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1 Introduction

In assessing the accuracy of an extremum estimator or making a statistical inference on unknown parameter

values based on an extremum estimator using time series data, it is often necessary to estimate a long-run

covariance matrix. The long-run covariance matrix is typically estimated by a kernel estimator that is the

weighted average of estimated autocovariance matrices with weights determined by a kernel function and

the bandwidth for it.

When a series is known to have an autocovariance function truncated at or before lag m, one can simply

estimate each of the autocovariances of the series up to lag m and take a suitable linear combination of

the estimated autocovariances to consistently estimate the long-run covariance matrix. This approach is

proposed by Hansen (1982). For the case in which the autocovariance function is not truncated, White and

Domowitz (1984) show that the above-mentioned method, letting the truncation point m gradually grow to

infinity as the sample size approaches infinity, consistently estimates the long-run covariance matrix. Such

estimator is a kernel estimator that employs the truncated flat (TF) kernel. We call it the TF estimator in

this paper.

A drawback of the TF method is that it sometimes delivers a non-positive semidefinite estimate. A

way to avoid non-positive semidefinite estimates is to suitably weight the estimated autocovariances, as the

commonly used estimators such as Newey and West’s (1987) Bartlett (BT) kernel estimator and Andrews’s

(1991) Quadratic Spectral (QS) kernel estimator do. As demonstrated in Gallant and White (1988), there are

many kernels that generate consistent estimators of long-run covariance matrices. Hansen (1992), de Jong

and Davidson (2000), and Jansson (2003) show general conditions sufficient for the kernel estimators to be

consistent.

An interesting fact pointed out in the literature on spectral density estimation (e.g., Priestley (1981)

and Hannan (1970)) is that the tradeoff between the asymptotic bias and asymptotic variance in choice

of the bandwidth sequence does not hold for the TF estimator in the usual way. The asymptotic bias is

negligible relative to the asymptotic variance unless the growth rate of the bandwidth becomes very low.

This means that use of a slowly growing bandwidth can make the variance of the TF estimator converge fast,

still keeping the bias negligible. On the other hand, the other familiar kernel estimators including the BT

and QS estimators have upper bounds for the convergence rate of the MSE determined through the tradeoff
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between the asymptotic bias and asymptotic variance. It follows that the TF estimator is asymptotically

efficient relative to the other familiar kernel estimators in typical scenarios.

Nevertheless, the small-sample behavior of the TF estimator is not necessarily consistent with the large-

sample theory. Andrews (1991) conducts Monte Carlo simulations to assess the performances of the TF,

QS, BT, and a few other kernel estimators and finds that the TF estimator performs substantially better or

worse than the other estimators, depending on the experiment setup.

In this paper, we consider minor modifications to the TF estimator to always deliver a positive semidefinite

(p.s.d.) estimate and resolve the puzzling discrepancy between the large sample efficiency and small sample

behavior of the TF estimator. The first contribution of the paper is to propose a simple way to modify the

TF estimator to enforce the positive semidefiniteness of the estimate, without sacrificing the large sample

efficiency of the estimator. Our method pushes the non-p.s.d. TF estimate back to the space of symmetric

p.s.d. matrices in a particular way. The resulting estimator, the adjusted TF (ATF) estimator, is guaranteed

to have a smaller mean square error (MSE) than the TF estimator. The ATF estimator enjoys the same large

sample efficiency in typical scenarios as the TF estimator does, because the probability of the adjustment

converges to zero.

The second contribution of the paper is concerned with the puzzling small sample behavior of the TF

estimator mentioned above. In the TF (and ATF) estimation, a change in the bandwidth affects the estimate

only when crossing an integer value. Compared with the other familiar estimators that are continuously

related to their bandwidths, this feature of the TF estimator severely limits the opportunity to balance

the bias and variance of the estimator to attain a smaller MSE. To eliminate this limitation, we propose

allowing the TF estimator to include the estimated autocovariance matrix at the last lag with a fractional

weight. Because the resulting estimator, which we call the TFF estimator, has the same problem of possible

non-positive semidefiniteness as the TF estimator does, we further propose its adjusted version, the ATFF

estimator. The TFF and ATFF estimators again enjoy the same large sample efficiency as the TF estimator.

Our Monte Carlo simulations verify that the MSE of ATF estimator is only slightly smaller than the

TF estimator in most cases, though the difference of the two estimators is more pronounced when the TF

estimator is non-p.s.d. with a high probability. The simulations also demonstrate that the relationship

between the ATFF and QS estimators in small samples is in line with the large sample theory, unlike that

between the TF and QS estimators. The MSE of the ATFF estimator, being often substantially smaller
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than that of the ATF estimator, is smaller than or comparable to that of the QS estimator in all of our

experiments.

While this paper focuses on consistent estimation of long-run covariance matrices using the kernel method,

some other ways to estimate long-run covariance matrices have been considered in the literature. A possible

approach is a series approximation approach that fits a vector autoregression (VAR) model to the series and

computes the long-run autocovariance matrix implied by the fitted VAR model, described by den Haan and

Levin (1997). This method consistently estimates long-run covariance matrices if the lag order of the VAR

model gradually grows to infinity when the sample size approaches infinity. It is also possible to combine the

series approximation approach and the kernel approach. Fitting a VAR model to the series is “expected” to

yield a less persistent residual series. Hence, applying the kernel method after this “prewhitening” may enjoy

the advantage of both approaches. Andrews and Monahan (1992) demonstrate that this hybrid approach

is highly effective. den Haan and Levin (2000), however, raise some concerns about the performance of the

hybrid approach.

Unlike the approaches described above, Kiefer and Vogelsang (2000) and Bunzel, Kiefer, and Vogelsang

(2001) consider a way to obtain an asymptotically pivotal test statistic without consistently estimating the

asymptotic covariance matrix of the estimator. Further, Kiefer and Vogelsang (2002) show that the approach

taken in Kiefer and Vogelsang (2000) and Bunzel, Kiefer, and Vogelsang (2001) is equivalent to use of the BT

estimator with the bandwidth set equal to the sample size. While these works are very important, they are

beyond the scope of this paper, because they do not pursue consistent estimation of long-run autocovariance

matrices.

The rest of the paper is organized as follows. We first propose a way to adjust a long-run covariance

matrix estimator for positive semidefiniteness and discuss the basic properties of the proposed adjustment

(Section 2). We then describe a method to compute the adjusted estimator (Section 3). Next, we apply

the proposed adjustment to the TF estimator to yield a p.s.d. estimator that has a smaller MSE than the

TF estimator and shares the same asymptotic MSE (AMSE) as the TF estimator (Section 4). We further

propose the TFF estimator that incorporates the autocovariance matrix at the last lag with a fractional

weight and adjust it for positive semidefiniteness to obtain the ATFF estimator (Section 5). To assess the

performances of the proposed estimators relative to those of the QS and BT estimators in small samples,

we conduct Monte Carlo simulations (Sections 6). We finally discuss the behavior of the TF, ATF, TFF,
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and ATFF estimators with data-based bandwidths (Section 7) and examine the finite sample behavior of

the ATF and ATFF estimators with data-based bandwidths by Monte Carlo simulations (Section 8). We

collect the mathematical proofs of all theorems, propositions, and lemmas in the Appendix.

Throughout this paper, limits are taken along the sequence of sample sizes (denoted T ) growing to infinity,

unless otherwise indicated. If sequences of real numbers {aT }T∈N and {bT }T∈N satisfy that aT = O(bT ) and

bT = O(aT ), then we write aT ∼ bT . For each topological space A, B(A) denotes the Borel σ-field on A.

For the Euclidean spaces, write Bp ≡ B(Rp) for simplicity.

2 Estimators Adjusted for Positive Semidefiniteness

We consider the situation described by the next assumption.

Assumption 1: (Ω,F , P ) is a probability space, and Θ a nonempty subset of Rp (p ∈ N). The sequence

{Zt}t∈N consists of measurable functions from (Ω × Θ, F ⊗B(Θ)) to (Rv, Bv) (v ∈ N) such that for each

θ ∈ Θ and each t ∈ N, E[Zt(·, θ)′Zt(·, θ)] < ∞. Also, {θ̂T : Ω → Θ}T∈N is a sequence of p × 1 random

vectors, and {Z∗t ≡ Zt(·, θ∗)}t∈N is a zero-mean covariance stationary process.

Our goal is to accurately estimate

ST ≡ var
[
T−1/2

T∑
t=1

Z∗t

]
= ΓT (0) +

T−1∑
τ=1

(ΓT (τ) + Γ′T (τ)),

where T ∈ N is the sample size, and each τ ∈ {1, 2, . . . , T − 1}

ΓT (τ) ≡ T − τ

T
cov[Z∗τ+1, Z

∗
1 ].

Table 1 around here

Let k be an even function from R to R that is continuous at the origin and discontinuous at most at

a finite number of points. Table 1 lists a few such kernels often used in the literature. Suppose that θ∗ is

known. Then a kernel estimator of ST using the kernel k and a bandwidth mT ∈ (0,∞) is

S̃k
T ≡ k(0)Γ̃T (0) +

T−1∑
τ=1

k
( τ

mT

)(
Γ̃T (τ) + Γ̃′T (τ)

)
, T ∈ N,

where

Γ̃T (τ) ≡ 1
T

T∑
t=τ+1

Z∗t Z∗′t−τ , τ ∈ {1, 2, . . . , T − 1}, T ∈ N. (1)
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When θ∗ is unknown, as is the case in typical applications, we would replace the unknown θ∗ with its

estimator θ̂T to obtain a feasible estimator of ST :

Ŝk
T ≡ k(0)Γ̂T (0) +

T−1∑
τ=1

k
( τ

mT

)(
Γ̂T (τ) + Γ̂′T (τ)

)
, T ∈ N,

where

Γ̂T (τ) ≡ 1
T

T∑
t=τ+1

ẐT,tẐ
′
T,t−τ , τ ∈ {1, 2, . . . , T − 1}, T ∈ N, (2)

and

ẐT,t(ω) ≡ Zt(ω, θ̂T (ω)), ω ∈ Ω, t ∈ {1, 2, . . . , T}, T ∈ N.

Because ST is a covariance matrix, it is p.s.d. A kernel estimator, on the other hand, may deliver a

non-p.s.d. estimate in general. This means that the estimate may lead to a negative estimate of the variance

of a statistic. This problem can be avoided by choosing certain kernels such as the BT and QS kernels. The

QS kernel yields the efficient estimator among those using such kernels.

We here consider a different way to ensure the positive semidefiniteness of the estimate. Instead of

limiting our choice of kernels, our approach pushes an estimate back to the space of symmetric p.s.d. matrices,

whenever it is not p.s.d. On Ra1×a2 , where (a1, a2) ∈ N2, define a real valued function ‖ · ‖W : Ra1×a2 → R

by

‖A‖W ≡ (vec(A)′W vec(A))1/2, A ∈ Ra1×a2 ,

where W is a (a1a2) × (a1a2) symmetric p.s.d. matrix, and vec(A) is the column vector made by stacking

the columns of A vertically from the first column to the last. If W is the identity matrix, ‖ · ‖W becomes

the Frobenius norm, which will be denoted ‖ · ‖ for simplicity.

Definition 1: Suppose that Assumption 1 holds. Let Pv be the set of all v × v, symmetric p.s.d.

matrices. Given an estimator {ŜT : Ω → Rv×v}T∈N (of {ST }T∈N) and a sequence of v2×v2 symmetric p.s.d.

random matrices {WT : Ω → Rv2×v2}t∈N, the sequence of v × v random matrices {ŜA
T : Ω → Rv×v}T∈N

satisfying that for each T ∈ N,

‖ŜT − ŜA
T ‖WT = inf

s∈Pv

‖ŜT − s‖WT , (3)

provided that it exists, is called the estimator that adjusts {ŜT }T∈N for positive semidefiniteness or simply

the adjusted estimator (with weighting matrix {WT }).
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The existence of the adjusted estimators can be established by using Brown and Purves (1973, Corollary 1,

pp. 904–905).

Theorem 2.1: Suppose that Assumption 1 holds. Then for each estimator {ŜT : Ω → Rv×v}T∈N and

each sequence of symmetric p.s.d. random matrices {WT : Ω → Rv2×v2}T∈N, the estimator that adjusts {ŜT }
for positive semidefiniteness with the weighting matrix {WT } exists.

Whenever ŜT ∈ Pv, it apparently holds that ‖ŜA
T − ŜT ‖WT

= 0. Moreover:

Theorem 2.2: Suppose that Assumption 1 holds. Let {ŜT : Ω → Rv×v}T∈N be an estimator and {WT :

Ω → Rv2×v2}T∈N a sequence of symmetric p.s.d. random matrices. Then the adjusted estimator {ŜA
T : Ω →

Rv×v}T∈N with the weighting matrix {WT } satisfies:

(a) ‖ŜA
T − ST ‖ = ‖ŜT − ST ‖WT

, whenever ‖ŜA
T − ŜT ‖WT

= 0, T ∈ N.

(b) ‖ŜA
T − ST ‖WT ≤ ‖ŜT − ST ‖WT , T ∈ N.

Because Theorem 2.2(b) means that the adjustment moves the estimator towards ST in terms of the

norm ‖ · ‖WT
, the performance of the adjusted estimator cannot be worse than the original estimator. Here

are a few implications of this fact.

Corollary 2.3: Suppose that Assumption 1 holds. Let {ŜT : Ω → Rv×v}T∈N be an estimator and

{WT : Ω → Rv2×v2}T∈N a sequence of v2 × v2 symmetric p.s.d. random matrices. Then:

(a) For each T ∈ N,

E
[‖ŜA

T − ST ‖2WT

] ≤ E
[‖ŜT − ST ‖2WT

]
.

