
COHERENT APPROACHES TO RISK IN
OPTIMIZATION UNDER UNCERTAINTY

Terry Rockafellar
University of Washington, Seattle
University of Florida, Gainesville

Goal: a coordinated view of recent ideas in risk modeling
stimulated in part by applications in finance but
equally promising for applications in engineering



Uncertainty in Optimization

Decisions (optimal?) must be taken before the facts are all in

A bridge must be built to withstand floods, wind storms or
earthquakes

A portfolio must be purchased with incomplete knowledge of
how it will perform

A product’s design constraints must be viewed in terms of
“safety margins”

What are the consequences for optimization?
How may this affect the way problems are formulated and solved?

How can “risk” properly be taken into account, with attention paid
to the attitudes of the optimizer?

How should the future, where the essential uncertainty resides, be
modeled with respect to decisions and information?



The Fundamental Difficulty Caused by Uncertainty

with simple modeling of the future

A standard form of optimization problem without uncertainty:

minimize c0(x) over all x ∈ S satisfying ci (x) ≤ 0, i = 1, . . . ,m
for a set S ⊂ IRn and functions ci : S 7→ IR

Incorporation of future states ω ∈ Ω in the model:
the decision x must be taken before ω is known

Choosing x ∈ S no longer fixes numerical values ci (x), but only
fixes functions on Ω: c i (x) : ω 7→ ci (x , ω), i = 0, 1, . . . ,m

Optimization objectives and constraints must be reconstrued in
terms of such functions, but how? There is no universal answer. . .

Various approaches: old/new? good/bad? yet to be discovered?
Adaptations to attitudes about “risk”?



Example: Linear Programming Context

Problem without uncertainty: ci (x) = ai1x1 + · · · ainxn − bi

minimize a01x1 + · · · a0nxn − b0 over x = (x1, . . . , xn) ∈ S
subject to ai1x1 + · · · ainxn − bi ≤ 0 for i = 1, . . . ,m,
where S =

{
x

∣∣ x1 ≥ 0, . . . , xn ≥ 0 & other conditions?
}

Effect of uncertainty: ci (x , ω) = ai1(ω)x1 + · · · ain(ω)xn − bi (ω)

Portfolio illustration with financial instruments j = 1, . . . , n

rj(ω) = rate of return, xj = weight in the portfolio
portfolio rate of return = x1r1(ω) + · · ·+ xnrn(ω)

Constraints: x ∈ S =
{
(x1, . . . , xn)

∣∣ xj ≥ 0, x1 + · · ·+ xn = 1
}

Uncertain ingredients to incorporate in optimization model:
c0(x , ω) = −[x1r1(ω) + · · ·+ xnrn(ω)]

(conversion to “cost” orientation for minimization)
c1(x , ω) = q(ω)− [x1r1(ω) + · · ·+ xnrn(ω)], q = benchmark

(shortfall below benchmark, desired outcome ≤ 0)



Probabilistic Framework — Random Variables

Future state space Ω modeled with a probability structure:
(Ω,A,P), P =probability measure

“true”? “subjective”? or merely for reference?

Functions X : Ω→ IR interpreted then as random variables:
cumulative distribution function FX : (−∞,∞)→ [0, 1]

FX (z) = P
{
ω

∣∣ X (ω) ≤ z
}

expected value EX = mean value =µ(X )
variance σ2(X ) = E [ (X − µ(X ))2], standard deviation σ(X )

Technical restriction adopted here: X ∈ L2, meaning E [X 2] <∞
Corresponding convergence criterion as k = 1, 2, . . .∞:

Xk → X ⇐⇒ µ(Xk − X )→ 0 and σ(Xk − X )→ 0

The functions c i (x) : ω → ci (x , ω) are placed now in this picture:
choosing x ∈ S yields random variables c 0(x), c 1(x), . . . , c m(x)



No-Distinction Principle for Objectives and Constraints

Is there an intrinsic reason why uncertainty/risk in an objective
should be treated differently than uncertainty/risk in a constraint?

