πa) so

ξa − Y a
0 =

∫ T

0

1
2γa

|Zs|2 ds−
∫ T

0
Zs dWs.

Hence for some positive constants ki (i = 1, ..., 4) we have that

〈M〉2T =
[∫ T

0
|Zs|2 ds

]2

≤ k1 + k2(ξa)2 + k3[MT ]2

≤ k1 + k2(ξa)2 + k3[M∗
T ]2.

Moreover E
[
(ξa)2

]
< ∞ because the trading strategy is admissible, and by the Burkholder-Davis-

Gundy inequality
E[M∗

T ]4 ≤ k4E〈M〉2T .

Hereby
E[M∗

T ]2]2 ≤ E[M∗
T ]4 ≤ k4E〈M〉2T ≤ k4[k1 + k2ζ

2 + k3E[M∗
T ]2],

so that
E[M∗

T ]2 < ∞.

Moreover by (30) the expectation of the squared stochastic exponential of the integral − ∫ T
0 θdW

is finite so by Hölder’s inequality (32) holds true. 2

The preceding considerations show that Assumption 3.3 is satisfied for the case of entropic
utilities. In the sequel we characterize the equilibrium market price of risk as a solution to
a backward stochastic differential equation. Our analysis is based on a representative agent
approach. In the framework of the preceding example the representative agent’s BSDE will be
given by (27) with a different coefficient of risk tolerance and a different terminal condition. It
turns out that an equilibrium market price of risk can be obtained from that BSDE by replacing
the process θR by − z2

γR
. This translates a linear into a quadratic BSDE.

5 The representative agent

It is well known from the theory of general equilibrium that in complete markets Pareto optimal
allocations (and hence competitive equilibria) can be supported as equilibria of a representative
agent economy. The preferences and endowments of the representative agent are typically given
in terms of a weighted average of the individual agents’ characteristics with the weights depending
on the equilibrium to be supported. This dependence of the weights on equilibrium allocations
renders the general analysis of equilibrium rather involved. The situation is considerably simpler
when the agents have monetary utilities. In this case the definition of the representative agent
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does not depend on the equilibrium. Our approach in finding equilibrium prices is thus to consider
a representative agent, give her the total endowment including the bond, and then let her act to
minimize her risk from trading in the financial and bond market. The equilibrium market price
of risk is characterized by the fact that her optimal demand for the bond is identically equal to
zero for the model with risk sharing and one for risk transfer.

5.1 The representative agent’s preferences

In order to simplify the exposition we restrict ourselves to an economy with two agents, A = {a, b};
the general case follows from straightforward modifications. The representative agent’s goal at
time t is to minimize the aggregate (residual) risk. Her utility function on the level of contingent
claims (rather than trading strategies) thus takes the form

inf
F

{
Y a

t (ζT − F ) + Y b
t (F )

}
(33)

for some total endowment −ζT where the infimum is taken over a suitable (e.g., square integrable
or bounded) subset of Ft-measurable random variables. On the level of backward equations such
risk preferences can be represented by the solution of a BSDE with driver gab = ga¤gb, where ¤
refers to the usual inf-convolution operation:

gab(t, z) = ga¤gb(t, z) = inf
x
{ga(t, z − x) + gb(t, x)}. (34)

Assumption 5.1. The mapping z 7→ gab(t, z) is strictly convex and the infimum is attained.

The convexity condition on gab guarantees that the first order conditions associated with the
representative agent’s optimization problem have a solution. Sufficient conditions in terms of the
individual agents’ preferences are given in Barrieu & El Karoui (2005).

Remark 5.2. The unique minimizer x∗ of the mapping x 7→ ga(t, z−x)+gb(t, x) is characterized
by the equations

ga
zi

(t, z − x∗) = gb
zi

(t, x∗) (i = 1, 2).

This means that
gab(t, z) = ga(t, x) + gb(t, y)

if and only if
ga
zi

(t, x) = gb
zi

(t, y) and x + y = z.

We shall use this characterization later in order to state sufficient conditions for the existence of
competitive equilibria.
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In a model with risk transfer the representative agent’s initial endowment is given by the
agents’ combined endowment plus the bond’s payoff, i.e., by −Ha − Hb − HI . Given a trading
strategy π in the financial and bond market her risk exposures follow the backward dynamics

−dY ab
t (π) = gab(t, Zt)dt− ZtdWt with Y ab

T (π) = −Ha −Hb −HI − V ab,θ
T (π).

The agent’s goal is to minimize her risk over the set of admissible trading strategies:

min
π∈Sθ

Y ab
0 (π).

Arguing as in the case of the single agent, the convexity condition on the driver gab yields the
following characterization of the optimal portfolio:

gab
z1

(
s, Z̄s − π̃ab,1

s

(
σSSs

0

)
− π̃ab,2

s κθ
s

)
= −θS

s , (35)

and

gab
z2

(
s, Z̄s − π̃ab,1

s

(
σSSs

0

)
− π̃ab,2

s κθ
s

)
= −θR

s . (36)

Thus, if the BSDEs with driver (34) and terminal conditions

−Ha −Hb −HI − V ab,θ
T (π)

satisfy a comparison principle and if the trading strategy defined implicitly by the first order
conditions as in (22) is admissible, her optimization problem has a unique solution.

5.2 From the representative agent to equilibrium

In the representative agent economy the bond market is in equilibrium if the agent’s optimal
trading strategy in the bond market is

π̃ab,2
t ≡ 0.

The following theorem characterizes the equilibrium market price of external risk θ∗R in terms of
a solution to the BSDE associated with the representative agent’s utility optimization problem.
It also shows that θ∗R is an equilibrium in the underlying competitive economy, given that the
bond price volatility does not vanish.