(b) If {ŜT } is consistent for {ST } (i.e., {‖ŜT − ST ‖}T∈N converges in probability-P to zero), and WT =

OP (1), then ‖ŜA
T − ST ‖WT converges in probability-P to zero. If in addition {WT } converges in

probability-P to a nonsingular matrix W , then {ŜA
T } is consistent for {ST }.

(c) If {ŜT } is consistent for {ST }, and {ST } is asymptotically uniformly positive definite (p.d.), then

‖ŜA
T − ŜT ‖WT

= oP (bT ) for each sequence of positive real numbers {bT }T∈N. If in addition {WT }
converges in probability-P to a nonsingular matrix W , then ŜA

T − ŜT = oP (bT ) for each sequence of

positive real numbers {bT }.
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Given Corollary 2.3(c), it is natural to expect that the advantage of the adjusted estimator over the

original estimator described in Corollary 2.3(a) becomes negligible in large samples, if the original estimator

is a consistent estimator. To make a meaningful statement on this point, we need to suitably magnify the

MSE of each of the estimators, because otherwise, the MSEs would converge to zero as T →∞ in a typical

setup. Given an estimator ŜT of ST , a v2 × v2 symmetric p.s.d. random matrices WT , and a positive real

constant aT (magnification factor), write

MSE(aT , ŜT , WT ) ≡ aT E
[‖ŜT − ST ‖2WT

]
. (4)

Using this scaled MSE, we now state the asymptotic equivalence of the adjusted and original estimators in

terms of the MSE.

Theorem 2.4: Suppose that Assumption 1 holds. Let {ŜT : Ω → Rv×v}T∈N be an estimator consistent

for {ST ∈ Rv×v}T∈N that is a sequence of symmetric matrices that are asymptotically uniformly p.d. Also,

let {WT : Ω → Rv2×v2}T∈N be a sequence of v2 × v2 symmetric p.s.d. random matrices. Suppose that for

some sequence of positive real numbers {aT }T∈N, {aT ‖ŜT − ST ‖2WT
}T∈N is uniformly integrable. Then

MSE(aT , ŜT , WT )−MSE(aT , ŜA
T , WT ) → 0.

Remark. The uniform integrability of {aT ‖ŜT − ST ‖2WT
}T∈N implies the uniform integrability of

{aT ‖ŜA
T − ST ‖2WT

}T∈N. It follows that both MSE(aT , ŜT , WT ) and MSE(aT , ŜA
T , WT ) are finite under

the conditions imposed in Theorem 2.4.

When the parameter θ∗ is unknown, the effect of the parameter estimation must be taken into account

in studying the behavior of a kernel estimator. Because the moments of the parameter estimator sometimes

do not exist, the MSE may not be adequate for measuring the performance of the kernel estimators with

parameter estimation. Following Andrews (1991), we bypass this potential problem by using the truncated

MSE instead. The truncated MSE of an estimator ŜT of ST scaled by aT and truncated at h ∈ (0,∞) is

defined by

MSEh(aT , ŜT ,WT ) ≡ E
[
min

{
aT ‖ŜT − ST ‖2WT

, h
}]

.

Because for each h ∈ (0,∞), the function x 7→ min{x, h} : [0,∞) → R is a nondecreasing function, the

relationship between the adjusted and original estimators stated in Corollary 2.3(a) carries over even if we
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replace the MSEs with the truncated MSEs.

Theorem 2.5: Suppose that Assumption 1 holds. Let {ŜT : Ω → Rv×v}T∈N be an estimator, {aT }T∈N

a sequence of positive real numbers, and {WT : Ω → Rv2×v2}T∈N a sequence of v2 × v2 symmetric p.s.d.

random matrices. Then for each T , each aT ∈ (0,∞), and each h ∈ (0,∞),

MSEh(aT , ŜA
T , WT ) ≤ MSEh(aT , ŜT ,WT ).

When the difference between two estimators converges in probability to zero fast enough, the two esti-

mators share the same asymptotic truncated MSE.

Lemma 2.6: Suppose that Assumption 1 holds. Let {Ŝ1,T : Ω → Rv×v}T∈N and {Ŝ2,T : Ω → Rv×v}T∈N

be estimators, {WT : Ω → Rv2×v2}T∈N a sequence of v2×v2 symmetric p.s.d. random matrices, and {aT }T∈N

a sequence of positive real numbers. If a
1/2
T (Ŝ1,T −ST ) = OP (1), and a

1/2
T ‖Ŝ1,T −Ŝ2,T ‖WT

→ 0 in probability-

P , then for each h ∈ (0,∞) for which {MSEh(aT , Ŝ1,T ,WT )}T∈N converges to a (finite) real number, it holds

that

lim
T→∞

MSEh(aT , Ŝ2,T ,WT ) = lim
T→∞

MSEh(aT , Ŝ1,T ,WT ).

A consistent estimator and its adjustment are negligibly different, as Corollary 2.3(c) states, if {ST }T∈N

is asymptotically uniformly p.d. It follows that the asymptotic truncated MSEs of the original and adjusted

estimators are the same in such situations.

Theorem 2.7: Suppose that Assumption 1 holds. Let {ŜT : Ω → Rv×v}T∈N be an estimator consistent

for {ST }T∈N, {aT }T∈N a sequence of positive real numbers, and {WT : Ω → Rv2×v2} a sequence of v2 × v2

symmetric p.s.d. random matrices. If a
1/2
T (ŜT − ST ) = OP (1), limh→∞ limT→∞MSEh(aT , ŜT , WT ) exists

and finite, and {ST }T∈N is uniformly p.d., then

lim
h→∞

lim
T→∞

MSEh(aT , ŜA
T , WT ) = lim

h→∞
lim

T→∞
MSEh(aT , ŜT ,WT ).
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3 Computation Algorithm for Adjustment for Positive

Definiteness

The minimization problem (3) does not have a closed-form solution. Because (3) is a convex programming

problem with a smooth convex function, one might think that a gradient search algorithm could be employed

to find the solution of (3). A challenge in such approach is that our choice set is Pv, the set of all symmetric

p.s.d. matrices. Though Pinheiro and Bates (1996) list a few ways to parameterize Pv, the objective function

becomes non-convex in each of the parameterizations. Also, the number of parameters in this approach is

large. In addition, the solution of our problem is always on the boundary of the choice set. These features

of the problem make the gradient search combined with Pinheiro and Bates’s (1996) parameterizations slow

and unreliable.

We here take a different approach. Let vech denote the vectorization-half operator, namely, vech trans-

forms each matrix to the vector made by vertically stacking the portions of its columns below the principal

diagonal from the first column to the last. Then the set of all v × v symmetric matrices and Rv(v+1)/2 are

related to each other in one-to-one manner through vech. It follows that the minimization problem (3) is

equivalent to the minimization of ‖ŜT − vech−1(x)‖WT with respect to x over Rv(v+1)/2 subject to the con-

straint that vech−1(x) is p.s.d. Once the problem is solved, the adjusted estimator is given by transforming

the solution by vech.

Now, decompose WT as WT = VT V ′
T , where VT is a v × v matrix (e.g., the Cholesky decomposition).

Then

‖ŜT − vech−1(x)‖WT
= (V ′

T vec(ŜT )− V ′
T vec(vech−1(x)))′ (V ′

T vec(ŜT )− V ′
T vec(vech−1(x))).

It is straightforward to show that for each τ ∈ R, ‖ŜT − vech−1(x)‖WT
≤ τ if and only if




τIv(v+1)/n (V ′
T vec(ŜT )− V ′

T vec(vech−1(x)))

(V ′
T vec(ŜT )− V ′

T vec(vech−1(x)))′ τ




is p.s.d. It follows that (3) is equivalent to choosing (x, τ) from Rv(v+1)/2 × R to minimize τ under the
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constant that



vech−1(x) 0v×v(v+1)/2 0v×1

0v(v+1)/2×v τIv(v+1)/2 (V ′
T vec(ŜT )− V ′

T vec(vech−1(x)))

01×v (V ′
T vec(ŜT )− V ′

T vec(vech−1(x)))′ τ




is p.s.d. (5)

This problem is a semidefinite programming problem, because the objective function in this minimization

problem is linear in (x, τ), and the matrix in the constraint (5) is symmetric and linear in (x, τ) (see, e.g.,

Vandenberghe and Boyd (1996) for the semidefinite programming in general).

The semidefinite programming has been actively studied in the recent numerical optimization literature,

and fast solvers have been developed. In the Monte Carlo simulations in this paper, we employ SeDuMi

(Sturm 1999) among them.

4 Truncated Flat Kernel Estimator Adjusted for Positive

Semidefiniteness

For each τ ∈ Z, write Γ(τ) ≡ cov[Z∗0 , Z∗τ ]. Also, for arbitrary a1, a2, a3, a4 in {1, . . . , v} and arbitrary t1,

t2, t3, t4 in Z, let κa1,a2,a3,a4(t1, t2, t3, t4) denote the fourth-order cumulant of (Z∗t1,a1
, Z∗t2,a2

, Z∗t3,a3
, Z∗t4,a4

).

Andrews (1991, Proposition 1) shows the asymptotic bias and asymptotic variance of kernel estimators

without estimation of θ∗, imposing the following memory conditions on {Z∗t }t∈Z.

Assumption 2:
∑∞

τ=−∞ ‖Γ(τ)‖ < ∞ and

∞∑
τ1=−∞

∞∑
τ2=−∞

∞∑
τ3=−∞

|κa,b,c,d(0, τ1, τ2, τ3)| < ∞.

Andrews (1991, pages 827 and 853) also demonstrates that a wide range of kernel estimators satisfy the

uniform integrability condition imposed in Theorem 2.4 with a suitably chosen sequence of scaling factors,

if:

Assumption 3: {Z∗t } is eighth-order stationary with

∞∑
τ1=−∞

· · ·
∞∑

τ7=−∞
κa1,...a8(0, τ1, · · · , τ7) < ∞,
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where for arbitrary a1, . . .a8 in {1, . . . , v} and arbitrary t1, . . . , t8 in Z, κa1,··· ,a8(t1, . . . , t8) denotes the

eight-order cumulant of (Z∗t1,a1
, . . . , Z∗t8,a8

).

Write

S(q) ≡ 1
2π

∞∑
τ=−∞

|τ |qΓ(τ)

for each q ∈ [0,∞), and S ≡ S(0). When S(q) converges for some q0 ∈ (0,∞),

S(q1) =
1
2π

∞∑
τ=−∞

|τ |−(q0−q1) |τ |q0Γ(τ)

also converges for each q1 ∈ [0, q0] (Rudin 1976, Theorem 3.42, pp. 70–71). In most applications, it is

reasonable to make the following assumption, though not all of our results impose this assumption.

Assumption 4: The matrix S is p.d.

Given Assumptions 1–4, we can assess the asymptotic MSEs of the TF estimator and its adjusted version

by applying Andrews (1991, Proposition 1(c)) along with Corollary 2.3(a) and Theorem 2.4 of this paper.

Let {ŜTF
T (mT )}T∈N and {ŜTF,A

T (mT )}T∈N denote the TF and ATF estimators with bandwidth {mT }T∈N,

respectively. Also, let Kv,v denote the v2 × v2 commutation matrix, i.e., Kv,v ≡
∑v

i=1

∑v
j=1 eie

′
j ⊗ eje

′
i,

where ei is the ith elementary p× 1 vector, and ⊗ is the Kronecker product operator.

Proposition 4.1: Suppose that Assumptions 1 and 2 hold and that {mT }T∈N is a sequence of positive

real numbers such that m2q+1
T /T → γ ∈ (0,∞) for some q ∈ (0,∞) for which the series S(q) converges. Also,

let W be a v2 × v2 symmetric p.s.d. matrix. Then we have:

(a)

lim
T→∞

MSE(T/mT , S̃TF,A
T (mT ), W ) ≤ lim

T→∞
MSE(T/mT , S̃TF

T (mT ), W ) (6)

= 8π2tr(W (I + Kv,v)S ⊗ S). (7)

(b) If in addition Assumptions 3 and 4 hold, (6) holds with equality.

Proposition 4.1 means that the convergence rates of both the ATF and TF estimators can be made as

fast as T−q/(2q+1), provide that the bandwidth is suitably chosen, and S(q) converges. In particular, when

S(q) converges for some q > 2, employing a bandwidth mT ∼ T 1/(2q+1) makes the TF estimators converge to
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ST faster in terms of the MSE than the QT and BT estimator, whose convergence rates never exceed T−1/3

and T−2/5, respectively.

We now add a few assumptions related to the effect of the parameter estimation on the long-run covariance

matrix estimation.

Assumption 5: (a) T 1/2(θ̂ − θ∗) = Op(1).

(b) There exists a uniformly L2-bounded sequence of random variables {η1,t}t∈N such that for each t ∈ N,

|Z∗t | ≤ η1,t and

sup
θ∈Θ

∥∥∥ ∂

∂θ
Zt(·, θ)

∥∥∥ ≤ η1,t.

Assumption 6: (a) The sequence

{
ζt ≡

(
Z∗′t , vec

( ∂

∂θ′
Zt(·, θ∗)− E

[ ∂

∂θ′
Zt(·, θ∗)

])′)′}

t∈Z

is a zero-mean, fourth-order stationary sequence of random vectors such that Assumption 2 holds with

Zt replaced by ζt.

(b) There exists a uniformly L2-bounded sequence of random variables {η2,t}t∈N such that for each t ∈ N

sup
θ∈Θ

∥∥∥ ∂2

∂θ∂θ′
Zt,a(·, θ)

∥∥∥ ≤ η2,t, a = 1, . . . , v.