NO, because of well known, elementary reformulations
Given an optimization problem in standard format:

minimize c0(x) over x ∈ S with ci (x) ≤ 0, i = 1, . . . ,m

augment x = (x1, . . . , xn) by another variable xn+1, and in terms of
x̃ = (x , xn+1) ∈ S̃ = S × IR,
c̃i (x̃) = ci (x) for i = 1, . . . ,m,
c̃0(x̃) = xn+1, c̃m+1(x̃) = c0(x)− xn+1

pass equivalently to the reformulated problem:

minimize c̃0(x̃) over x̃ ∈ S̃ with c̃i (x̃) ≤ 0, i = 1, . . . ,m,m + 1

Uncertainty in c0, c1, . . . , cm will not affect the objective with c̃0.
It will only affect the constraints with c̃1, . . . , c̃m, c̃m+1.



Some Traditional Approaches

Aim: recapturing optimization in the face of c i (x) : ω → ci (x , ω)
each approach followed uniformly, for emphasis in illustration

Approach 1: guessing the future

• identify ω̄ ∈ Ω as the “best estimate” of the future
• minimize over x ∈ S :

c0(x , ω̄) subject to ci (x , ω̄) ≤ 0, i = 1, . . . ,m
• pro/con: simple and attractive, but dangerous—no hedging

Approach 2: worst-case analysis, “robust” optimization

• focus on the worst that might come out of each c i (x):
• minimize over x ∈ S :

sup
ω∈Ω

c0(x , ω) subject to sup
ω∈Ω

ci (x , ω) ≤ 0, i = 1, . . . ,m

• pro/con: avoids probabilities, but expensive—maybe infeasible



Approach 3: relying on means/expected values

• focus on average behavior of the random variables c i (x)
• minimize over x ∈ S :

µ(c 0(x)) = Eωc0(x , ω) subject to
µ(c i (x)) = Eωci (x , ω) ≤ 0, i = 1, . . . ,m

• pro/con: common for objective, but foolish for constraints?

Approach 4: safety margins in units of standard deviation

• improve on expectations by bringing standard deviations into
consideration
• minimize over x ∈ S : for some choice of coefficients λi > 0

µ(c 0(x)) + λ0 σ(c 0(x)) subject to
µ(c i (x)) + λi σ(c i (x)) ≤ 0, i = 1, . . . ,m

• pro/con: looks attractive, but a serious flaw will emerge

The idea here: find the lowest z such that, for some x ∈ S ,
c 0(x)− z , c 1(x), . . . , c m(x) will be ≤ 0 except in λi -upper tails



Approach 5: specifying probabilities of compliance

• choose probability levels αi ∈ (0, 1) for i = 0, 1, . . . ,m
• find lowest z such that, for some x ∈ S , one has

P
{
c 0(x) ≤ z

}
≥ α0, P

{
c i (x) ≤ 0

}
≥ αi for i = 1, . . . ,m

• pro/con: popular and appealing, but flawed and controversial
• no account is taken of the seriousness of violations
• technical issues about the behavior of these expressions

Example: with α0 = 0.5, the median of c 0(x) would be minimized

Additional modeling ideas:
• Staircased variables: c i (x) propagated to c k

i (x) = c i (x)− dk
i

for a series of thresholds dk
i , k = 1, . . . , r with different compliance

conditions placed on having these “subvariables” c k
i (x) be ≤ 0

• Expected penalty expressions like E [ψ(c 0(x)) ]
• Stochastic programming, dynamic programming



Quantification of Risk

How can the “risk” be measured in a random variable X?
orientation: X (ω) stands for a “cost” or loss
negative costs correspond to gains/rewards

• Idea 1: assess the “risk” in X in terms of how uncertain X is:
−→ measures D of deviation from constancy

• Idea 2: capture the “risk” in X by a numerical surrogate for
overall cost/loss: −→ measures R of potential loss

−→ our concentration, for now, will be on Idea 2

A General Approach to Uncertainty in Optimization

In the context of the numerical values ci (x) ∈ IR being replaced by
random variables c i (x) ∈ L2 for i = 0, 1, . . . ,m:
• choose measures Ri of the risk of potential loss,
• define the functions c̄i on IRn by c̄i (x) = Ri (c i (x)), and then
• minimize c̄0(x) over x ∈ S subject to c̄i (x) ≤ 0, i = 1, . . . ,m.



Basic Guidelines

For a functional R that assigns to each random “cost” X ∈ L2 a
numerical surrogate R(X ) ∈ (−∞,∞], what axioms?