Theorem 5.3. Assume that there exists a solution (Ŷ ab, Z̄) of the backward stochastic differential
equation

Ŷ ab
t (π) = −Ha −Hb −HI +

∫ T

t
Gab(s, Z̄s) ds−

∫ T

t
Z̄s dWs, (37)
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with driver

Gab(s, Z̄s) , gab

(
s, Z̄s − π̃ab,1

s (Z̄s)

(
σSSs

0

))
− π̃ab,1

s (Z̄s)σSSsθ
S
s ,

where π̃ab,1
s = π̃ab,1

s (z) is the unique solution of the equation in x

gab
z1

(
s, z − x

(
σSSs

0

))
= −θS

s . (38)

Assume furthermore that Assumption 5.1 is satisfied. If the process θ∗R = θ∗R(z) defined by

−θ∗Rs (z) = gab
z2

(
s, z − π̃ab,1

s (z)

(
σSSs

0

))
(39)

along with the market price of financial risk θS makes the density process in (7) a uniformly
integrable martingale and if Assumptions 3.1 and 3.3 hold under θ∗ = (θS , θ∗R(Z̄)), then θ∗R is
an equilibrium market price of external risk.

Proof. We proceed in three steps.

(i) For the given market price of external risk θ∗R = θ∗R(Z̄) we obtain from equations (38),
(39) and the convexity of π → Gab(s, π, z) that

(π̃ab,1(z), 0) = arg min
π∈R2

Gab(s, π, z).

Hence in view of the Assumption 3.3 it turns out that π̃ab,2 = 0 is optimal.

(ii) In order to show that θ∗R yields an equilibrium of the underlying competitive economy we
denote by π̃a and π̃b the agents’ unique optimal trading strategies associated with θ∗R. Our
goal is then to show that

π̃ab = π̃a + π̃b − (0, 1) .

To this end, we recall that for i ∈ {a, b} the optimality of the strategy π̃i comes from the
first order conditions

gi
z1

(
s, Z̄i

s − π̃i,1
s

(
σS

s Ss

0

)
− π̃i,2

s κθ
s

)
= −θS

s ,

and

gi
z2

(
s, Z̄i

s − π̃i,1
s

(
σS

s Ss

0

)
− π̃i,2

s κθ
s

)
= −θR

s .
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Thus, by Remark 5.2 we have the following link between the drivers ga, gb and gab:

ga

(
s, Z̄a

s − π̃a,1
s

(
σS

s Ss

0

)
− π̃a,2

s κθ
s

)
+ gb

(
s, Z̄b

s − π̃b,1
s

(
σS

s Ss

0

)
− π̃b,2

s κθ
s

)

= gab

(
s, Z̄a

s + Z̄b
s − (π̃a,1

s + π̃b,1
s )

(
σS

s Ss

0

)
− (π̃a,2

s + π̃b,2
s )κθ

s

)
.

(40)

(iii) Let us now fix a trading strategy π of the representative agent. In view of the bond price
dynamics (9) the associated BSDE can be written as

Ŷ ab
t (π) =−Ha −Hb −HI +

∫ T

t
Gab(s, πs, Z

ab
s ) ds−

∫ T

t
Zab

s dWs

=−Ha −Hb +
∫ T

t
Gab(s, πs − (0, 1)t, Zab

s − κθ
s) ds−

∫ T

t
(Zab

s − κθ
s) dWs

(41)

with the driver Gab defined by analogy to (18). As a result, the process
(
Ŷ a

t (π̃a) + Ŷ b
t (π̃b), Z̄a

t + Z̄b
t − κθ

t

)
(42)

is the solution of the BSDE (41) associated with the trading strategy

π̄ = π̃a + π̃b − (0, 1) .

Conversely, any solution of the representative agent’s BSDE along with the unique solution
of the first agent’s BSDE yields, via (40), a solution of the second agent’s BSDE. This
equation, however, has a unique solution so (42) is in fact the unique solution to (41) given
the trading strategy π̄. This shows that π̄ is admissible for the representative agent. Since
it satisfies the first order conditions

gab
z1

(
s, Z̄ab

s − κθ
s − (π̃a,1 + π̃b,1)

(
σS

s Ss

0

)
− (π̃a,2 + π̃b,2 − 1)κθ

s

)
= −θS

s ,

and

gab
z2

(
s, Z̄ab

s − κθ
s − (π̃a,1 + π̃b,1)

(
σS

s Ss

0

)
− (π̃a,2 + π̃b,2 − 1)κθ

s

)
= −θR

s ,

we infer from the strict convexity of the function gab in the space variable that

π̃ab = π̃a + π̃b − (0, 1) .

In particular
0 = πab,2

t = π̃a,2
t + π̃b,2

t − 1 P⊗ dt-a.s.
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2

The preceding theorem yields a formula for a candidate equilibrium market price of external
risk: In a first step we solve the first order condition (35) of the representative agent to obtain π̃ab,1

s

given that π̃ab,2
s ≡ 0; this is possible because (35) is independent of θR. A second step consists

of defining the candidate process via (36). In a third step we need to verify the admissibility
conditions on the candidate market price of risk.

6 An example

In this section we consider an example where the assumptions of Theorem 5.3 can be verified. We
restrict ourselves to the more involved case of risk transfer where we need to verify the additional
assumption that the equilibrium bond price volatility is strictly positive. In order to guarantee
positivity of the volatility process κθ,R defined in equation (9) we assume that the bond’s payoff
is increasing in the external risk component.

Assumption 6.1. The bond’s total payoff is increasing in the external risk factor and strictly
increasing on a set of positive measure.

To simplify the notation we assume that the bond’s payoff depends only on the terminal state
of the forward process, i.e., that ϕa ≡ 0; the general case follows from similar considerations.

6.1 The microeconomic setup

We consider again the entropic case where

ga(t, z) =
1

2γa
‖z‖2, gb(t, z) =

1
2γb

‖z‖2,

hence
gab(t, z) =

1
2γR

‖z‖2, γR , γa + γb.

In view of Lemma 4.1 the utility optimization problem of an individual agent associated with
a market price of risk θ has a unique solution if

E
[
exp

(
6

∫ T

0
‖θu‖2du

)]
< ∞. (43)

It turns out from the analysis that follows that under some assumptions on the payoffs the
equilibrium market price of external risk θ∗R is bounded uniformly and thus for (43) to hold it
suffices to ask for

E
[
exp

(
6

∫ T

0
|θS

u |2du

)]
< ∞. (44)
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For the remainder of this section we work under the preceding condition. In this case, according to
Girsanov’s Theorem (see Theorem 5.1 p 191 in Karatzas & Shreve 1991) there exists an equivalent
measure P̃ with respect to which

W̃S
t = WS

t +
∫ t

0
θS
u du and W̃R

t = WR
t (45)

are independent Brownian motions with respect to the filtration (Ft). Also notice that the Novikov
condition (see Corollary 5.13 p 199 in Karatzas & Shreve 1991) is satisfied under (44).