We hereafter focus on the case where the weighting matrix is convergent in probability.

Assumption 7: {WT }T∈N is a sequence of v2 × v2 symmetric p.s.d. random matrices that converges in

probability-P to a constant v2 × v2 matrix W .

Under Assumptions 1 and 4, the difference between any estimator consistent for S and the estimator that

adjusts it for positive definiteness converges in probability to zero at an arbitrary fast rate by Corollary 2.3(c).

The ATF estimator therefore inherits the large sample properties of the TF kernel estimator.

Theorem 4.2: Let {mT }T∈N be a sequence of positive real numbers growing to infinity.

(a) If Assumptions 1, 2, 5, and 7 hold, and m2
T /T → 0, then ‖ŜTF,A

T (mT )− ST ‖WT → 0 in probability-P .

If in addition W is p.d., then {ŜTF,A
T (mT )} is consistent for {ST }.
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(b) If Assumptions 1, 4, 5, 6, 7, hold, and m2q+1
T /T → γ ∈ (0,∞) for some q ∈ (0,∞) for which S(q) con-

verges, then (T/mT )1/2‖ŜTF,A
T (mT )−ST ‖WT

= OP (1) and (T/mT )1/2‖ŜTF,A
T (mT )− ŜTF

T (mT )‖WT
→

0 in probability-P .

(c) If, in addition to the conditions of part (b), W is p.d., then (T/mT )1/2(ŜTF,A
T (mT ) − ST ) = OP (1)

and (T/mT )1/2(ŜTF,A
T (mT )− ŜTF

T (mT )) → 0 in probability-P .

(d) Under the conditions of part (b) plus Assumption 3,

lim
h→∞

lim
T→∞

MSEh(T/mT , ŜTF,A
T (mT ),WT ) = lim

h→∞
lim

T→∞
MSEh(T/mT , ŜTF

T (mT ),WT ) (8)

= lim
T→∞

MSE(T/mT , S̃TF
T (mT ),W ) (9)

= 8π2tr(W (I + Kv,v)S ⊗ S) (10)

5 Flat Kernel Estimator That Fractionally Incorporates the

Autocovariance Matrix at the Last Lag

In the TF estimation, all bandwidths between two adjacent nonnegative integers give the same estimator.

Suppose that we have two adjacent integer bandwidths that yield good performances of the TF estimator.

Given the familiar argument that the bandwidth should be chosen to balance the bias and variance of

the estimator, one might desire to consider an estimator “between” the two estimators picked by the two

integer bandwidths. A natural way to create a smooth transition path from an integer bandwidth to the

next is to linearly interpolate the TF estimator between each pair of adjacent integer bandwidths. Given

the TF estimators S̃TF
T and ŜTF

T discussed earlier, we now introduce their interpolated versions called the

TF estimators that fractionally incorporates the estimated autocovariance matrix at the last lag, which are

abbreviated as the TFF estimators hereafter:

S̃TFF
T (m) ≡ (bmc+ 1−m)S̃TF

T (m) + (m− bmc)S̃TF
T (m + 1), m ∈ [0,∞), T ∈ N,

ŜTFF
T (m) ≡ (bmc+ 1−m)ŜTF

T (m) + (m− bmc)ŜTF
T (m + 1), m ∈ [0,∞), T ∈ N,

where b·c : R → R is the floor function, which returns the greatest integer not exceeding the value of the

argument, and we employ the rule that S̃TF (0) = Γ̃T (0) and ŜTF (0) = Γ̂T (0). Each version of the TFF
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estimators coincides with the corresponding version of the TF estimator if the bandwidth m is an integer.

In general, provided that the bandwidth m is less than T − 1, each version of the TFF estimator with a

bandwidth m, compared to the corresponding version of the TF estimator with the same bandwidth, brings

in the fraction (m− bmc) of the autocovariance matrix estimator at lag bmc+ 1, namely,

S̃TFF
T (m) = S̃TF

T (m) + (m− bmc)(Γ̃T (bmc+ 1) + Γ̃T (bmc+ 1)′), m ∈ [0, T − 1), T ∈ N,

ŜTFF
T (m) = ŜTF

T (m) + (m− bmc)(Γ̂T (bmc+ 1) + Γ̂T (bmc+ 1)′), m ∈ [0, T − 1), T ∈ N.

These equalities justify the name given to S̃TFF
T (m) and ŜTFF

T (m).

The behavior of the last autocovariance matrix estimator fractionally incorporated in the TFF estimator,

when no parameter is estimated, is described in the next lemma.

Lemma 5.1: Suppose that Assumptions 1 and 2 hold. Then:

(a) supτ∈{0,1,...,T−1} E[ ‖Γ̃T (τ)− ΓT (τ)‖2 ] = O(T−1).

(b) Let {mT ∈ (0, T − 1)}T∈N be a sequence that grows to ∞. If S(q) converges for some q ∈ (0,∞), then

mq
T E[Γ̃T (bmT + 1c)] → 0.

(c) Let {mT ∈ (0, T − 1)}T∈N be a sequence that grows to ∞. If mT →∞ and m2q+1
T /T → γ ∈ (0,∞) for

some q ∈ (0,∞) for which the series S(q) converges, then (T/mT )E[‖Γ̃T (bmT + 1c)‖2] = o(1).

From Lemma 5.1(c), one might conjecture that the autocovariance estimator at the last lag is asymptotically

negligible in the TFF estimation. It is indeed the case as the next proposition states.

Proposition 5.2: Suppose that Assumptions 1 and 2 hold and that {mT ∈ (0, T − 1)}T∈N is a sequence

satisfying that m2q+1
T /T → γ ∈ (0,∞) for some q ∈ (0,∞) for which the series S(q) converges. Also, let W

be a v2 × v2 symmetric p.s.d. matrix. Then

lim
T→∞

MSE(T/mT , S̃TFF
T (mT ), W ) = lim

T→∞
MSE(T/mT , S̃TF

T (mT ), W ) (11)

= 8π2tr(W (I + Kv,v)S ⊗ S). (12)

The TFF estimator may give an estimate that is not p.s.d., being a convex combination of the TF

estimators that have the same problem. Thus, the estimator that adjusts it for positive semidefiniteness is
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useful. As is the case with the TF estimation, the adjustment improves the MSE of the TFF estimator in

small samples (Corollary 2.3(a)). The next proposition states that the adjusted TFF estimator performs at

least as well as the TFF estimator in large samples.

Proposition 5.3: Suppose that Assumptions 1 and 2 hold and that {mT ∈ (0, T − 1)}T∈N is a sequence

satisfying that m2q+1
T /T → γ ∈ (0,∞) for some q ∈ (0,∞) for which the series S(q) converges. Also, let W

be a v2 × v2 symmetric p.s.d. matrix. Then we have:

(a)

lim
T→∞

MSE(T/mT , S̃TFF,A
T (mT ), W ) ≤ lim

T→∞
MSE(T/mT , S̃TFF

T (mT ), W ) (13)

= lim
T→∞

MSE(T/mT , S̃TF
T (mT ), W ) = 8π2tr(W (I + Kv,v)S ⊗ S). (14)

(b) If in addition Assumptions 3 and 4 hold, (13) holds with equality.

Many interesting applications involve unknown parameters θ∗. The TFF estimator with parameter

estimation is asymptotically equivalent to the TFF estimator without parameter estimation as described in

the next theorem.

Theorem 5.4: Let {mT ∈ (0, T − 1)}T∈N be a sequence growing to infinity.

(a) If Assumptions 1, 2, and 5 hold, and m2
T /T → 0, then {ŜTFF

T (mT )}T∈N is consistent for {ST }T∈N.

(b) If Assumptions 1, 5, and 6 hold, and m2q+1
T /T → γ ∈ (0,∞) for some q ∈ (0,∞) for which S(q)

converges, then (T/mT )1/2(ŜTFF
T (mT )− ST ) = OP (1) and (T/mT )1/2(ŜTFF

T (mT )− S̃TFF
T (mT )) → 0

in probability-P .

(c) Under the conditions of part (b) plus Assumption 3,

lim
h→∞

lim
T→∞

MSEh(T/mT , ŜTFF
T (mT ),WT ) = lim

T→∞
MSE(T/mT , S̃TFF

T (mT ),W ) (15)

= lim
T→∞

MSE(T/mT , S̃TF
T (mT ),W ) (16)

= 8π2tr(W (I + Kv,v)S ⊗ S) (17)

When θ∗ is estimated, the relationship between the TFF estimator and the adjusted TFF (ATFF)

estimator is parallel to that between the TF estimator and the ATF estimator.
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Theorem 5.5: Let {mT ∈ (0, T − 1)}T∈N be a sequence growing to infinity.

(a) If Assumptions 1, 2, 5, and 7 hold, and m2
T /T → 0, then ‖ŜTFF,A

T (mT )−ST ‖WT
→ 0 in probability-P .

If in addition W is p.d., then {ŜTFF,A
T (mT )} is consistent for {ST }.

(b) If Assumptions 1, 4, 5, 6, and 7, hold, and m2q+1
T /T → γ ∈ (0,∞) for some q ∈ (0,∞) for

which S(q) converges, then (T/mT )1/2‖ŜTFF,A
T (mT )−ST ‖WT

= OP (1) and (T/mT )1/2‖ŜTFF,A
T (mT )−

ŜTFF
T (mT )‖WT

→ 0 in probability-P .

(c) If, in addition to the conditions of part (b), W is p.d., then (T/mT )1/2(ŜTFF,A
T (mT ) − ST ) = OP (1)

and (T/mT )1/2(ŜTFF,A
T (mT )− ŜTFF

T (mT )) → 0 in probability-P .

(d) Under the conditions of part (b) plus Assumption 3,

lim
h→∞

lim
T→∞

MSEh(T/mT , ŜTFF,A
T (mT ),WT ) = lim

h→∞
lim

T→∞
MSEh(T/mT , ŜTFF

T (mT ),WT ) (18)

= lim
T→∞

MSE(T/mT , S̃TFF
T (mT ),W ) (19)

= 8π2tr(W (I + Kv,v)S ⊗ S) (20)

6 Finite-Sample Performance of the ATF and ATFF Estimators

In this section, we conduct Monte Carlo simulations to examine the small-sample performance of the

proposed estimators in comparison with the familiar QS and BT estimators, borrowing the experiment

setups from Andrews (1991). In each of the experiments, {(yt, x
′
t)
′}T

t=1 is a stationary process, where yt is a

random variable, and xt is a v×1 random vector. The coefficients θ∗ in the population regression of yt on xt

are parameters of interest. In this setup, we examine the MSE of each of the covariance matrix estimators

and the size of the t-test of an exclusion restriction in the OLS regression, using each of the covariance matrix

estimators. Thus, we have that

Zt(·, θ∗) = xtut, t ∈ N,

where

ut = yt − x′tθ
∗, t ∈ N.

The regressor vector xt consists of a constant equal to one and four random variables xt1, xt2, xt3, and xt4,

i.e., xt = [1, xt2, xt3, xt4, xt5]′. The regressors xt and the disturbance ut are independent, and θ∗ is set equal
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to zero.

The experiments are split into four groups: the AR(1)-HOMO, AR(1)-HET1, AR(1)-HET2, and MA(1)-

HOMO experiments. In the AR(1)-HOMO experiments, the disturbance ut is a stationary Gaussian AR(1)

process with mean zero and variance one. To generate the four nonconstant regressors, we first generate four

independent sequences (that are also independent from the disturbance sequence) in the same way as we

generate the disturbance sequence; then normalize them to obtain {xt}T
t=1 such that

∑T
t=1 xtx

′
t/T = I. The

MA(1)-HOMO experiments are the same as the AR(1)-HOMO experiments, except that the disturbance

term and the regressors (prior to the normalization) are Gaussian stationary MA(1) processes with mean

zero and variance one. In the AR(1)-HET1 and AR(1)-HET2 experiments, the disturbance process is given

by

ut =





ũtxt2 in AR(1)-HET1,

1
2 ũt |

∑5
i=2 xti | in AR(1)-HET2,

where xt and ũt (t = 1, . . . , T ) are the regressors and errors in the corresponding AR(1)-HOMO experiment.

In particular, as pointed out by Andrews (1991), the errors in the AR(1)-HET1 and AR(1)-HET2 are the

AR processes with AR parameter ρ2, where ρ is the slope of the AR(1) process that generates {ũt}. The

number of Monte Carlo replications is 25,000. In each replication, 500 + T observations are generated and

the last T observations are used. See Table 2 for the summary of the experiment setups.

Table 2 around here.

We first compare the performance of the ATF estimator against that of the TF estimator to assess the

effect of the adjustment for positive semidefiniteness on the performance. While Corollary 2.3 claims that

the MSE of the ATF estimator never exceeds that of the TF estimator, Theorem 4.2(d) suggests that the

efficiency gain from the adjustment is asymptotically negligible. We seek to check if the negligibility of the

efficiency gain by the adjustment carries over in small samples.

Table 3 displays the efficiency of the ATF estimator relative to that of TF estimator in the AR(1)-HOMO

and MA(1)-HOMO experiments with sample size T = 128 and bandwidths m ∈ {1, 3, 5, 7}. We define the

efficiency of an estimator relative to another to be the ratio of the MSEs of the estimators calculated in the

form of (4). Following Andrews (1991, p. 836), we employ the weighting matrix

WT =

((
T−1

T∑
t=1

xtx
′
t

)−1

⊗
(

T−1
T∑

t=1

xtx
′
t

)−1
)

W̃

((
T−1

T∑
t=1

xtx
′
t

)−1

⊗
(

T−1
T∑

t=1

xtx
′
t

)−1
)

,

18



where W̃ is a v2 × v2 diagonal matrix that has two for its ((i− 1)v + i)th diagonal elements (i = 1, 2, . . . , v)

and one for all other diagonal elements.