Definition of coherency

R is a coherent measure of risk in the basic sense if
(R1) R(C ) = C for all constants C
(R2) R((1− λ)X + λX ′) ≤ (1− λ)R(X ) + λR(X ′)

for λ ∈ (0, 1) (convexity)
(R3) R(X ) ≤ R(X ′) when X ≤ X ′ (monotonicity)
(R4) R(X ) ≤ c when Xk → X with R(Xk) ≤ c (closedness)
(R5) R(λX ) = λR(X ) for λ > 0 (positive homogeneity)

R is a coherent measure of risk in the extended sense if it satisfies
(R1)–(R4), not necessarily (R5)

(from ideas of Artzner, Delbaen, Eber, Heath 1997/1999)

(R1)+(R2)⇒ R(X +C ) = R(X )+C for all X and constants C
(R2)+(R5) ⇒ R(X + X ′) ≤ R(X ) +R(X ′) (subadditivity)



Associated Criteria for Risk Acceptability

For a “cost” random variable X , to what extent should outcomes
X (ω) > 0, in constrast to outcomes X (ω) ≤ 0, be tolerated?

There is no single answer—this has to depend on preferences!

Preference-based definition of acceptance

Given a choice of a risk measure R:
the risk in X is deemed acceptable when R(X ) ≤ 0

(examples to come will illuminate this concept of Artzner et al.)

Notes:
from (R1): R(X ) ≤ c ⇐⇒ R(X − c) ≤ 0
from (R3): R(X ) ≤ supX for all X ,

so X is always acceptable when sup X ≤ 0
(i.e., when there is no chance of an outcome X (ω) > 0)



Consequences of Coherency for Optimization

For i = 0, 1, . . . ,m let Ri be a coherent measure of risk in the
basic sense, and consider the reconstituted problem:

minimize c̄0(x) over x ∈ S with c̄i (x) ≤ 0 for i = 1, . . . ,m
where c̄i (x) = Ri (c i (x)) for c i (x) : ω → ci (x , ω)

Key properties

(a) (preservation of convexity) If ci (x , ω) is convex with
respect to x , then the same is true for c̄i (x)

(so convex programming models persist)
(b) (preservation of certainty) If ci (x , ω) is a value ci (x)

independent of ω, then c̄i (x) is that same value
(so features not subject to uncertainty are left undistorted)

(c) (insensitivity to scaling) The optimization problem is
unaffected by rescaling of the units of the ci ’s.

(a) and (b) still hold for coherent measures in the extended sense



Coherency or Its Lack in Traditional Approaches

Assessing the risk in each c i (x) as Ri (c i (x)) for a choice of Ri

The case of Approach 1: guessing the future

Ri (X ) = X (ω̄) for a choice of ω̄ ∈ Ω with prob > 0
Ri is coherent—but open to criticism

c i (x) is deemed to be risk-acceptable if merely ci (x , ω̄) ≤ 0

The case of Approach 2: worst case analysis

Ri (X ) = sup X
Ri is coherent—but very conservative

c i (x) is risk-acceptable only if ci (x , ω̄) ≤ 0 with prob = 1

The case of Approach 3: relying on expectations

Ri (X ) = µ(X ) = EX
Ri is coherent—but perhaps too “feeble”

c i (x) is risk-acceptable as long as ci (x , ω̄) ≤ 0 on average



The case of Approach 4: standard deviation units as safety margins

Ri (X ) = µ(X ) + λiσ(X ) for some λi > 0
Ri is not coherent: the monotonicity axiom (R3) fails!

=⇒ c i (x) could be deemed more costly than c i (x
′)

even though ci (x , ω) < ci (x
′, ω) with probability 1

c i (x) is risk-acceptable as long as the mean µ(c i (x)) lies
below 0 by at least λi times the amount σ(c i (x))

The case of Approach 5: specifying probabilities of compliance

Ri (X ) = qαi
(X ) for some αi ∈ (0, 1), where

qαi
(X ) = αi -quantile in the distribution of X

(to be explained)
Ri is not coherent: the convexity axiom (R2) fails!

=⇒ for portfolios, this could run counter to “diversification”
c i (x) is risk-acceptable as long as ci (x , ω) ≤ 0 with prob ≥ αi

What further alternatives, remedies?



Quantiles and Conditional Value-at-Risk

α-quantile for X : qα(X ) = min
{
z

∣∣ FX (z) ≥ α
}

value-at-risk: VaRα(X ) same as qα(X )
conditional value-at-risk: CVaRα(X ) = α-tail expectation of X

= 1
1−α

∫ 1
α VaRβ(X )dβ ≥ VaRα(X )

THEOREM R(X ) = CVaRα(X ) is a coherent measure of risk!