In order to establish existence and uniqueness of a bounded equilibrium market price of ex-
ternal risk we shall now assume that the market price of financial risk has the following additive
decomposition property:

Assumption 6.2. The market price of financial risk satisfies

(θS
t )2 = yt + Γ(t, Rt)

for some process yt that is P̃-independent of WR, and for a uniformly (in t) bounded non-negative
functions Γ(t, ·), with uniformly bounded first and second derivatives.

The preceding assumption is equivalent to saying that θS can be decomposed into two additive
components that are independent under P̃ probability measure. Along with the Novikov condition
(44) it is satisfied if, for instance, if θS is bounded and independent of the external risk factor as
in, e.g., Hu, Imkeller & Müller (2006) and Horst & Müller (2006). But there are also stochastic
volatility models where it is satisfied. The following is a modification of a model by Chacko &
Viceira (2005).

Example 6.3. Consider the financial market model with unbounded market price of risk:

dSt

St
= µSdt +

√
1
yt

dWS
t , Γ(t, ·) = 0.

Here the volatility process (yt) is a square root process driven by the Brownian motion WS:

dyt = k(ζ − yt)dt + σ
√

ytdWS
t .

The condition 2kζ > σ2 guarantees the process yt remains positive. A recent paper by Wong &
Heyde (2006) gives a sufficient condition for which (44) holds true:

k

µSσ
≥ 2

√
3. (46)

Despite the random volatility, the model of the previous example fits into our framework as we
may rescale the number of shares of stock. This is possible because the agents’ combined demand
for the stock does not affect its dynamics.
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Our Assumption 6.2 is also satisfied if θS depends only on the non-financial risk factor.

Example 6.4. If the stock price processes of the form

dSt

St
= µS

t (Rt)dt + σS
t (Rt)dWR

t

with bounded functions µS
t and σS

t and a volatility that is uniformly bounded away from zero, then
Assumption 6.2 is satisfied.

The following example can be viewed as mixture of the preceding examples. It considers an
unbounded market price of financial risk that depends on both the external risk factor and the
randomness driving the stock price.

Example 6.5. Consider the financial market model where

dSt

St
= µSdt +

1√
yt + Γ(t, Rt)

dW̃S
t

and
dyt = k(ζ − yt)dt + σ

√
ytdW̃S

t . (47)

Again, the condition 2kζ > σ2 guarantees the process yt remains strictly positive. The existence
of the process yt boils down to the existence of a strong solution for the following SDE

dyt =
[
k(ζ − yt) + σµS√yt

√
yt + Γ(t, Rt)

]
dt + σ

√
ytdWS

t , (48)

under the original measure P. We prove this in Lemma 6.6. An application of Hölder’s inequality
shows that the Nokivov condition (44) holds if

k

µSσ
≥ 2

√
6. (49)

Indeed,

E
[
exp

(
6

∫ T

0
|θS

u |2du

)]
= E

[
exp

(
6

∫ T

0
(µS)2yudu

)
exp

(
6

∫ T

0
(µS)2Γ(u,Ru)du

)]

In light of (49) it follows that

E
[
exp

(
12

∫ T

0
(µS)2yudu

)]
< ∞,

according to Wong & Heyde (2006). This combined with the boundedness of Γ, and Hölder’s
inequality yields (44).

Lemma 6.6. Under the assumption 2kζ > σ2 there exists a unique strong solution for (48).
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Proof. The existence of a weak solution for SDE (48) it is obvious. Indeed if 2kζ > σ2 then
SDE (47) has a unique strong solution given the probability measure P̃. Then we can construct P
from P̃ by means of Girsanov’s Theorem and this procedure yields a weak solution for SDE (48).
By proving pathwise uniqueness for (48) we get uniqueness of the strong solution for (48), due
to the Ikeda-Watanabe Theorem (see Corollary 3.23 p. 310 in Karatzas & Shreve 1991). Let us
define the stochastic process xt as the unique strong solution of the SDE

dxt = k(ζ − xt)dt + σ
√

xtdWS
t , (50)

under the measure P. Then, since 2kζ > σ2, it follows that xt is strictly positive. A standard
comparison argument for diffusions shows that yt (the weak solution of (48)) dominates xt, i.e.,
yt ≥ xt (see Proposition 2.18 p 293 in Karatzas & Shreve 1991) Let us define the following
sequence of stopping times

τε , inf{s ≤ T, such that xt ≤ ε},
for some ε small enough (such that y0 > ε). On the interval [0, τε] it follows that yt ≥ xt ≥ ε hence
on this interval SDE (48) admits pathwise uniqueness. Indeed that follows by Theorem 2.5 p 287
in Karatzas & Shreve 1991, since the drift and the volatility are Lipschitz functions. Moreover
since xt is strictly positive it follows that τε ↑ T as ε → 0, P a.s. Therefore (48) admits pathwise
uniqueness on [0, T ] and this completes the proof. 2

For our analysis of equilibrium we are only interested in the market price of financial risk,
not the drift nor the volatility coefficients. We may thus with no loss of generality normalize the
stock price volatility to one and assume from now on that

dSt

St
= θS

t dt + dWS
t = dW̃S

t .

6.2 The equilibrium BSDE

Under Assumption 6.2 the risk minimization problem for a given market price of risk has a
unique solution. In view of the analysis of Section 4.1.2 and Theorem 5.3, a candidate θ∗R for an
equilibrium market price of external risk is given by z2, the second component of the integrand
part of a solution (Y,Z) of the BSDE

Yt = Hrep −
∫ T

t
zsdWs +

1
2

∫ T

t
[−(z2

s )2 + (θS
s )2 − 2θS

s z1
s ] ds. (51)

Here Z = (z1, z2) and Hrep denotes the income of the representative agent weighted by the
factors of risk tolerance, i.e.,

Hrep , Ha + Hb + HI

γR
.
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Remark 6.7. When we solved an individual agent’s optimization problem for a given market
price of risk in an entropic framework, the BSDEs for the optimal risk process turned out to be
linear. It is the equilibrium condition that translates the linear BSDE into a quadratic one. We
need to replace the process θR in (27) by − z2

γR
and then rescale the BSDE by a factor − 1

γR
.