Table 3 around here.

The efficiency of the ATF estimator relative to the TF estimator is 1.00 in the vast majority of the

experiments in Table 3. This reflects the fact that the probability that that the TF estimator is not p.s.d.

is close to zero in many cases. Nevertheless, the adjustment in the ATF estimator sometimes reduces the

MSE by a few per cents, if TF estimator is non-p.s.d. with a higher probability. Thus, the efficiency gain of

the adjustment is not totally ignorable in small samples though it is often negligibly small. This tendency

is also verified with different sample sizes and in AR(1)-HET1 and AR(1)-HET2 experiments, though we do

not include the tables for the experiments in this paper.

We next compare the performances of the QS, BT, ATF, and ATFF estimators, letting each of the

estimator use its fixed optimum bandwidth in each experiment. We here mean by the fixed optimum

bandwidth of a kernel estimator the nonstochastic bandwidth that minimizes the (finite sample) MSE of the

estimator, which we numerically find by using the grid search method through the Monte Carlo experiments.

Table 4 displays the efficiency of the BT, ATF, and ATFF estimators relative to the QS estimator with

sample sizes 64, 128, and 256.

Table 4 around here.

The relationship between the ATF and QS estimator is similar to that between the TF and QS estimator

reported in Andrews (1991). The ATF outperforms the QS estimator clearly in some cases, and the complete

opposite happens in some other cases. On the other hand, the behavior of the ATFF estimator is quite

different. The ATFF estimator never has an MSE larger than the ATF estimator and sometimes brings

in substantial improvement over the TF estimator, in particular, when the TF estimator poorly performs

relatively to the QS estimator. As a result, the MSE of the ATFF estimator is smaller than or about the

same as that of the QS estimator in all experiments. Not surprisingly, the fixed optimum bandwidth for

the ATFF estimator is close to the midpoint between a pair of adjacent integers when the ATFF estimator

outperforms the ATF estimator by a large margin.

The large sample theory indicates that the efficiency of the ATF and ATFF estimators relative to the QS

and BT estimators becomes higher as the sample size increases. Table 4 indeed confirms that the relative
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efficiency of the ATFF increases, though slowly, as the sample size grows. On the other hand, the relative

efficiency of the ATF estimator shows more complicated moves. That is, the relative efficiency of the ATF

may decrease when the sample size increases. To understand why this can happen, it is useful to view the

ATF estimator as a restricted version of the ATFF estimator that can only use an integer bandwidth in

the ATFF estimation. Suppose that the fixed optimum bandwidth for the ATFF estimator is close to an

integer with the initial sample size. Then the ATF and ATFF estimators perform equally well with the

initial sample size. When the sample size increases, however, the optimum bandwidth for the ATFF may

be close to the midpoint between a pair of adjacent integers. The restriction imposed on the ATF estimator

now becomes a severe penalty. Thus, the efficiency of the ATF estimator relative to the QS estimator can

decrease, while the relative efficiency of the ATFF increases.

7 TF Estimation with Data-Based Bandwidth

The optimum bandwidth is unknown in practice. We need a way to choose a bandwidth based on data.

For consistency of the TF, ATF, TFF, and ATFF estimators with data-based bandwidths, a data-based

bandwidth m̂T only need to satisfy the following assumption.

Assumption 8: The sequence {mT ∈ (0, T − 1)}T∈N satisfies that mT → ∞ and m2
T /T → 0. Also, the

sequence of random variables {m̂T : Ω → (0, T − 1)}T∈N satisfies that | log(m̂T /mT )| = OP (1).

Note that Assumption 8 imposes the same conditions on {mT } as the consistency results for the ATF, TFF,

and ATFF estimators in Theorems 4.2(a), 5.4(a), and 5.5(a).

To establish results on the rate of convergence and asymptotic truncated MSE, we impose stronger

conditions on the bandwidth.

Assumption 9: The sequence {mT ∈ (0, T − 1)}T∈N satisfies that mT →∞ and m2q+1
T /T → γ ∈ (0,∞)

for some q ∈ (0,∞) for which S(q) absolutely converges. Also, the sequence of random variables {m̂T : Ω →
(0, T −1)}T∈N satisfies that for some {dT ∈ (0,∞)}T∈N such that d−1

T m
1/2
T → 0, dT |m̂T −mT |/mT = OP (1)

in probability-P .

The conditions imposed on {mT } in Assumption 9 are the same as those imposed in Theorems 4.2(b)–(d),

5.4(b)(c), and 5.5(b)–(d).
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Remark. In Andrews (1991) and Newey and West (1994), though they do not consider the TF estimator,

the data-based bandwidth takes a form of m̂T = ĉT T r where r is some positive real number and {ĉT : Ω →
(0,∞)}T∈N is an estimator of some constant c ∈ (0,∞). With such m̂T , the condition | log(m̂T /mT )| = OP (1)

in Assumption 8 coincides with Assumption E of Andrews (1991), because log(m̂T /mT ) = log(ĉT /cT ). Also,

we have that dT |m̂T −mT |/mT = dT (ĉT − c) = OP (1) for a suitably chosen {dT ∈ (0,∞)}T∈N, as required

in Assumption 9. In order for {d−1
T m

1/2
T }T∈N to converge to zero, q in Assumption 9 needs to be sufficiently

large. If dt = T 1/2, as is the case in the data-based bandwidth of Andrews (1991), it must hold that q > 1/2.

We are now ready to state a few results on the large sample behavior of the TF, ATF, TFF, and ATFF

estimator with data-based bandwidths.

Theorem 7.1: (a) Suppose that Assumptions 1, 2, 5, and 8 hold. Then the estimators {ŜTF
T (m̂T )}T∈N

and {ŜTFF
T (m̂T )}T∈N are consistent for {ST }T∈N, and it holds that

‖ŜTF
T (m̂T )− ST ‖WT → 0 in probability-P , (21)

‖ŜTF,A
T (m̂T )− ST ‖WT

→ 0 in probability-P , (22)

‖ŜTFF
T (m̂T )− ST ‖WT

→ 0 in probability-P , (23)

‖ŜTFF,A
T (m̂T )− ST ‖WT

→ 0 in probability-P . (24)

If, in addition, W is p.d., then {ŜTF,A
T (m̂T )} and {ŜTFF,A

T (m̂T )} are also consistent for {ST }.

(b) If Assumptions 1, 4, 5, 6, 7, and 9 hold. Then we have:

(T/mT )1/2(ŜTF
T (m̂T )− ST ) = OP (1), (25)

(T/mT )1/2(ŜTFF
T (m̂T )− ST ) = OP (1), (26)

(T/mT )1/2(ŜTF
T (m̂T )− ŜTF

T (mT )) = oP (1), (27)

(T/mT )1/2(ŜTFF
T (m̂T )− ŜTFF

T (mT )) = oP (1), (28)

(T/mT )1/2‖ŜTF
T (m̂T )− ST ‖WT

= OP (1), (29)

(T/mT )1/2‖ŜTF,A
T (m̂T )− ST ‖WT

= OP (1), (30)

(T/mT )1/2‖ŜTFF
T (m̂T )− ST ‖WT

= OP (1), (31)
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(T/mT )1/2‖ŜTFF,A
T (m̂T )− ST ‖WT

= OP (1), (32)

(T/mT )1/2‖ŜTF
T (m̂T )− ŜTF

T (mT )‖WT
= oP (1), (33)

(T/mT )1/2‖ŜTF,A
T (m̂T )− ŜTF,A

T (mT )‖WT
= oP (1), (34)

(T/mT )1/2‖ŜTFF
T (m̂T )− ŜTFF

T (mT )‖WT
= oP (1), (35)

(T/mT )1/2‖ŜTFF,A
T (m̂T )− ŜTFF,A

T (mT )‖WT
= oP (1). (36)

(c) If, in addition to the conditions of part (c), W is p.d., then

(T/mT )1/2(ŜTF,A
T (m̂T )− ST ) = OP (1), (37)

(T/mT )1/2(ŜTFF,A
T (m̂T )− ST ) = OP (1), (38)

(T/mT )1/2(ŜTF,A
T (m̂T )− ŜTF,A

T (mT )) = oP (1), (39)

(T/mT )1/2(ŜTFF,A
T (m̂T )− ŜTFF,A

T (mT )) = oP (1). (40)

(d) Under the conditions of part (b) plus Assumption 3, we have that

lim
h→∞

lim
T→∞

MSEh(T/mT , ŜTF
T (m̂T ),WT ) = lim

h→∞
lim

T→∞
MSEh(T/mT , ŜTF

T (mT ), WT ) (41)

= lim
h→∞

lim
T→∞

MSEh(T/mT , ŜTF,A
T (m̂T ),WT ) = lim

h→∞
lim

T→∞
MSEh(T/mT , ŜTF,A

T (mT ),WT ) (42)

= lim
h→∞

lim
T→∞

MSEh(T/mT , ŜTFF
T (m̂T ),WT ) = lim

h→∞
lim

T→∞
MSEh(T/mT , ŜTFF

T (mT ),WT ) (43)

= lim
h→∞

lim
T→∞

MSEh(T/mT , ŜTFF,A
T (m̂T ),WT ) = lim

h→∞
lim

T→∞
MSEh(T/mT , ŜTFF,A

T (mT ),WT ) (44)

= 8π2tr(W (I + Kv,v)S ⊗ S) (45)

The results presented in Theorem 7.1 indicates that the more slowly the bandwidth grows, the faster the

MSE shrinks in the TF, ATF, TFF, and ATFF estimation, provided that {Γ(τ)}τ∈N converges to zero fast

enough. The complete flat shape of the TF kernel at the origin makes the convergence rate of the bias so fast

that the bias is asymptotically negligible relative to the variance in the TF estimation, virtually regardless

of the growth rate of the bandwidth. This means that given a sequence of bandwidths in TF estimation, we

can always find another sequence of bandwidths with a slower growth rate that makes faster the convergence

rate of the TF estimator. The rate results in Theorem 7.1 reflect this fact.
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Andrews (1991) and Newey and West (1994) propose ways to choose bandwidths based on data in kernel

estimation. Their approach is based on the tradeoff between the asymptotic bias and asymptotic variance of

typical kernel estimators: the more slowly the bandwidth grows, the more slowly the asymptotic bias shrinks

and the faster the variance shrinks, loosely speaking. Their approach sets the growth rate of the bandwidth

in such a way that the convergence rates of the squared bias and the variance are equated, so that the MSE

of the estimator reaches the fastest possible convergence rate. It then chooses the proportional constant for

the bandwidth by minimizing the suitably scaled asymptotic MSE.

The approach of Andrews (1991) and Newey and West (1994) is inapplicable in the TF estimation,

given the absence of the trade-off between the asymptotic bias and asymptotic variance of the TF estimator.

Nevertheless, it is possible to choose a bandwidth sequence that makes the TF estimator asymptotically more

efficient than the QS estimator. Let mQS
T and m̃T denote the “oracle” and data-based bandwidths of Andrews

(1991), respectively (for the precise mathematical formulas of mQS
T and m̃T , see equations (5.1), (6.1), and

(6.8) in Andrews (1991)). If we set m̂T = am̃T for some a ∈ (0, 1/2], then we have by Theorem 7.1(d) that

lim
h→∞

lim
T→∞

MSEh(T/mQS
T , ŜTF

T (m̂T ),WT ) = lim
h→∞

lim
T→∞

aMSEh(T/(amQS
T ), ŜTF

T (m̂T ), WT )

= 8aπ2tr(W (I + Kv,v)S ⊗ S) ≤ 4π2tr(W (I + Kv,v)S ⊗ S).

Because the right-hand side of this equality is equal to the asymptotic variance of the QS estimator with

bandwidth m̃T , which is no greater than the asymptotic MSE of the QS estimator, the TF estimator with

bandwidth m̂T is asymptotically more efficient than the QS estimator with bandwidth m̃T . We can, of

course, apply the same bandwidth m̂T in the ATF and ATFF estimation to attain the same asymptotic

MSE.

A practical question is what value we should use for a. Though the asymptotic MSE of the TF estimator

with the bandwidth sequence {m̂T }T∈N can be made arbitrarily small by setting a sufficiently small value to

a, too small a value for a would result in a large magnitude of bias in the TF estimation in small samples,

because there is a tradeoff between the bias and the variance in finite samples. In our Monte Carlo simulations

in the next section, we use a = 1/2 for the ATF estimator and a = 1/3 for the ATFF estimator, though

these choices are arguably ad hoc. We use a larger value for a in the ATF estimation than in the ATFF

estimation, because the ATF estimator effectively rounds down the data-based bandwidth m̂T , due to the

equality ŜATF (m̂T ) = ŜATF (bm̂T c).
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8 Finite-Sample Performance of the ATF and ATFF Estimators

with Data-Based Bandwidths

In this section, we examine the performances of the ATF and ATFF estimators in comparison with those

of the QS and BT estimators, using data-based bandwidths. In the QS and BT estimation, we use the

bandwidth selection method of Andrews (1991). For the ATF and ATFF estimators, we use the bandwidth

described in the previous section. The experiment setups are the same as in Section 6.

Table 5 reports the efficiency of the BT, ATF, and ATFF estimators relative to the QS estimator. The

relationship among the estimators are analogous to that in Table 4 of the experiments with fixed optimum

bandwidths, though the ATF and ATFF estimators are slightly more efficient relative to the QS estimator

with the data-based bandwidth. The MSE of the ATFF estimator is smaller than or at least comparable to

that of the QS estimator in all of our experiments, while the efficiency of the ATF estimator relative to the

QS estimator varies from an experiment to another.