CVaRα(X )↗ supX as α↗ 1, CVaRα(X )↘ EX as α↘ 0



CVaR Versus VaR in Modeling

P
{
X ≤ 0

}
≤ α ⇐⇒ qα(X ) ≤ 0 ⇐⇒ VaRα(X ) ≤ 0

Approach 5 recast: specifying probabilities of compliance

• focus on value-at-risk for the random variables c i (x)
• minimize VaRα0(c 0(x)) over x ∈ S subject to

VaRαi (c i (x)) ≤ 0, i = 1, . . . ,m
• pro/con: seemingly natural, but “incoherent” in general

Approach 6: safeguarding with conditional value-at-risk

• conditional value-at-risk instead of value-at-risk for each c i (x)
• minimize CVaRα0(c 0(x)) over x ∈ S subject to

CVaRαi (c i (x)) ≤ 0, i = 1, . . . ,m
• pro/con: coherent! also more cautious than value-at-risk

extreme cases: “αi = 0” ∼ expectation, “αi = 1” ∼ supremum



Some Elementary Portfolio Examples

securities j = 1, . . . , n with rates of return r j and weights xj

S =
{
x = (x1, . . . , xn)

∣∣ xj ≥ 0, x1 + · · ·+ xn = 1
}

rate of return of x-portfolio: r (x) = −[x1r 1 + · · ·+ xnr n]
c 0(x) = −r (x), c 1(x) = q − r (x) with q ≡ −0.04 here

Problems 1(a)(b)(c): expectation objective, CVaR constraints

(a) minimize E [c 0(x)] over x ∈ S
(b) minimize E [c 0(x)] over x ∈ S subject to CVaR0.8(c 1(x)) ≤ 0
(b) minimize E [c 0(x)] over x ∈ S subject to CVaR0.9(c 1(x)) ≤ 0

Problems 2(a)(b)(c): CVaR objectives, no benchmark constraints

(a) minimize E [c 0(x)] over x ∈ S E [c 0(x)] = CVaR0.0(c 0(x))
(b) minimize CVaR0.8(c 0(x)) over x ∈ S
(c) minimize CVaR0.9(c 0(x)) over x ∈ S



Portfolio Rate-of-Loss Contours, Problems 1(a)(b)(c)

Solutions computed with Portfolio Safeguard software, available
for evaluation from American Optimal Decisions www.AOrDa.com

Results for Problem 1(a)

Solution vector: the portfolio weights for four different stocks
Note that in this case all the weight goes to the risky fourth stock



Results for Problems 1(b) and 1(c)



Portfolio Rate-of-Loss Contours, Problems 2(a)(b)(c)

Solutions computed with Portfolio Safeguard software, available
for evaluation from American Optimal Decisions www.AOrDa.com

Results for Problem 2(a), same as Problem 1(a)

Solution vector: the portfolio weights for four different stocks
Again, in this case all the weight goes to the risky fourth stock



Results for Problems 2(b) and 2(c)



Minimization Formula for VaR and CVaR

CVaRα(X ) = min
C∈IR

{
C + 1

1−αE
[
max{0,X − C}

]}
VaRα(X ) = lowest C in the interval giving the min

min values behave better parametrically than minimizing points!

Application to CVaR optimization: convert a problem like
minimize CVaRα0(c 0(x)) over x ∈ S subject to

CVaRαi (c i (x)) ≤ 0, i = 1, . . . ,m

into a problem for x ∈ S and auxiliary variables C0,C1, . . . ,Cm:

minimize C0 + 1
1−α0

E
[
max{0, c 0(x)− C0}

]
while requiring

Ci + 1
1−αi

E
[
max{0, c i (x)− Ci}

]
≤ 0, i = 1, . . . ,m

Important case: this converts to linear programming when
(1) each ci (x , ω) depends linearly on x ,
(2) the future state space Ω is finite

(as is common in financial modeling, for instance)



Further Modeling Possibilities

additional sources of coherent measures of risk

Coherency-preserving combinations of risk measures

(a) If R1, . . . ,Rr are coherent and λ1 > 0, . . . , λr > 0 with
λ1 + · · ·+ λr = 1, then
R(X ) = λ1R1(X ) + · · ·+ λrRr (X ) is coherent