Notice that under the probability measure P̃ the BSDE (51) becomes

Yt = Hrep −
∫ T

t
zsdW̃s +

1
2

∫ T

t
[−(z2

s )2 + (θS
s )2] ds. (52)

6.2.1 Existence and uniqueness of solutions

If the market price of financial risk θS is bounded, the preceding BSDE satisfies the conditions of,
e.g., Ankirchner, Imkeller & Dos Reis (2007) and in this case it has a unique solution (Y, Z) and
the processes are Malliavin differentiable.6 In order to do the verification of the sign condition on
the equilibrium volatility we will need to go a step further. We need to show that z2 is of the form
z2
t = v(t, St, Rt) where the dependence on the external risk component is Lipschitz continuous.

The representation of the process z2 in terms of a Lipschitz function of the forward process is
robust with respect to equivalent measure changes, i.e., the function v is deterministic. Hence we
may - and will - work under the measure P̃ defined through (45). More precisely, we are going to
establish the following result:

Theorem 6.8. Under Assumptions 2.1 and 6.2 the following holds:

(i) There exists a unique solution (Y, Z) to the equilibrium BSDE (52) such that the second
component z2 of the integrand Z is bounded in absolute value and Z ∈ L2(dt⊗ P̃).

(ii) There exists a function v̄(t, x1, x2) that is Lipschitz continuous in the second, third variable
such that the process z2 in (i) satisfies

z2
t = v̄(t, ln St, Rt).

It will be more convenient in the sequel to put H̃rep = Hrep +
∫ T
0 (θS

s )2ds and to consider
instead the BSDE

Ỹt = H̃rep −
∫ T

t
Z̃sdW̃s +

1
2

∫ T

t
−(z̃2

s )2 ds. (53)

This BSDE has a solution, due to Briand & Hu (2007) because the payoff functions are
bounded and the market price of financial risk satisfies an exponential integrability condition.

Remark 6.9. The solutions to (52) and (53) are linked by

(Yt, Zt) =
(

Ỹt −
∫ t

0
(θS

s )2ds, Z̃t

)
.

6We recall the notion of Malliavin differentiability in the appendix.
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The following lemma is key to our analysis. It shows that (53) has a solution (Ỹ , Z̃) such
that the Malliavin derivative D̃2

t Ỹt of the process Ỹ with respect to Brownian motion driving the
external risk process exists and that z2

t = D̃2
t Ỹt. Here D̃ is the Malliavin derivative with respect

to the P̃ measure. From this and Assumption 6.2 we deduce that the derivative process D̃2Y

exists as well.

Lemma 6.10. There exists a solution (Ỹ , Z̃) ∈ L2(dt⊗P̃)×L2(dt⊗P̃) to the BSDE (53) such that
the Malliavin derivative D̃2

uỸt exists for any u ∈ [0, T ] and is uniformly bounded. Furthermore,
the process (D̃2

uỸt)u≤t≤T satisfies a linear BSDE.

Proof. The assertion of the lemma would be covered by standard results from the literature
if the terminal value were bounded. To overcome the problem of unbounded terminal values we
proceed in three steps.

(i) Notice first that we may with no loss of generality assume that the terminal condition is
non-negative because Hrep is bounded. Let us now consider a sequence of BSDEs with
non-negative terminal conditions

ξn = Hrep +
∫ T

0
Γ(s,Rs) ds + min

{∫ T

0
ys ds, n

}
.

For any n ∈ N the “truncated BSDE”

Ỹ n
t = ξn −

∫ T

t
Z̃n

s dW̃s +
1
2

∫ T

t
− (

z̃2,n
s

)2
ds

has a unique solution (Ỹ n, Z̃n) in the space H∞ ×H2. We notice that

D̃2
uξn = bH

rep
2 (ST , RT ) +

∫ T

u
bΓx(s,Rs) ds,

with H
rep
2 (x1, x2) = ∂x2H

rep(x1, x2). Boundedness of Γ(t, ·) and the derivatives of Hrep

allows us to argue as in the proof of Theorem 8.4 in Ankirkner, Imkeller & Dos Reis (2007)
in order to show that the processes Ỹ n are Malliavin differentiable with respect to the
Brownian motion W̃R and that for any u ∈ [0, T ] the derivative processes

(
D̃2

uỸ n
t

)
t≥u

satisfy the linear BSDE

D̃2
uỸ n

t = D̃2
uHrep +

∫ T

u
bΓx(s,Rs) ds−

∫ T

t
D̃2

uZ̃n
s dW̃s −

∫ T

t
z̃2,n
s D̃2

uz̃2,nsds. (54)

Using the same arguments as in Section 5 of Horst & Müller (2006), and because D̃2
uHrep

does not depend on n ∈ N we deduce that the quantities D̃2
uỸ n

t are uniformly bounded in
u, t ∈ [0, T ] and n ∈ N. Furthermore

(
D̃2

t Ỹ
n
t

)
is a version of

(
z̃2,n
t

)
and hence the family

(z̃2,n
t )n∈N is uniformly bounded.
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(ii) Our goal is now to prove that the sequence {(Ỹ n, Z̃n)}n∈N converges along some subsequence
in L2(dt⊗ P̃) to a process (Ỹ , Z̃) that satisfies the equilibrium BSDE (53).