Table 5 around here.

Table 6 shows the sizes in the ten- and five-per cent level t-tests of the exclusion of xt2 using each of

the covariance matrix estimators. The tests using the BT estimator consistently results in the largest size

distortion, while the ATF ATFF, and QS estimators tend to have sizes close to each other. Among the

ATF, ATFF, and QS estimators, the ATF and QS estimators often, but not always, lead to the smallest and

largest size distortion, respectively.

Table 6 around here.

In summary, the relationship between the ATFF and QS estimators is quite consistent with what the

large sample theory suggests, unlike the relationship between between the TF and QS estimators. The ATFF

estimator seems to be (weakly) more efficient than the QS estimator in practical sample sizes. In terms of

the size distortion in hypothesis testing, the ATFF estimator also performs slightly better or equally well,

compared to the QS estimator.
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9 Concluding Remarks

With the two modifications to the TF estimator proposed in this paper, the TF estimation delivers an

estimate guaranteed to be positive semidefinite, enjoys the same large sample efficiency as the original TF

estimator does, and shows small-sample performance better than or comparable to that of the QS estimator

in terms of the MSE and the size distortion. In particular, the modifications make the relationship between

the modified TF estimator and the QS estimator in small samples consistent with what the large sample

theory suggests.

The method for adjustment of a matrix estimate for positive definiteness may be necessary and useful in

applications other than long-run covariance matrix estimation. We use a general framework in Section 2 to

keep our large sample results applicable in such applications. The adjustment of positive semidefiniteness

may be in particular effective, when an available estimator does not necessarily deliver a positive semidefinite

estimate and the sample size is small.

In this paper, we mainly focus on the accuracy in estimation of the long-run covariance matrix. On the

other hand, Sun, Phillips, and Jin (2008) study the size and power properties of statistical inferences using

long-run covariance matrix estimators, aiming at the bandwidth selection optimal for statistical inference.

Their results seem to suggest that bias reduction in long-run covariance estimation can improve the size and

power properties of a test. The ATFF estimator looks promising in this view, given the negligibility of its

large-sample bias discussed in Section 7 of this paper, though the analytical framework used in Sun, Phillips,

and Jin (2008) do not directly cover the TF estimator. Investigation of this topic is, however, beyond the

scope of this paper and left for the future research.

Appendix

For each symmetric p.s.d. matrix A, A1/2 denote a p.s.d. matrix such that A1/2A1/2 = A. Also, for each

(a, b) ∈ R2, a ∨ b and a ∧ b denote the smaller and larger between a and b, respectively.

Proof of Theorem 2.1. Let T be an arbitrary natural number. Define f : Rv×v × Pv2 × Pv → R by

f(ŝ, w, s) = ‖ŝ− s‖w, (ŝ, w, s) ∈ Rv×v × Pv2 × Pv.
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If the adjusted estimator exists, it picks s from Pv to minimize f(ŜT ,WT , s) = ‖ŜT , s‖WT
. Note that

each finite dimensional normed linear space is complete and separable, and so are Rv×v × Pv2 × Pv (the

domain of f) and Pv (the projection of the domain of f onto the space of the third argument) endowed

with the Euclidean metric. Also, f(ŝ, w, ·) : Pv → R is continuous for each (ŝ, w) ∈ Rv×v × Pv2 . It follows

by Brown and Purves (1973, Corollary 1, pp. 904–905) that the adjusted estimator ŜA
T exists, if for each

(ŝ, w) ∈ Rv×v × Pv2 , f(ŝ, w, ·) : Pv → R attains its minimum on Pv.

Pick ŝ ∈ Rv×v and w ∈ Pv2 arbitrarily. To establish the desired result, it suffices to show that there

exists ŝA ∈ Pv such that f(ŝ, w, ŝA) = r ≡ infs∈Pv
f(ŝ, w, s). Because w is a symmetric p.s.d. matrix, there

exists a full column rank matrix A such that w = AA′. With this A, we have that for each s ∈ Rv×v,

f(ŝ, w, s) = ‖A′ vec(s− ŝ)‖.

Write x̂ ≡ A′ vec(ŝ) and V ≡ {A′vec(s) : s ∈ Pv}. Then we have that

r = inf
s∈Pv

‖A′ vec(s− ŝ)‖ = inf
x∈V

‖x− x̂‖.

If there exists x̂A ∈ V such that ‖x̂A − x̂‖ = r, there also exists ŝA ∈ Pv such that f(ŝ, w, s) = r, and the

desired result follows.

Let V2r ≡ {x ∈ V : ‖x − x̂‖ ≤ 2r}. Because V2r is a bounded closed subset of a finite-dimensional

Euclidean space, it is compact, so that there exists x̂A ∈ V2r such that ‖x̂A− x̂‖ = infx∈V2r ‖x− x̂‖. Further,

inf
x∈V\V2r

‖x− x̂‖ ≥ 2r > r.

It follows that infx∈V2r ‖x− x̂‖ = r. The desired result therefore follows. Q.E.D.

Proof of Theorem 2.2. To prove (a), pick ω ∈ Ω and T ∈ N arbitrarily. If ‖ŜA
T (ω) − ŜT (ω)‖WT (ω) = 0, it

holds that WT (ω)vec(ŜA
T (ω)− ŜT (ω)) = WT (ω)1/2WT (ω)1/2vec(ŜA

T (ω)− ŜT (ω)) = 0, because

‖ŜA
T (ω)− ŜT (ω)‖WT = (WT (ω)1/2vec(ŜA

T (ω)− ŜT (ω)))′(WT (ω)1/2vec(ŜA
T (ω)− ŜT (ω))).

It follows that if ‖ŜA
T (ω)− ŜT (ω)‖WT (ω) = 0,

‖ŜA
T (ω)− ST ‖2WT (ω) = ‖(ŜA

T (ω)− ŜT (ω)) + (ŜT (ω)− ST )‖2WT (ω)

= ‖ŜA
T (ω)− ŜT (ω)‖2WT

+ 2vec(ŜA
T (ω)− ŜT (ω))′WT (ω) vec(ŜT (ω)− ST ) + ‖ŜT (ω)− ST ‖2WT (ω)

= ‖ŜT (ω)− ST ‖2WT (ω).
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For (b), note that the desired inequality holds by (a), whenever ‖ŜA
T − ŜT ‖WT

= 0. Fix T ∈ N and ω ∈ Ω

arbitrarily and suppose that ŜT (ω) 6∈ Pv. Write ŝA ≡ ŜA
T (ω) and w ≡ ŴT (ω), and let A, V, x̂, and x̂A be as

in the proof of Theorem 2.1. Also, let x̄ ≡ A′vec(ST ), and let B denote the Euclidean closed ball in Rrank(A)

with radius ‖x̂A − x̂‖ centered at x̂. Because

‖x̂A − x̂‖ = ‖ŝA − ŝ‖w = inf
s∈P

‖s− ŝ‖w = inf
x∈V

‖x− x̂‖,

it clearly holds that V∩intB = ∅. Also, V is convex, and B is convex with a nonempty interior, because ‖ŝA−
ŝ‖w > 0 by hypothesis. By the Eidelheit Separation Theorem (Luenberger 1969, pp. 133–134, Theorem 3),

there exists a hyperplane H1 separating V and B. Because x̂A belongs to both V and B, H1 contains x̂A, so

that H1 is the unique tangency plane of the Euclidean closed ball B at x̂A.

Now shift H1 so that it contains x̄ and call the resulting hyperplane H2. Let x̌ be the projection of x̂

onto H2. Then x̂A is on the line segment connecting x̂ and x̌, and x̌− x̄ is perpendicular to both x̂− x̌ and

x̂A − x̌. We thus have that

‖ŝT − ST ‖2w = ‖x̂− x̄‖2 = ‖x̂− x̌‖2 + ‖x̌− x̄‖2

≥ ‖x̂A − x̌‖2 + ‖x̌− x̄‖2 = ‖x̂A − x̄‖2 = ‖ŝA − ST ‖2w.

The desired result therefore follows. Q.E.D.

Proof of Corollary 2.3. Claim (a) immediately follows from Theorem 2.2. To prove (b), let λ1,T and λ2,T

respectively denote the minimum and maximum eigenvalues of WT . Then we have that

λ1,T ‖ŜA
T − ST ‖2 ≤ ‖ŜA

T − ST ‖2WT
≤ ‖ŜT − ST ‖2WT

≤ λ2,T ‖ŜT − ST ‖2,

where the second inequality follows from Theorem 2.2. When WT = OP (1), it holds that λ2,T = OP (1),

and the right-hand side of the above inequality converges in probability-P to zero. The first claim of (b)

therefore follows. For the second claim of (b), let λ1 and λ2 be the minimum and maximum eigenvalues

of W . Then λ1 > 0, and {λ2,T /λ1,T }T∈N converges in probability-P to λ2/λ1. Because ‖ŜA
T − ST ‖2 ≤

(λ2,T /λ1,T )‖ŜT − ST ‖2, whenever λ1,T > 0, the desired result follows.

The first claim of (c) immediately follows from Theorem 2.2(a). For the second claim, note that λ1,T ‖ŜA
T −

Ŝ‖ = oP (bT ), where λ1,T converges to λ1 > 0. The desired result therefore follows from the first claim.

Q.E.D.
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Proof of Theorem 2.4. The sequence {aT ‖ŜT − ST ‖2WT
}T∈N converges in probability-P to zero, because

P [ŜT − ST = 0] → 1 by the consistency of {ŜT } for {ST } and the asymptotic uniform positive definiteness

of {ST }. Because

MSE(aT , ŜT , WT )−MSE(aT , ŜA
T , WT )

= E[aT ‖ŜT − ST ‖2WT
− aT ‖ŜA

T − ST ‖2WT
],

and {aT ‖ŜT −ST ‖2WT
− aT ‖ŜA

T −ST ‖2WT
}T∈N is uniformly integral under the current assumption, it suffices

to show that {aT ‖ŜT −ST ‖2WT
−aT ‖ŜA

T −ST ‖2WT
} converges to zero in probability-P . Let ε be an arbitrary

positive real number. Then

P [|aT ‖ŜT − ST ‖2WT
− aT ‖ŜA

T − ST ‖2WT
| > ε]

≤ P [|aT ‖ŜT − ST ‖2WT
− aT ‖ŜA

T − ST ‖2WT
| 6= 0] ≤ P [ŜT 6∈ P] → 0,

where the last inequality follows from the consistency of {ŜT } for {ST } and the asymptotic uniform positive

definiteness of {ST } by Theorem 2.2(a). The result therefore follows. Q.E.D.

Proof of Theorem 2.5. The result immediately follows from Theorem 2.2(b). Q.E.D.

Proof of Lemma 2.6. Note that for each h ∈ (0,∞),

min
{
aT ‖Ŝ2,T − ST ‖2WT

, h
}−min

{
aT ‖Ŝ1,T − ST ‖2WT

, h
}

≤ ∣∣aT ‖Ŝ2,T − ST ‖2WT
− aT ‖Ŝ1,T − ST ‖2WT

∣∣

=
(
a
1/2
T ‖Ŝ2,T − ST ‖WT

+ a
1/2
T ‖Ŝ1,T − ST ‖WT

)

× (
a
1/2
T ‖Ŝ2,T − ST ‖WT − a

1/2
T ‖Ŝ1,T − ST ‖WT

)
, T ∈ N, (A.1)

where the inequality holds because for each h ∈ (0,∞), x 7→ min{x1, h} : R→ R is a nondecreasing Lipschitz

function with the maximum slope equal to one. The first factor on the right-hand side of (A.1) is OP (1),

while the second factor converges in probability-P to zero, because

∣∣‖Ŝ2,T − ST ‖WT − ‖Ŝ1,T − ST ‖WT

∣∣ ≤ ‖(Ŝ2,T − ST )− (Ŝ1,T − ST )‖WT

= ‖Ŝ2,T − Ŝ1,T ‖WT
= oP (a−1/2

T ).
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Thus, we have that for each h ∈ (0,∞)

min
{
aT ‖Ŝ2,T − ST ‖2WT

, h
}−min

{
aT ‖Ŝ1,T − ST ‖2WT

, h
}

= oP (1).

Because the left-hand side of this equality is bounded, the mean of it converges to zero by Andrews (1991,

Lemma A1). Thus, for each h ∈ (0,∞) for which {MSEh(aT , Ŝ1,T ,WT )}T∈N converges to a real number,

{MSEh(aT , Ŝ1,T ,WT )}t∈N converges to the same number. Q.E.D.

Proof of Theorem 2.7. By Corollary 2.3(c), a
1/2
T (ŜA

T − ŜT ) → 0 in probability-P . Applying Lemma 2.6,

taking {ŜT } for {Ŝ1,T } and {ŜA
T } for {Ŝ2,T } yields the desired result. Q.E.D.

Proof of Proposition 4.1. The inequality in (6) immediately follows from Corollary 2.3(a), and the equality

in (7) can be obtained by applying Andrews (1991, Proposition 1(c)). For claim (b), apply Theorem 2.4

with the fact that {(T/mT )(S̃TF
T (mT ) − ST )2}T∈N is uniformly integrable under the current assumptions

(see Andrews (1991, pages 827 and 853)). Q.E.D.

Proof of Theorem 4.2. Claim (a) follows from the consistency of {ŜTF
T (mT )}T∈N for {ST }T∈N (Andrews

1991, Theorem 1(a)) by Corollary 2.3(b). Claims (b) and (c) can be established by applying Corollary 2.3(c)

with Andrews (1991, Theorem 1(b)). For claim (d), (8) follows from Theorem 2.7, while (9) and (10) are

given by Andrews (1991, Theorem 1(c)). Q.E.D.