(b) If R1, . . . ,Rr are coherent, then

R(X ) = max
{
R1(X ), . . . ,Rr (X )

}
is coherent

Example: R(X ) = λ1CVaRα1(X ) + · · ·+ λrCVaRαr (X )

Approach 7: safeguarding with CVaR mixtures

The CVaR approach already considered can be extended by
replacing single CVaR expressions with weighted combinations

“Continuous sums” are available too and relate to “risk profiles”



Risk Measures From Subdividing the Future

“robust” optimization modeling revisited with Ω subdivided

λk > 0 for k = 1, . . . , r , λ1 + · · ·+ λr = 1

R(X ) = λ1 sup
ω∈Ω1

X (ω) · · ·+ λr sup
ω∈Ωr

X (ω) is coherent

Approach 8: distributed worst-case analysis

Extend the ordinary worst-case model
minimize sup

ω∈Ω
c0(x , ω) subject to sup

ω∈Ω
ci (x , ω) ≤ 0 , i = 1, . . . ,m

by distributing each supremum over subregions of Ω, as above



Safety Margins Reconsidered

Traditional approach to an expected cost EX being safely below 0:
EX + λσ(X ) ≤ 0 for some λ > 0 scaling the “safety”

but R(X ) = EX + λσ(X ) is not coherent
Can the coherency be restored if σ(X ) is replaced by some D(X )?

General deviation measures for quantifying uncertainty

D is a measure of deviation (in the basic sense) if
(D1) D(X ) = 0 for X ≡ C constant, D(X ) > 0 otherwise
(D2) D((1− λ)X + λX ′) ≤ (1− λ)D(X ) + λD(X ′)

for λ ∈ (0, 1) (convexity)
(D3) D(X ) ≤ c when Xk → X with D(Xk) ≤ c (closedness)
(D4) D(λX ) = λD(X ) for λ > 0 (positive homogeneity)

It is a coherent measure of deviation if it also satisfies
(D5) D(X ) ≤ supX − EX for all X

deviation measures in the extended sense: (D4) dropped



Risk Measures Paired With Deviation Measures

R is a loss-averse measure of risk if it satisfies the axioms for
coherency, except perhaps (R3) (monotonicity), and

(R6) R(X ) > EX for all nonconstant X (aversity)

THEOREM A one-to-one correspondence D ↔ R between
deviation measures D and loss-averse measures R is furnished by

R(X ) = EX +D(X ), D(X ) = R(X − EX )
and moreover R is coherent ⇐⇒ D is coherent

Approach 9: safety margins with coherency

• replace standard deviation by coherent deviation measures Di

• minimize over x ∈ S : for some choice of coefficients λi > 0
E [c 0(x)] + λ0D0(c 0(x)) subject to

E [c i (x)] + λi Di (c i (x)) ≤ 0, i = 1, . . . ,m
• pro/con: coherency in the model has been restored



Risk Envelope Characterization of Coherency

A subset Q of L2 is a coherent risk envelope is it is nonempty,
closed and convex, and Q ∈ Q =⇒ Q ≥ 0, EQ = 1

Interpretation: Any such Q is the “density” relative to the
underlying probability measure P on Ω of an alternative
probability measure P ′ on Ω : EP′ [X ] = E [XQ]

[specifying Q] ←→ [specifying a comparison set of measures P ′]

THEOREM: There is a one-to-one correspondence R↔ Q
between coherent measures of risk R (in the basic sense) and
coherent risk envelopes Q, which is furnished by the relations
R(X ) = sup

Q∈Q
E [XQ], Q =

{
Q

∣∣ E [XQ] ≤ R(X ) for all X
}

Some examples: R(X ) = EX ↔ Q = {1}
R(X ) = sup X ↔ Q =

{
all Q ≥ 0 with EQ = 1

}
R(X ) = CVaRα(X ) ↔ Q =

{
all Q ≥ 0 with Q ≤ α−1, EQ = 1

}
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A written version of this talk, with additional theory and a list of
references, can be downloaded from the web site:

www.math.washington.edu/∼rtr/mypage.html

Look under lecture notes for: “Coherent Approaches to Risk”

There is software currently available for linear-programming-based
optimization under uncertainty with full risk modeling capabilities:

www.aorda.com

free trial packages can be downloaded