To this end, we fix n,m ∈ N. Since the processes z̃2,n are uniformly bounded a standard
comparison result for BSDEs yields a constant C < ∞ such that

Ẽ
[ ∫ T

0
(Ỹ n

s − Ỹ m
s )2ds +

∫ T

0
|Z̃n

s − Z̃m
s |2ds

]
≤ C Ẽ |ξn − ξm|2,

where Ẽ is the expectation operator with respect to P̃. In view of our truncation scheme the
difference ξn− ξm vanishes almost surely as n,m →∞. Furthermore, the family of random
variables {ξn− ξm}n,m is uniformly integrable so we also have convergence in mean square.
As a result, the sequence {(Ỹ n, Z̃n)} is Cauchy in L2(dt⊗ P̃) so it converges to some limit
(Y, Z) in L2.

In particular,

lim
n→∞

∫ T

0
Ẽ

[∫ T

t
(Z̃n

s − Z̃s)dWs

]2

dt = lim
n→∞

∫ T

0
Ẽ

[∫ T

t
(Z̃n

s − Z̃s)2ds

]
dt

≤ lim
n→∞

∫ T

0
Ẽ

[∫ T

0
(Z̃n

s − Z̃s)2ds

]
dt

≤ lim
n→∞T‖Z̃n − Z̃‖L2(dt⊗P̃)

= 0.

Passing, if necessary, to a subsequence we may in fact assume that

Z̃n → Z̃ in L2(dt⊗ P̃) and dt⊗ P̃-almost surely.

Uniform boundedness of the sequence {z̃2,n} implies that z̃2 is bounded so dominated con-
vergence yields

lim
n→∞

∣∣∣∣
∫ T

t
z̃2,n
s ds−

∫ T

t
z̃2
sds

∣∣∣∣ = 0.

This shows that the limit process (Ỹ , Z̃) satisfies the equilibrium BSDE.

(iii) In view of step (ii) it follows from Lemma 1.2.3 in Nualart (1995) that the process (Ỹ , Z̃)
is Malliavin differentiable and that the derivatives of the approximating sequence converge
weakly to (D̃·Ỹ·, D̃·Z̃·).

In order to prove strong convergence of the derivative processes and a BSDE representation
(54) with z̃2,n replaced by the limit z2, we notice that the drivers of (54) converge locally
uniformly to the driver of the limit BSDE. Therefore it follows from Theorem 2.8 of Koby-
lanski (2000) that the sequence {(D̃2

uỸ n· , D̃2
uZ̃n· )}n∈N (u ∈ [0, T ]) converges to the unique

solution of the BSDE

D̃2
uỸt = D̃2

uHrep +
∫ T

u
bΓx(s,Rs) ds−

∫ T

t
D̃2

uZ̃sdW̃s −
∫ T

t
z̃2
sD̃2

uz̃2
sds
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where the integrand converges in L2(dt⊗P̃). Similar arguments as in the preceding step show
that the sequence {D̃2

uỸ n· }n∈N converges in mean square, too. This yields the assertion.

2

We are now ready to prove part (i) of Theorem 6.8

Proof of Theorem 6.8 (i): The proof of the preceding lemma constructs a solution (Y,Z)
of the equilibrium BSDE with the desired properties. In order to see that such a solution is
unique, let us assume to the contrary that two different solutions (Ŷ , Ẑ) and (Ȳ , Z̄) exist. In this
case

Ŷt − Ȳt = −1
2

∫ T

t

[
(ẑ2

s )2 − (z̄2
s )2

]
ds +

∫ T

t

(
Ẑs − Z̄s

)
dW̃s.

There exists a probability measure Q ≈ P̃ and a Q-Brownian motion WQ such that

Ŷt − Ȳt =
∫ T

t

(
Ẑs − Z̄s

)
dWQ

s .

Taking conditional expectation with respect to Q shows that Ŷt ≡ Ȳt Q-a.s. and hence P̃-a.s. Thus,
P̃-a.s.

1
2

∫ T

t

[
(ẑ2

s )2 − (z̄2
s )2

]
ds =

∫ T

t

(
Ẑs − Z̄s

)
dW̃s for all t ∈ [0, T ].

This yields
1
2

∫ t

0

[
(ẑ2

s )2 − (z̄2
s )2

]
ds =

∫ t

0

(
Ẑs − Z̄s

)
dW̃s for all t ∈ [0, T ]

which implies for the respective quadratic variation processes that

0 =
∫ t

0

∣∣∣Ẑs − Z̄s

∣∣∣
2
ds for all t ∈ [0, T ].

This proves the assertion. 2

In order to finish the proof of Theorem 6.8 it remains to show that the second part of the
integrand process can be represented in terms a sufficiently regular function of the forward process.
Here, our arguments are based on a decomposition of the process z2.
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6.2.2 A decomposition of the equilibrium process

It follows from the proof of the preceding result that the process (z2
t ) satisfies the following

multiplicative decomposition:

D2
0Ỹt = EP̂T

[
b H

rep
2 (ST , RT ) +

∫ T

t
b Γx(s,Rs) ds

∣∣∣∣Ft

]
+

∫ t

0
b Γx(s,Rs) ds

= D2
t Ỹt +

∫ t

0
b Γx(s,Rs) ds

= z2
t +

∫ t

0
b Γx(s,Rs) ds

where the probability measure P̂T is defined by

dP̂s

dP̃
:= E

(
−

∫ s

0

(
0
z2
u

)
dW̃u

)
,

and H
rep
2 denotes the derivative with the second component of Hrep. This decomposition along

with the backward equation (54) and the fact that

D̃2
0H

rep
T = bH

rep
2 (ST , RT )

shows that the processes D̃2
0Ỹt , M̃t and D̃2

0Z̃t = Nt , (N1
t , N2

t ) satisfy the BSDE

dM̃t =
[(

M̃t −
∫ t

0
bΓx(s,Rs) ds

)
N2

t

]
dt + NtdW̃t (55)

with terminal condition

M̃T = bH
rep
2 (ST , RT ) +

∫ T

0
bΓx(s,Rs) ds.

From this and our additive decomposition we see that the process (z2
t , Nt) solves the BSDE

dMt = [MtN
2
t − bΓx(t, Rt)]dt + NtdW̃t (56)

with terminal condition
MT = bH

rep
2 (ST , RT ).