Proof of Lemma 5.1. (a) Let a and b be arbitrary natural numbers not exceeding p. Also, let Γ̃T,a,b(τ) and

ΓT,a,b(τ) respectively denote the (a, b)-elements of Γ̃T (τ) and ΓT (τ), T ∈ N, τ ∈ {0, 1, . . . , T − 1}. For each

T ∈ N and each τ = 0, 1, . . . , T − 1, define

ξT,a,b(t, τ) ≡ Z∗T,t,aZ∗T,t−τ,b − E[Z∗T,t,aZ∗T,t−τ,b], t ∈ {τ + 1, . . . , T}, (A.2)

where Z∗T,t,a denote the ath element of Z∗T,t. Then we have that for each T ∈ N and each τ ∈ {0, 1, . . . , T−1},

E[ (Γ̃T (τ)− ΓT (τ))2 ] = E

[(
T−1

T∑
t=τ+1

ξT,a,b(t, τ)
)2

]

= T−2 var
[ T∑

t=τ+1

ξT,a,b(t, τ)
]
.

To establish the desired result, it suffices to show that for some positive real number Aa,b independent of T ,

sup
τ∈{0,1,··· ,T−1}

var
[ T∑

t=τ+1

ξT,a,b(t, τ)
]
≤ Aa,bT, T ∈ N. (A.3)
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Under the fourth order stationarity, as Hannan (1970, equation (3.3), p. 209) shows, we have that

var
[ T∑

t=τ+1

ξa,b,T (t, τ)
]

= MT,τ,1 + MT,τ,2 + MT,τ,3,

where

MT,τ,1 =
T∑

s=τ+1

T∑
t=τ+1

γa,a(t− s) γb,b(t− s)

MT,τ,2 =
T∑

s=τ+1

T∑
t=τ+1

γa,b(t− s + τ) γa,b(t− s− τ)

MT,τ,3 =
T∑

s=τ+1

T∑
t=τ+1

κa,b,a,b(−τ, s− t, s− t + τ).

By setting k = t− s, we obtain

sup
τ∈{0,1,··· ,T−1}

|MT,τ,1| = sup
τ∈{0,1,··· ,T−1}

∣∣∣∣
T∑

t=τ+1

T−t∑

k=τ+1−t

γa,a(k) γb,b(k)
∣∣∣∣

≤
T∑

t=1

T−1∑

k=−T+1

|γa,a(k) γb,b(k)|

≤ T

T−1∑

k=−T+1

|γa,a(k) γb,b(k)|

≤ Aa,b,1T,

where Aa,b,1 ≡ (
∑∞

k=−∞ |γa,a(k)|) (
∑∞

l=−∞ |γb,b(l)|). Analogously, we have that

sup
τ∈{0,1,··· ,T−1}

|MT,τ,2| = sup
τ∈{0,1,··· ,T−1}

∣∣∣∣
T∑

t=τ+1

T−t−τ∑

l=1−t

γa,b(l + 2τ) γa,b(l)
∣∣∣∣

≤ sup
τ∈{0,1,··· ,T−1}

T∑
t=1

T−1−2τ∑

l=−T+1

|γa,b(l + 2τ) γa,b(l)|

= sup
τ∈{0,1,··· ,T−1}

T

T−1−2τ∑

l=−T+1

|γa,b(l + 2τ) γa,b(l)|

≤ Aa,b,2T,

where Aa,b,2 ≡ (
∑∞

i=−∞ |γa,b(i)|)2. Further,

sup
τ∈{0,1,··· ,T−1}

|MT,τ,3| = sup
τ∈{0,1,··· ,T−1}

∣∣∣∣
T∑

t=τ+1

T−t∑

k=τ+1−t

κa,b,a,b(−τ,−k,−k + τ)
∣∣∣∣ ≤ Aa,b,3,
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where Aa,b,3 ≡
∑∞

t,k,l=−∞ |κa,b,a,b(t, k, l)|. Thus,

sup
τ∈{0,1,··· ,T−1}

var
[ T∑

t=τ+1

ξT,a,b(t, τ)
]
≤ (Aa,b,1 + Aa,b,2)T + Aa,b,3 ≤ Aa,bT (A.4)

where Aa,b ≡ Aa,b,1 + Aa,b,2 + Aa,b,3. The desired result therefore follows.

(b) The left-hand side of the equality in question can be rewritten as

mq
T E[Γ̃T (bmT c+ 1)] = mq

T ΓT (bmT c+ 1) =
T − bmT c − 1

T
mq

T Γ(bmT + 1c)

In this equality, the right-hand side converges to zero, because {(T − bmT c − 1)/T}T∈N is nonnegative and

no greater than one, while mq
T Γ(bmT +1c) converges to zero, as S(q) converges. The desired result therefore

follows.

(c) Because the second moment of a random variable is equal to the sum of the mean and variance of

the random variable, we have that

(T/mT )E[‖Γ̃T (bmT + 1c)‖2]

= (T/mT )‖E[Γ̃T (bmT + 1c)]‖2 + (T/mT )E[ ‖Γ̃T (bmT + 1c)− ΓT (bmT + 1c)‖2 ], T ∈ N.

By applying (b) and (a) to the first and second terms on the right-hand side of this quality, respectively, we see

that the first term is o(T/m2q+1
T ) = o(1), because T/m2q+1

T → γ−1, and the second term is O(m−1
T ) = o(1).

The result therefore follows. Q.E.D.

Proof of Proposition 5.2. Note that

∣∣ ‖S̃TFF
T (mT )− ST ‖2W − ‖S̃TF

T (mT )− ST ‖2W
∣∣

=
∣∣ ‖S̃TFF

T (mT )− ST ‖W − ‖S̃TF
T (mT )− ST ‖W

∣∣

× ( ‖S̃TFF
T (mT )− ST ‖W + ‖S̃TF

T (mT )− ST ‖W

)
, T ∈ N.

Because ‖ · ‖W is a pseudo norm, we have that

∣∣ ‖S̃TFF
T (mT )− ST ‖W − ‖S̃TF

T (mT )− ST ‖W

∣∣ ≤ ‖(S̃TFF
T (mT )− ST )− (S̃TF

T (mT )− ST )‖W

≤ ‖S̃TFF
T (mT )− S̃TF

T (mT )‖W = (m− bmT c)
∥∥ Γ̃T (bmT c+ 1) + Γ̃T (bmT c+ 1)′

∥∥
W

≤ ‖Γ̃T (bmT c+ 1)‖W + ‖Γ̃T (bmT c+ 1)′‖W ≤ 2λ1/2 ‖Γ̃T (bmT c+ 1)‖, T ∈ N,
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where λ is the maximum eigenvalue of W . We also have that

∣∣ ‖S̃TFF
T (mT )− ST ‖W + ‖S̃TF

T (mT )− ST ‖W

∣∣

=
∣∣ ‖S̃TF

T (mT ) + (m− bmT c)Γ̃T (bmT c+ 1)− ST ‖W + ‖S̃TF
T (mT )− ST ‖W

∣∣

≤ ‖S̃TF
T (mT )− ST ‖W + (m− bmT c)‖Γ̃T (bmT c+ 1)‖W + ‖S̃TF

T (mT )− ST ‖W

≤ 2‖S̃TF
T (mT )− ST ‖W + ‖Γ̃T (bmT c+ 1)‖W

≤ 2‖S̃TF
T (mT )− ST ‖W + λ1/2‖Γ̃T (bmT c+ 1)‖, T ∈ N.

Thus,

∣∣ ‖S̃TFF
T (mT )− ST ‖2W − ‖S̃TF

T (mT )− ST ‖2W
∣∣

≤ 2λ1/2 ‖Γ̃T (bmT c+ 1)‖ (
2‖S̃TF

T (mT )− ST ‖W + λ1/2‖Γ̃T (bmT c+ 1)‖ )

By taking the expectation of both sides of this inequality and applying the Cauchy-Schwarz inequality and

the Minkowski inequality, we obtain that

E
[∣∣S̃TFF

T (mT )− ST ‖2W − ‖S̃TF
T (mT )− ST ‖2W

∣∣
]

≤ 2λ1/2 E
[
‖Γ̃T (bmT c+ 1)‖ (‖S̃TF

T (mT )− ST ‖W + λ1/2‖Γ̃T (bmT c+ 1)‖)
]

≤ 2λ1/2 E
[‖Γ̃T (bmT c+ 1)‖2]1/2E

[(‖S̃TF
T (mT )− ST ‖W + λ1/2‖Γ̃T (bmT c+ 1)‖)2

]1/2

≤ 2λ1/2 E
[‖Γ̃T (bmT c+ 1)‖2]1/2

(
E

[‖S̃TF
T (mT )− ST ‖2W

]1/2 + λ1/2E
[‖Γ̃T (bmT c+ 1)‖2]1/2

)
,

T ∈ N. It follows that

∣∣MSE(T/mT , S̃TFF
T (mT ), W )−MSE(T/mT , S̃TF

T (mT ), W )
∣∣

=
∣∣∣E

[
(T/mT )S̃TFF

T (mT )− ST ‖2W − (T/mT )‖S̃TF
T (mT )− ST ‖2W

]∣∣∣

≤ (T/mT )E
[∣∣S̃TFF

T (mT )− ST ‖2W − ‖S̃TF
T (mT )− ST ‖2W

∣∣
]

≤ 2λ1/2 E
[
(T/mT )‖Γ̃T (bmT c+ 1)‖2]1/2

×
(
E

[
(T/mT )‖S̃TF

T (mT )− ST ‖2W
]1/2 + λ1/2E

[
(T/mT )‖Γ̃T (bmT c+ 1)‖2]1/2

)

≤ 2λ1/2 E
[
(T/mT )‖Γ̃T (bmT c+ 1)‖2]1/2

×
(
MSE(T/mT , S̃TF

T (mT ), W )1/2 + λ1/2E
[
(T/mT )‖Γ̃T (bmT c+ 1)‖2]1/2

)
, T ∈ N.
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The desired result follows from this inequality, because the right-hand of this inequality converges to zero

by Lemma 5.1(c) and Andrews (1991, Proposition 1(c)). Q.E.D.

Proof of Proposition 5.3. The inequality in (13) immediately follows from Corollary 2.3(a), and the equal-

ities in (14) have been established in Proposition 5.2. Thus, claim (a) holds. For claim (b), note that

{(T/mT )(S̃TF
T (mT )−ST )2}T∈N and {(T/mT )(S̃TF

T (mT +1)−ST )2}T∈N are uniformly integrable under the

current assumptions (see Andrews (1991, pages 827 and 853)). Because

(T/mT )‖S̃TFF
T (mT )− ST ‖2W

≤ (T/mT )
∥∥(mT − bmT c)(S̃TF

T (mT )− ST ) + (bmT c+ 1−mT )(S̃TF
T (mT + 1)− ST )

∥∥2

W

≤ (T/mT )
(‖(mT − bmT c)(S̃TF

T (mT )− ST )‖W + ‖(bmT c+ 1−mT )2(S̃TF
T (mT + 1)− ST )‖W

)2

≤ 2(T/mT )
(‖(mT − bmT c)(S̃TF

T (mT )− ST )‖2W + ‖(bmT c+ 1−mT )2(S̃TF
T (mT + 1)− ST )‖2W

)

≤ 2(T/mT )‖S̃TF
T (mT )− ST )‖2W + 2(T/mT )‖S̃TF

T (mT + 1)− ST ‖2W , T ∈ N,

{(T/mT )(S̃TFF
T (mT )− ST )2}T∈N is also uniformly integrable. The desired result therefore follows by The-

orem 2.4. Q.E.D.

Proof of Theorem 5.4. (a) If {m2
T /T}T∈N converges to zero, so does {(mT + 1)2/T}T∈N. It follows by

Andrews (1991, Theorem 1(a)) that under the current assumptions, both {ŜTF
T (mT )}T∈N and {ŜTF

T (mT +

1)}T∈N are consistent for {ST }T∈N. Because

‖ŜTFF
T (mT )− ST ‖ ≤ ‖ŜTF

T (mT )− ST ‖+ ‖ŜTF
T (mT + 1)− ST ‖, T ∈ N, (A.5)

it follows that {ŜTF
T (mT )}T∈N is consistent for {ST }T∈N.

(b) If {m2q+1
T /T}T∈N converges to γ, so does {(mT + 1)2q+1/T}T∈N. It follows by Andrews (1991,

Theorem 1(b)) that under the current assumptions, we have that

(T/mT )1/2‖ŜTF
T (mT )− ST ‖ = OP (1),

(T/mT )1/2‖ŜTF
T (mT + 1)− ST ‖ = OP (1),

(T/mT )1/2‖ŜTF
T (mT )− S̃TF

T (mT )‖ = oP (1),

and

(T/mT )1/2‖ŜTF
T (mT + 1)− S̃TF

T (mT + 1)‖ = oP (1).

33



Thus,

(T/mT )1/2‖ŜTFF
T (mT )− ST ‖

≤ (T/mT )1/2‖ŜTF
T (mT )− ST ‖+ (T/mT )1/2‖ŜTF

T (mT + 1)− ST ‖ = OP (1)

and

(T/mT )1/2‖ŜTFF
T (mT )− S̃TFF

T (mT )‖

≤ (T/mT )1/2‖ŜTF
T (mT )− S̃TF

T (mT )‖+ (T/mT )1/2‖ŜTF
T (mT + 1)− S̃TF

T (mT + 1)‖ = oP (1).