For reasons that will become obvious later on, it will be convenient to denote the forward
process from now on by

Xt = (X1
t , X2

t ) = (lnSt, Rt).
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6.2.3 Lipschitz continuity of the equilibrium market price of risk

Using the link between backward stochastic and partial differential equations we can now prove
that the candidate for the equilibrium market price of external risk can be represented in terms
of a Lipschitz continuous function of the forward process. To this end we first observe that after
introducing the forward process Xt = (X1

t , X2
t ) = (lnSt, Rt), the hypothesis (H4) and (H5)

of Kobylanski (2000) are satisfied for the BSDE (56) because H̃
rep
2 is bounded. Thus, by her

Theorem 3.8 the process (D2
0Ỹ

n
t ) can be represented as a continuous function v̄ of the forward

process X. Specifically, v̄ is a viscosity solution of the PDE

−v̄t + Lv̄ − F (t, x, v̄, σ(t, x) · ∇xv̄) = 0

with boundary condition
v̄(T, x) = bH

rep
2 (x).

Here the operator L is defined by

Lv̄ =
1
2
v̄11 +

b2

2
v̄22 + atv̄2,

and
F (t, x, y, z) = −yz2 + Γx(t, x2)b.

Lemma 6.11. The function x 7→ v̄(t, x) is Lipschitz continuous uniformly on compact time
intervals.

Proof. Our proof is based on Theorem 3.3 (b) of Jakobsen & Karlsen (2002). In their
notation we have that

−tr[Aθ(t, x, Dv̄)D2v̄] =
1
2
v̄11 +

b2

2
v̄22

and

fθ(t, x, r, p, X) = rp2 + atp2 − Γx(t, x2)b.

Hence conditions (C1), (C2), (C3), (C6) and (C8) of Jakobsen & Karlsen (2002) (page 505) are
satisfied. For condition (C2) notice now that

fθ(t, x, r, p, X)− fθ(t, x, s, p, X) ≥ γ̄R(r − s),

where
γ̄R , p21{p2≤0}.

Conditions (C3) and (C8) are obviously satisfied and (C6) follows from at being bounded, and
from Γx(t, x2) being Lipschitz. Thus, our assertion follows from their result since the terminal
function is Lipschitz continuous. 2

30



We are now ready to prove the second part of Theorem 6.8.

Proof of Theorem 6.8 (ii): By the preceding lemma we know that

z2
t = v̄(t,X1

t , X2
t ) (57)

where v̄(t, ·) is a Lipschitz continuous uniformly on compact time intervals. 2

Remark 6.12. We establish the existence of a Lipschitz continuous uniformly on compact time
intervals function v̄(t, ·, ·) such that (57) holds. This result was proved by working under the P̃
probability measure but it holds for every probability measure equivalent to P̃, in particular the
equilibrium pricing measure Pθ∗ .

6.3 A representation of the equilibrium bond price volatility

As a final step toward our equilibrium analysis we are going to verify our Assumption 3.1.

Lemma 6.13. The volatility process {κR
t }t∈[0,T ] is P-a.s. strictly positive.

Proof. We will use the Clark-Haussmann formula for diffusion forward processes. The
forward process is Xt , (X1

t , X2
t ). According to Remark 6.12, under Pθ∗ the forward process

satisfies
dXt = f(t,Xt)dt + g(t,Xt)dW θ∗

t ,

where with x = (x1, x2) we have put

f(t, x) =

(
−1

2 t

at − v̄(t, x)

)
and g(t, x) =

(
1 0
0 b

)
.

As Bahlali, Mezerdi & Ouknine (2002) have shown, Lipschitz continuity of f and g are enough
for the Clark-Haussmann formula to hold for diffusion processes. The payoff HI was assumed
Frechét differentiable with derivative ∂HI . According to Riesz theorem, there exists a right
continuous function ν(·, x) = (ν1(·, x), ν2(·, x)) of bounded variation, with the second component
increasing (because the bond payoff is increasing in the external risk component) such that

∂HI(x)y =
∫ T

0
ν(dt, x)y(t).

Let us now denote by Φ(s, t) the solution of the following first variation equation associated
with Xt:

dΦ(t, s) =
[
∂f

∂x
(t,X(t))Φ(t, s)

]
dt +

[
∂g

∂x
(t,X(t))Φ(t, s)

]
dW θ∗

t (t > s), Φ(t, t) = I2,
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where ∂f
∂x and ∂g

∂x are the generalized derivatives. Thus

dΦ22(t, s) = [−Φ22(t, s)v̄2(t,Xt)]dt, Φ22(s, s) = 1,

so Φ22(s, t) is positive. According to Clark-Haussmann formula we now have that

κR
t = bEθ∗ [λt|Ft],

where

λt =
∫ T

t
ν2(ds,X)Φ22(s, t).

Hence κR
t is positive. 2

The boundedness of the process θ∗R = z2 together with (44) make (43) hold true. The
following theorem summarizes our main result.

Theorem 6.14. Let the agents have entropic utilities with drivers of the form (23). If Assump-
tions 2.1, 6.1 and 6.2 are satisfied then the following holds:

(i) There exists a unique solution (Y, Z), Z = (z1, z2), of the BSDE (51) with bounded z2.

(ii) The process z2 is an equilibrium market price of external risk.

7 A Numerical Example

The BSDE characterization of equilibrium market prices of risk makes our analysis amenable
to an efficient numerical analysis. In this section we report some simulations for a benchmark
model with two agents. We assume that (Rt) describes the dynamics of a temperature process in
California and (St) is the price of a share of an energy provider equity.

7.1 Forward dynamics and payoffs

We work in the time interval [0, T ] = [0, 1.5], where each 0.5 time unit represents a month
according to the following setting and assume that

dRt = atdt + 2.0 dWR
t , R0 = r0

describes a temperature process where the deterministic function a(t) = 4t captures seasonal
variations in average daytime temperatures for the months of May, June and July7. The model
is a simple linear approximation of the data presented in the link, centered around 18 degrees
Celsius. In our analysis we shall give special attention to r0 ∈ [−4, 7] corresponding to a variation
of 14 to 25 degrees Celsius.

7see http://www.wrcc.dri.edu/cgi-bin/cliMONtavt.pl?casjos
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7.1.1 Stock price dynamics

Following Example 6.5 and consider a financial market model with unbounded market price of
risk on the time interval [0, 1.5]:

dSt

St
= µSdt +

1√
yt + Γ(t, Rt)

dWS
t , S0 = s0

dyt =
[
k(ζ − yt) + µSσ

√
yt

√
yt + Γ(t, Rt)

]
dt + σ

√
ytdWS

t , y0 = 1.5.

The parameters µS , σ, k and ζ are constants satisfying condition (46). We choose:

µS k ζ σ 2kζ − σ2 k
σµS

0.08 0.33 24.7718 0.65 15.93 6.35 > 2
√

6 = 4.9 > 2
√

3

The energy provider sells more energy in the summer if temperatures are high as there is
more demand for electricity due to a higher use of air-conditioning. Its revenues become the more
uncertain - and hence the stock the more volatile - the lower the daytime temperature. The Γ
function in the model relates to the impact the temperature has on the value of the stock. An
increase of the temperature reflects on the stocks volatility but only so much. This means the
variation of Γ when the temperature is above some threshold should be small (and the same when
the temperature is too low). In this spirit we model in the following way8:

Γ(t, Rt) = arctan(−K ∨ (−Rt) ∧K) + 1.6, K ∈ R+.

7.1.2 Payoffs

An institutional investor holding the stock may chose to hedge its financial risk as measured by
the stock volatility by issuing a structured derivative that pays yield

ϕI(t, St, Rt) = exp

{
−M ∗

(∫ t

0
asds−Rt

)+
}

, (M > 0) (58)

where we interpret
∫ t
0 asds as the long run average temperature. Along with the institutional

investor, two more agents are acting in the market: an orange farmer (“agent a”) and a golf resort
owner (“agent b”). For the golf resort owner cool season turf grass optimal growth temperature
belongs to the interval9 [15.6 ◦C, 23.9 ◦C], for illustration purposes we take 17 ◦C (i.e. Rb = −1)
as the golf resort owner’s reference temperature. For the orange farmer, low temperatures cause
problems in their season yield so his optimal temperature is roughly 22 ◦C i.e. Ra = +4. Finally
we assume that the agents’ risk preferences are described by entropic utilities with risk tolerance

8The truncation of x by K ensures Γ satisfies the conditions of bounded first and second derivatives. In truth,

if chosen big enough K will not be really relevant for our simulations.
9http://www.nmmastergardeners.org/Manual%20etc/other%20references/turfgrasses.htm
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coefficients γa = 1.0 and γb = 2.0 Assuming that both agents also have a position in the stock as
their endowment we model their incomes by

Ha = caST +
∫ T

0
exp{−Ma ∗ (Rt −Ra)2}dt, Hb = cbST +

∫ T

0
exp{−M b ∗ (Rt −Rb)2}dt

for some benchmark temperatures Ra > Rb and positive constants Ma,M b ∈ R+. The constants
of our model are chosen as:

γa γb γR M Ma M b ca cb Ra Rb

1.0 2.0 3.0 2.0 0.5 0.5 0.5 0.5 4.0 −1.0
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Figure 1: Typical trajectories of the forward processes in the time interval [0, 1.5].

7.2 Solver methodology

In order to simulate our models we first choose the agents’ degree of risk tolerance and starting
points s0 and r0 for the stock and temperature process respectively. After simulating enough
trajectories of the forward process (S, R) using the Euler method, we simulate the equilibrium
market price of external risk using the representative agent BSDE. In a subsequent step we use
the trajectories of θ∗R to solve the BSDEs for the bond price processes and agents’ residual risk.

The numerical method is a modification of an algorithm by Bender & Denk (2007). It takes
advantage of the fact that the driver does not depend on the process Y. For a given partition
π = {0 = t0, t1, . . . , tM = T} of the time interval [0, T ], the corresponding discretization Xπ and
Hπ of the forward process and payoff functions, respectively, we put (Y (0,π), Z(0,π)) = 0 and define
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Figure 2: Initial bond prices as a function of the starting point of the forward process.

the processes Y (n,π) and Z(n,π) recursively by

Y
(n,π)
ti

= E
[
Hπ − h

M−1∑

j=i

f(ti, Xπ
tj , Z

(n−1,π)
tj

)
∣∣∣Fti

]
, (59)

Z
(n,π)
ti

= E
[∆Wti

h

(
Hπ − h

M−1∑

j=i+1

f(ti, Xπ
tj , Z

(n−1,π)
tj

)
)∣∣∣Fti

]
. (60)

Here h = ti+1 − ti and ∆Wi = Wti+1 − Wti denotes a Brownian increment. Since only Y0 is
needed we can ignore (59) until the last iteration. The scheme is explicit and converges in n = M

iterations.

7.3 Results

In the sequel we display some results. In Figure 2 we display the equilibrium bond price at time
t = 0 as a function of the starting point of the forward process. The bond price is increasing in the
temperature which reflects the fact that the yield curve increases in the external risk component.
Figure 3 shows surface plots for the orange farmer’s residual risk for the case of risk transfer and
risk sharing, respectively. The graphs show that, although the surfaces are qualitatively similar,
the case of risk transfer yields a lower risk, i.e., higher utility. A similar result holds for the golf
resort owner whose risk exposures for the sharing and transfer case are displayed in Figure 3.

Remark 7.1. Our simulations suggest that within the framework of our model it is beneficial for
both agents to exchange risk exposures through decentralized markets. At first sight this result is
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Figure 3: Residual Risk Surfaces for risk sharing (light color) and transfer (dark color): orange
farmer (left) and golf resort owner (right)

surprising because in the risk sharing case there is no aggregate cost of hedging whereas in the risk
transfer case the agents need to pay for their hedge, i.e, there is an initial outflow of capital. On
the other hand, of course, the bond pays dividends whereas the risk sharing case only considers
non-dividend paying assets. In our model future dividend payments outweighs the impact of the
initial outflow of capital. Notice also that the bond prices depend significantly on both stock price
and temperature.
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Figure 4: Residual Risk Surface Plot for risk sharing (light color) and transfer (dark color): the
represenattive agent

Figure 5 shows the price of one share (unit) of a bond as a function of the number of shares

issued and the corresponding revenues. The left plot shows the quantities B
(N)
0
N where B

(N)
0

denotes the equilibrium bond price for the yield curve N · ϕI . The unit price if decreasing in N ,
i.e., the price of one share decreases with the number of shares issued. The associated revenues are
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Figure 5: Share prices and revenues as a function of the number of bonds in the market.

displayed in the right plot. We see that for our choice of payoff profiles the revenues are maximal
if the issuer sells about 5 units of the bond. A theoretical analysis of the issuer’s optimal policy
is beyond the scope of this paper and left for future research.