(c) By (b) of the current theorem, (T/mT )1/2(ŜTFF
T (mT )− ST ) = OP (1) and

(T/mT )1/2(ŜTFF
T (mT )− S̃TFF

T (mT )) → 0 in probability-P , (A.6)

so that

(T/mT )1/2(S̃TFF
T (mT )− ST )

= (T/mT )1/2(ŜTFF
T (mT )− ST )− (T/mT )1/2(ŜTFF

T (mT )− S̃TFF
T (mT )) = OP (1). (A.7)

Applying Lemma 2.6 with (A.6) and (A.7) establishes (15), while (16) and (17) are given by Proposition 5.2.

Q.E.D.

Proof of Theorem 5.5. Claim (a) follows from the consistency of {ŜTFF
T (mT )}T∈N for {ST }T∈N stated in

Theorem 5.4(a) by Corollary 2.3. Claims (b) and (c) can be established by applying Corollary 2.3(c)

with Theorem 5.4(b). For claim (d), (18) follows from Theorem 2.7, while (9) and (10) are given by

Theorem 5.4(c). Q.E.D.

Proof of Theorem 7.1. (a) Suppose that

ŜTF
T (m̂T )− ŜTF

T (mT ) → 0 in probability-P . (A.8)

Then {ŜTF
T (m̂T )}T∈N is consistent for {ST }, because

‖ŜTF
T (m̂T )− ST ‖ ≤ ‖ŜTF

T (m̂T )− ŜTF
T (mT )‖+ ‖ŜTF

T (mT )− ST ‖, T ∈ N,

where the first term on the right-hand side converges to zero by hypothesis, and the second term con-

verges in probability-P to zero by Andrews (1991, Theorem 1(a)). Also, {ŜTFF
T (m̂T )}T∈N is consistent for
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{ST } by Theorem 5.4(a). The convergences of (21) and (23) respectively follow from the consistency of

{ŜTF
T (m̂T )} and {ŜTFF

T (m̂T )} by the Slutsky Theorem. Given (21) and (23), applying Corollary 2.3(b) to

{ŜTF,A
T (m̂T )}T∈N and {ŜTFF,A

T (m̂T )}T∈N establishes the the rest of the claims in (a). Thus, it suffices to

show (A.8).

The condition (A.8) is equivalent to that for each ε ∈ (0, 1],

P [‖ŜTF
T (m̂T )− ŜTF

T (mT )‖ ≥ ε] < ε for almost all T ∈ N. (A.9)

Pick ε ∈ (0, 1] arbitrarily. Then, by Assumption 8, there exists ∆ε ∈ (1,∞) such that for each T ∈ N,

P [ m̂T 6∈ [(1/∆ε)mT , ∆εmT ] ] < ε/2. When m̂T ∈ [(1/∆ε)mT , ∆εmT ], we have that

‖ŜTF
T (m̂T )− ŜTF

T (mT )‖ =
∥∥∥∥

bm̂T∨mT c∑

τ=bm̂T∧mT c+1

(
Γ̂T (τ) + Γ̂′T (τ)

) ∥∥∥∥

≤
∥∥∥∥

bm̂T∨mT c∑

τ=bm̂T∧mT c+1

(
(Γ̂T (τ)− ΓT (τ)) + (Γ̂T (τ)− ΓT (τ))′

)∥∥∥∥ +
∥∥∥∥

bm̂T∨mT c∑

τ=bm̂T∧mT c+1

(ΓT (τ) + Γ(τ)′)
∥∥∥∥

≤ 2A1,T + 2A2,T , T ∈ N, (A.10)

where

A1,T ≡
b∆εmT c∑

τ=b(1/∆ε)mT c+1

‖Γ̂T (τ)− ΓT (τ))‖, T ∈ N

and

A2,T ≡
b∆εmT c∑

τ=b(1/∆ε)mT c+1

‖ΓT (τ)‖, T ∈ N.

By using the Minkowski inequality and Lemma 5.1(a), we obtain that

E[A2
1,T ]1/2 ≤

b∆εmT c∑

τ=b(1/∆ε)mT c+1

E[‖Γ̂T (τ)− ΓT (τ))‖2]1/2 = O(mT /T 1/2) = o(1).

By the Markov inequality, it follows that A1,T → 0 in probability-P . Also, the absolute convergence of S(0)

implies that

A2,T ≤
b∆εmT c∑

τ=b(1/∆ε)mT c+1

‖Γ(τ)‖ ≤
∞∑

τ=b(1/∆ε)mT c+1

‖Γ(τ)‖ = o(1).

Thus, 2A1,T + A2,T → 0 in probability-P .

We now have that

P [‖ŜTF
T (m̂T )− ŜTF

T (mT )‖ ≥ ε] ≤ P [ m̂T 6∈ [(1/∆ε)mT , ∆εmT ] ] + P [2A1,T + 2A2,T ≥ ε], T ∈ N.
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Because the first term on the right-hand side of this equality is no greater than ε/2 for each T ∈ N, while

the second term is smaller than ε/2 for almost all T ∈ N, (A.9) holds. The desired result therefore follows.

(b) Suppose that (27) holds. Then (25) holds, because

‖(T/mT )1/2(ŜTF
T (m̂T )− ST )‖

≤ ‖(T/mT )1/2(ŜTF
T (m̂T )− ŜTF

T (mT ))‖+ ‖(T/mT )1/2(ŜTF
T (mT )− ST )‖, T ∈ N,

where the first term on the right-hand side converges to zero by hypothesis, and the second term is OP (1) by

Andrews (1991, Theorem 1(b)). Also, (26) and (28) can be easily derived from (25) and (27), respectively, by

using the definition of the TFF estimator and the triangle inequality. Given (25)–(28), it is straightforward

to establish (29)–(36) by using the definition of ‖ · ‖WT
and applying the basic rules about stochastic order

of magnitudes in additions and multiplications. Thus, it suffices to show (27) to prove the current claim.

The condition (27) is equivalent to that for each ε ∈ (0, 1],

P [(T/mT )1/2‖ŜTF
T (m̂T )− ŜTF

T (mT )‖ ≥ ε] < ε for almost all T ∈ N. (A.11)

Pick ε ∈ (0, 1] arbitrarily. Then, by Assumption 9, there exists ∆ε ∈ (0,∞) such that for each T ∈ N,

P [ m̂T 6∈ [(1 − d−1
T ∆ε)mT , (1 + d−1

T ∆ε)mT ] ] < ε/2. Derivation analogous to (A.10) yields that when m̂T ∈
[(1− d−1

T ∆ε)mT , (1 + d−1
T ∆ε)mT ],

‖(T/mT )1/2(ŜTF
T (m̂T )− ŜTF

T (mT ))‖ ≤ 2A3,T + 2A4,T , T ∈ N,

where

A3,T ≡ (T/mT )1/2

b(1+d−1
T ∆ε)mT c∑

τ=b(1−d−1
T ∆ε)mT c+1

‖Γ̂T (τ)− ΓT (τ))‖, T ∈ N

and

A4,T ≡ (T/mT )1/2

b(1+d−1
T ∆ε)mT c∑

τ=b(1−d−1
T ∆ε)mT c+1

‖ΓT (τ)‖, T ∈ N.

By using the Minkowski inequality and Lemma 5.1(a), we obtain that

E[A2
3,T ]1/2 ≤ (T/mT )1/2

b(1+d−1
T ∆ε)mT c∑

τ=b(1−d−1
T ∆ε)mT c+1

E[‖Γ̂T (τ)− ΓT (τ))‖2]1/2 = O(d−1
T m

1/2
T ).
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Because d−1
T m

1/2
T → 0 by Assumptions 9, it follows that E[A2

3,T ]1/2 → 0. By the Markov inequality, A3,T → 0

in probability-P . Also, we have that

A4,T ≤ (T/mT )1/2

b(1+d−1
T ∆ε)mT c∑

τ=b(1−d−1
T ∆ε)mT c+1

‖ΓT (τ)‖ ≤ (T/mT )1/2

b(1+d−1
T ∆ε)mT c∑

τ=b(1−d−1
T ∆ε)mT c+1

‖Γ(τ)‖

≤ (T/mT )1/2
∞∑

τ=b(1−d−1
T ∆ε)mT c+1

‖Γ(τ)‖ ≤ (T/mT )1/2
∞∑

τ=bmT /2c+1

‖Γ(τ)‖,

where the last inequality holds for almost all T ∈ N, as 1 − d−1
T ∆ε ≥ 1/2 for almost all T ∈ N. Write

γT ≡ (m2q+1
T /T ) for each T ∈ N. Then {γT }T∈N converges to Γ, and

(T/mT )1/2 = (T/mT )1/2γ
1/2
T γ

−1/2
T = γ

−1/2
T mq

T = 2qγ
−1/2
T (mT /2)q, T ∈ N.

It follows that

A4,T ≤ 2qγ
−1/2
T

∞∑

τ=bmT /2c+1

τ q‖Γ(τ)‖ = o(1),

where the last equality follows by the absolute convergence of S(q).

We now have that

P [(T/mT )1/2‖ŜTF
T (m̂T )− ŜTF

T (mT )‖ ≥ ε]

≤ P [ m̂T 6∈ [(1− d−1
T ∆ε)mT , (1 + d−1

T ∆ε)mT ] ] + P [2A3,T + 2A4,T ≥ ε], T ∈ N.

Because the first term on the right-hand side of this equality is no greater than ε/2 for each T ∈ N, and the

second term is smaller than ε/2 for almost all T ∈ N, (A.11) holds, and the desired result follows.

(c) The results follow from (30), (32), (34), and (36) by arguments analogous to the proof of Theo-

rem 2.3(b).

(d) The right-hand sides of (41)–(44) are equal to (45) by Theorems 4.2(d) and 5.5(d). In each (41)–

(44), the equality of the left-hand side and the right-hand side follows from the corresponding result among

(33)–(36) by Lemma 2.6. Q.E.D.
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Table 1

The kernels often considered in the literature of long-run covariance matrix estimation.

Truncated flat (TF) kTF (x) =
{

1 for |x| ≤ 1,
0 otherwise,

Bartlett (BT) kBT (x) =
{

1− |x| for |x| ≤ 1,
0 otherwise,

Parzen kPR(x) =





1− 6x2 + 6|x|3 for |x| ≤ 1/2,
2(1− |x|)3 for 1/2 ≤ |x| ≤ 1,
0 otherwise,

Quadratic Spectral (QS) kQS(x) = 25
12π2x2

(
sin(6πx/5)

6πx/5 − cos(6πx/5)
)
,

Tukey-Hanning kTH(x) =
{

1 + cos(πx)/2 for |x| ≤ 1,
0 otherwise,

Trapezoid kTR(x) =





1 for |x| ≤ c1, 0 < c1 < 1
(1−|x|)
1−c1

for c1 ≤ |x| ≤ 1,

0 otherwise.

Sharp Original kBT (x) =
{

(1− |x|)ρ for |x| ≤ 1, ρ ≥ 1
0 otherwise,
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Table 2

The design of Andrews’ (1991) experiments

In all experiments, yt = x′tθ
∗+ut, where xt and ut are generated in the way described below, and

θ∗ is set equal to zero (i.e. yt = ut).

AR(1)-HOME/HET1/HET2 experiments
ũt = ρũt−1 + ηt, where ηt ∼ N(0, 1− ρ2) (so that var[ũt] = 1),
x̃ti = ρx̃ti−1 + εti, i ∈ {2, . . . 5}, where εti ∼ N(0, 1− ρ2) (so that var[x̃ti] = 1),
ρ ∈ {0, 0.3, 0.5, 0.7, 0.9, 0.95,−0.1,−0.3,−0.5},
x̃t = [x̃t2, x̃t3, x̃t4, x̃t5]′,
x̂t = x̃t − 1

T

∑T
t=1 x̃t,

xt = [1, ((
∑T

t=1 x̂tx̂
′
t)
−1/2x̂t)′] = [1, xt2, xt3, xt4, xt5].

ut =





ũt in the AR(1)-HOMO experiments,
ũtxt2 in the AR(1)-HET1 experiments,
1
2 ũt

∣∣∣∑5
i=2 xti

∣∣∣ in the AR(1)-HET2 experiments,

MA(1)-HOMO experiments
ut = ηt + ϑηt−1, where ηt ∼ N(0, 1/(1 + ϑ2)) (so that var[ut] = 1),
x̃ti = εti + ϑεti−1, i =∈ {2, . . . 5}, where εti ∼ N(0, 1/(1 + ϑ2)) (so that var[x̃ti] = 1),
ϑ ∈ {±0.1,±0.3,±0.5,±0.7,±0.9}
xt is calculated from x̃t in the same way as in the AR(1) experiments.

Hypothesis of the test: The exclusion of xt2 in the population regression of yt on xt.
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Table 3

The efficiency of the ATF estimator relative to the TF estimator.

AR(1)-HOMO
m ρ =0 0.1 0.3 0.5 0.7
1 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
3 1.00 (0.02) 1.00 (0.02) 1.00 (0.01) 1.00 (0.00) 1.00 (0.00)
5 1.01 (0.19) 1.01 (0.18) 1.01 (0.14) 1.00 (0.09) 1.00 (0.04)
7 1.04 (0.44) 1.04 (0.43) 1.03 (0.38) 1.02 (0.31) 1.01 (0.21)

m ρ =0.9 0.95 -0.1 -0.3 -0.5
1 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.01) 1.00 (0.40)
3 1.00 (0.00) 1.00 (0.00) 1.00 (0.03) 1.00 (0.03) 1.00 (0.11)
5 1.00 (0.00) 1.00 (0.00) 1.01 (0.19) 1.01 (0.19) 1.00 (0.21)
7 1.00 (0.07) 1.00 (0.04) 1.04 (0.44) 1.03 (0.44) 1.02 (0.42)

MA(1)-HOMO
m ϑ =0.1 0.3 0.5 0.7 0.9
1 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
3 1.00 (0.02) 1.00 (0.01) 1.00 (0.01) 1.00 (0.01) 1.00 (0.01)
5 1.01 (0.18) 1.01 (0.15) 1.01 (0.13) 1.01 (0.12) 1.01 (0.12)
7 1.04 (0.43) 1.03 (0.40) 1.03 (0.37) 1.03 (0.36) 1.02 (0.35)

m ϑ =-.1 -0.3 -0.5 -0.7 -0.9
1 1.00 (0.00) 1.00 (0.00) 1.00 (0.06) 1.00 (0.26) 1.00 (0.40)
3 1.00 (0.03) 1.00 (0.05) 1.00 (0.18) 1.00 (0.42) 1.00 (0.55)
5 1.01 (0.20) 1.01 (0.23) 1.01 (0.34) 1.01 (0.51) 1.01 (0.61)
7 1.04 (0.45) 1.03 (0.47) 1.02 (0.54) 1.02 (0.63) 1.02 (0.69)

Notes:

(a) The symbol m denotes the bandwidth.

(b) The efficiency is the ratio of the MSE of the TF estimator to that of the ATF estimator.

(c) The numbers in the parentheses are the relative frequencies of non-p.s.d. estimates in the TF estimation.

(d) The sample size is 128.
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Table 4

The Efficiency of the BT, ATF, and ATFF estimators relative to the QS estimator using fixed optimum
bandwidths.

AR(1)-HOMO
ρ

T Estimator 0 0.3 0.5 0.7 0.9 0.95 -0.3 -0.5
64 BT 1.00 1.00 0.99 0.96 0.97 0.98 1.00 0.99

ATF 1.00 1.00 0.91 1.05 1.03 1.02 1.00 0.89
ATFF 1.00 1.00 0.99 1.05 1.03 1.02 1.00 0.99

(0.04) (0.00) (0.44) (1.00) (3.00) (3.12) (0.00) (0.48)

128 BT 1.00 1.00 0.97 0.94 0.95 0.96 1.00 0.97
ATF 1.00 0.99 0.98 1.04 1.04 1.03 0.99 0.97
ATFF 1.00 1.00 1.02 1.06 1.04 1.03 1.00 1.02

(0.00) (0.08) (0.80) (1.64) (4.60) (6.16) (0.12) (0.76)

256 BT 1.00 1.00 0.95 0.92 0.93 0.95 1.00 0.95
ATF 1.00 0.91 1.08 1.09 1.06 1.05 0.90 1.08
ATFF 1.00 1.00 1.08 1.09 1.06 1.05 1.00 1.08

(0.00) (0.36) (1.00) (2.00) (6.00) (10.00) (0.36) (1.00)

AR(1)-HET1
ρ

T Estimator 0 0.3 0.5 0.7 0.9 0.95 -0.3 -0.5
64 BT 1.00 1.00 1.00 0.99 0.99 0.99 1.00 1.00

ATF 1.00 1.00 1.00 1.01 1.01 1.01 1.00 1.00
ATFF 1.00 1.00 1.00 1.01 1.01 1.01 1.00 1.00

(0.00) (0.08) (0.88) (1.44) (3.00) (3.00) (0.16) (0.92)

128 BT 1.00 1.00 0.99 0.98 0.98 0.98 1.00 0.99
ATF 1.00 0.99 1.01 1.02 1.02 1.01 0.99 1.01
ATFF 1.00 1.00 1.01 1.02 1.02 1.01 1.00 1.01

(0.00) (0.48) (1.00) (2.00) (5.00) (6.00) (0.52) (1.00)

256 BT 1.00 1.00 0.99 0.98 0.98 0.98 1.00 0.99
ATF 1.00 1.01 1.01 1.02 1.02 1.02 1.01 1.01
ATFF 1.00 1.01 1.01 1.02 1.02 1.02 1.01 1.01

(0.00) (1.00) (1.48) (3.00) (7.00) (10.76) (1.00) (1.52)

(continued on the next page)
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(continued from the previous page)

AR(1)-HET2
ρ

T Estimator 0 0.3 0.5 0.7 0.9 0.95 -0.3 -0.5
64 BT 1.00 0.99 0.99 1.00 0.98 0.98 0.99 0.99

ATF 1.00 0.99 0.99 0.96 1.02 1.02 0.99 0.99
ATFF 1.00 0.99 0.99 1.00 1.02 1.02 0.99 0.99

(0.00) (0.00) (0.00) (0.52) (2.00) (2.24) (0.00) (0.00)

128 BT 1.00 0.99 1.00 0.99 0.98 0.97 0.99 1.00
ATF 1.00 0.99 1.00 0.98 1.02 1.02 0.99 1.00
ATFF 1.00 0.99 1.00 1.00 1.02 1.02 0.99 1.00

(0.08) (0.00) (0.00) (0.76) (3.00) (5.00) (0.00) (0.00)

256 BT 1.00 0.99 1.00 0.99 0.98 0.97 0.99 1.00
ATF 1.00 0.99 0.99 1.01 1.02 1.02 0.99 0.99
ATFF 1.00 0.99 1.00 1.01 1.02 1.02 0.99 1.00

(0.08) (0.00) (0.16) (0.92) (3.68) (7.00) (0.00) (0.16)

MA(1)-HOMO
ϑ

T Estimator 0.1 0.3 0.5 0.7 0.9 0.99 -0.3 -0.7
64 BT 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99

ATF 1.00 1.00 0.99 0.94 0.91 0.91 0.99 0.94
ATFF 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99

(0.00) (0.00) (0.12) (0.28) (0.36) (0.36) (0.00) (0.28)

128 BT 1.00 1.00 0.99 0.99 0.99 0.99 1.00 0.99
ATF 1.00 1.00 0.89 0.83 0.86 0.86 1.00 0.80
ATFF 1.00 1.00 0.99 0.99 1.00 1.00 1.00 0.99

(0.00) (0.04) (0.36) (0.56) (0.60) (0.60) (0.04) (0.52)

256 BT 1.00 1.00 0.99 0.96 0.95 0.95 1.00 0.96
ATF 1.00 0.95 0.84 0.93 0.96 0.96 0.95 0.91
ATFF 1.00 1.00 1.00 1.03 1.04 1.04 1.00 1.02

(0.00) (0.24) (0.60) (0.76) (0.76) (0.80) (0.24) (0.72)

Notes:

(a) The efficiency of each estimator is the ratio of the MSE of the QS estimator to that of the estimator.

(b) The numbers in parentheses are the fixed optimum bandwidths for the ATFF estimator found by grid
search.
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Table 5

The efficiency of the BT, ATF, and ATFF estimators relative to the QS estimator using data-dependent
bandwidths.

AR(1)-HOMO
ρ

T Estimator 0 0.3 0.5 0.7 0.9 0.95 -0.3 -0.5
64 BT 0.74 0.83 0.97 0.98 0.95 0.96 0.87 1.03

ATF 1.02 0.99 1.03 1.05 1.04 1.03 0.99 1.04
ATFF 1.02 1.02 1.07 1.09 1.04 1.03 1.03 1.10

128 BT 0.72 0.86 1.00 0.98 0.94 0.94 0.88 1.03
ATF 1.04 0.96 1.07 1.06 1.05 1.04 0.97 1.07
ATFF 1.02 1.03 1.12 1.12 1.05 1.03 1.04 1.14

256 BT 0.71 0.87 0.93 0.96 0.94 0.89 0.88 0.95
ATF 1.08 0.94 1.06 1.08 1.06 1.05 0.95 1.06
ATFF 1.02 1.03 1.16 1.15 1.07 1.03 1.03 1.17

AR(1)-HET1
ρ

T Estimator 0.0 0.3 0.5 0.7 0.9 0.95 -0.3 -0.5
64 BT 0.93 0.95 0.96 0.96 0.97 0.98 0.96 0.97

ATF 1.01 1.00 1.00 1.01 1.01 1.01 1.00 1.00
ATFF 1.00 1.00 1.01 1.01 1.01 1.01 1.00 1.01

128 BT 0.96 0.97 0.98 0.96 0.96 0.97 0.98 0.98
ATF 1.01 1.00 1.01 1.01 1.01 1.01 1.00 1.01
ATFF 1.00 1.00 1.01 1.01 1.00 1.00 1.00 1.01

256 BT 0.98 0.98 0.97 0.96 0.95 0.95 0.99 0.97
ATF 1.01 1.00 1.01 1.01 1.01 1.01 1.00 1.01
ATFF 1.00 1.00 1.01 1.00 0.99 0.99 1.00 1.01

(continued on the next page)
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AR(1)-HET2
ρ

T Estimator 0.0 0.3 0.5 0.7 0.9 0.95 -0.3 -0.5
64 BT 0.99 1.01 1.05 1.04 0.97 0.98 1.02 1.09

ATF 0.99 0.99 0.98 1.00 1.02 1.02 0.99 0.98
ATFF 1.00 1.00 1.00 1.02 1.02 1.02 0.99 1.01

128 BT 0.98 1.01 1.08 1.06 0.99 0.97 1.03 1.10
ATF 0.99 0.98 0.98 0.99 1.01 1.02 0.98 0.98
ATFF 1.00 0.99 1.00 1.04 1.02 1.01 0.99 1.01

256 BT 0.98 1.01 1.06 1.06 1.05 0.96 1.02 1.06
ATF 0.99 0.97 0.98 0.99 1.01 1.02 0.97 0.98
ATFF 1.00 0.99 1.01 1.06 1.03 1.01 0.99 1.02

MA(1)-HOMO
ϑ

T Estimator 0.1 0.3 0.5 0.7 0.9 0.99 -0.3 -0.7
64 BT 0.75 0.82 0.90 0.95 0.96 0.96 0.84 0.98

ATF 1.02 0.99 0.98 1.00 1.01 1.01 0.98 0.99
ATFF 1.02 1.02 1.03 1.04 1.05 1.05 1.02 1.05

128 BT 0.73 0.83 0.93 0.97 0.99 0.99 0.85 1.00
ATF 1.04 0.96 0.98 1.04 1.05 1.05 0.96 1.03
ATFF 1.02 1.02 1.03 1.06 1.08 1.08 1.02 1.07

256 BT 0.72 0.84 0.92 0.94 0.95 0.95 0.85 0.96
ATF 1.05 0.91 1.04 1.09 1.09 1.08 0.91 1.09
ATFF 1.02 1.02 1.04 1.11 1.13 1.14 1.02 1.11

See the notes of Table 4.
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Table 6

The size in the t-test of the exclusion of xt2.

AR(1) MA(1)-HOMO
HOMO HET1 HET2

Estimator ρ 10% 5% 10% 5% 10% 5% ϑ 10% 5%
QS 0 11.44 6.08 12.92 6.98 12.19 6.79 0.1 11.71 6.23
BT 12.47 6.99 14.02 8.00 13.30 7.61 12.87 7.07
ATF 11.22 5.78 12.59 6.79 11.98 6.57 11.54 6.02
ATFF 11.41 6.09 12.92 7.02 12.20 6.73 11.71 6.20

QS 0.3 13.13 7.24 14.46 8.27 13.98 7.86 0.3 12.65 6.95
BT 14.02 8.12 15.80 9.34 15.03 8.92 13.66 7.93
ATF 13.05 7.22 14.40 8.24 13.85 7.80 12.63 6.96
ATFF 12.98 7.18 14.31 8.21 13.90 7.82 12.53 6.84

QS 0.5 15.49 9.28 17.09 10.65 16.59 10.00 0.5 13.63 7.61
BT 16.97 10.61 18.76 12.02 17.95 11.14 14.89 8.61
ATF 14.91 8.85 16.72 10.29 16.31 9.70 13.02 7.21
ATFF 15.10 8.92 16.88 10.36 16.31 9.82 13.13 7.28

QS 0.7 19.95 13.10 22.18 14.85 21.57 13.95 0.7 13.98 8.09
BT 23.20 15.81 25.14 17.31 23.74 15.82 15.48 9.31
ATF 19.13 12.46 21.65 14.48 21.17 13.49 13.03 7.23
ATFF 19.65 12.83 22.26 14.78 21.38 13.74 13.23 7.44

QS 0.9 34.52 26.65 37.20 28.97 35.63 27.38 0.9 14.04 8.15
BT 38.48 30.36 41.12 32.76 38.57 30.38 15.70 9.51
ATF 33.10 25.24 36.24 28.16 34.82 26.64 13.00 7.28
ATFF 34.03 26.11 37.58 29.20 35.80 27.45 13.20 7.42

QS 0.95 45.90 38.05 45.69 38.14 44.60 36.48 0.95 14.08 8.17
BT 49.11 41.46 49.81 42.20 47.64 39.56 15.73 9.48
ATF 43.83 36.26 44.87 37.16 43.43 35.22 13.01 7.28
ATFF 44.44 36.96 46.02 38.48 44.37 36.18 13.23 7.46

QS -0.3 12.60 7.14 14.13 8.23 13.27 7.55 -0.3 12.16 6.82
BT 13.68 7.96 15.33 9.24 14.30 8.49 13.25 7.66
ATF 12.49 7.02 14.04 8.26 13.15 7.50 12.14 6.82
ATFF 12.48 6.96 14.06 8.18 13.07 7.51 12.08 6.73

QS -0.5 14.66 8.78 16.45 10.01 15.62 9.33 -0.5 13.18 7.71
BT 16.39 10.18 18.22 11.44 17.15 10.39 14.81 8.80
ATF 14.29 8.48 16.29 9.75 15.30 9.02 12.33 6.93
ATFF 14.38 8.51 16.32 9.86 15.43 9.14 12.52 7.11
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