7.4 Some modifications

We close this section with two variations of the previous example. In the first we chose

ϕ̄I(t, St, Rt) = ϕI(t, St, Rt) + (St − S0)+(−Rt)+ ∧K1 + (St − S0)+(Rt − 4)+ ∧K2,

with big enough constants K1 and K2. Of the result we obtained we present only the residual
risk plots since all others displayed the same behavior as the ones we presented so far. In Figure
6 we find the residual risk surfaces for both the orange farmer and golf resort owner but now,
compared to Figure 3, we see that with this new type of bond the agent’s risk is lower. In Figure
7 we present comparatively the risk transfer surfaces for the original example and this variation.

In the second variation we replaced the bond’s payoff by

ĤI =
( 2
π

arctan(RT ) + 1
)
(ST − S0)+ +

∫ T

0
ϕI(t, St, Rt)dt.

In Figure 8 we find the residual risk for the markets agents. The representative agent’s residual
risk surface plot for this case coincided with the surface presented in Figure 4 which suggests that
adding such a derivative into the market as a whole plays no impact, although the golf resort
owner seems to be much happier.

8 Conclusion

In this paper we provided a general framework within which to price financial securities written
on non-tradable risk factors. We assumed that the agents’ risk preferences can be described by a
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Figure 6: Case ϕ̄I(t, St, Rt): Residual Risk Surfaces for risk sharing (light color) and transfer
(dark color): orange producer (left) and golf resort owner (right).
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Figure 7: Case ϕ̄I(t, St, Rt): Residual Risk Surface Plot for the represenative agent. From top to
bottom: risk sharing case, risk transfer example and risk transfer first variant.

dynamic convex risk measure generated by a backward stochastic differential equation. We solved
the individual and representative agents’ optimization problems and characterized a certain class
of equilibrium markets of risk in terms of a solution to a BSDE. For the specific case of exponential
utilities we solve the optimization in closed form. Under the additional assumption that the
external risk process follows an Ornstein-Uhlenbeck process and that the market price of financial
risk satisfies a modification of the Novikov condition we proved a uniqueness of equilibrium result.
The key was a differentiability theorem for quadratic BSDEs with unbounded terminal condition.

Our main goal was to extend the standard representative approach of general equilibrium
theory to monetary utility functions and to allow for certain classes of unbounded market prices
of financial risk. Many avenues are still open for future research. From personal communication
with Freddy Delbaen we believe that any time consistent convex dynamic risk measures can be
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Figure 8: Case ĤI : Residual Risk Surfaces for risk sharing (light color) and transfer (dark color):
orange farmer (left) and golf resort owner (right)

represented by a BSDE. The applicability of our results in general and the characterization of
equilibrium results in particular are thus limited “only” by the lack of existence, uniqueness and
differentiability results for solution of BSDEs beyond the quadratic case. This is a field of active
research; a major contribution to this theory was well beyond the scope of this paper. It would also
be interesting to consider the problem of optimal derivative design. The simulations of Section 7
can be viewed as a first quantitative step in that direction. Our Figure 5 suggests that for a given
payoff profile there exists a revenue maximizing number of shares. Finally, we did not consider
models where the assumption of market completion is violated so our method does not cover the
incomplete markets.

A Malliavin derivatives

For completeness we review in this appendix the notion of Malliavin derivatives; for details we
refer to the textbook of Nualart (1995). We denote by W be an d-dimensional Brownian motion
and introduce the space of random variables

S =
{

ξ : ξ = F

(∫ T

0
h1

ddWt, . . . ,

∫ T

0
hd

ddWt

)}

where F : Rn → Rd is has bounded partial derivatives of all orders and hi ∈ L2([0, T ];Rd). For
any such random variable the d-dimensional operator D : S → L2(Ω× [0, T ])d is defined by

Di
θξ =

d∑

j=1

∂F

∂xi,j

(∫ T

0
h1

ddWt, . . . ,

∫ T

0
hd

ddWt

)
hi,j

θ
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and for p > 1 the norm ‖ξ‖1,p is defined by

‖ξ‖1,p =

(
E

[
|ξ|p +

(∫ T

0
|Dθξ|2

)p/2
])1/p

.

The operator D has a closed extension to the space D1,p, the closure of S with respect to ‖ · ‖1,p.

Lemma A.1. Let {Fn} be a sequence of random variables in D1,2 that converges to F in L2 and
assume that

sup
n
E [‖DFn‖L2 ] < ∞.

Then F ∈ D1,2 and the derivatives {DFn} converge to DF in the weak topology of L2(Ω× [0, T ]).

Let us now consider the diffusion process (Mt) defined by the SDE

dMt = b(t,Mt)dt + σ(t,Mt)dWt (61)

where b(t, ·) ∈ Rd and σ(t, ·) = diag(σ1(t, ·), . . . , σd(t, ·)) is a diagonal matrix. We assume that
the diffusion coefficients are differentiable in x with bounded derivatives and fix a differentiable
function g : Rd → R. With

∆i,t := exp
(∫ t

0
σi

x(s,M i
s)dW i

s +
∫ t

0

{
bi
x(s,M i

s)−
1
2
(σi

x)2(s, M i
s)

}
ds

)
(62)

the Malliavin derivative Di
ug(Mt) of g(Mt) at time u with respect to the i-th Wiener process is

given by
Di

ug(Mt) = 1{t≥u}gi
x(Mt)σ(u,Mu)∆i,t∆−1

i,u .

For our external risk process R of Section 6 this means that

D2
uRt = 1{t≥u} exp

(∫ t

u
µx(s,Rs)ds

)
.
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