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Tensor categories
Let k be a field.

A tensor category over k is a k-linear abelian rigid monoidal
category C where:

» Hom spaces are finite dimensional.

» Objects have finite length.

» The monoidal product ® : C x C — C is k-bilinear.

» The unit object J is scalar.

If C is a tensor category, ® is bi-exact and ¥ is simple.

A tensor category C is finite if it is finite as a k-linear abelian
category.

A tensor functor F : C — D is a k-linear exact strong monoidal
functor.

A tensor functor preserves duals. Moreover it is automatically
faithful.
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Normal tensor functors
Let F : C — D be a tensor functor.

F is dominant if any object Y of D is a subobject of F(X), for
some X in C.

Rerp := F~1((¥)) C C: full tensor subcategory of objects X of C
such that F(X) is a trivial object of D.

Definition

A tensor functor F : C — D is normal if for any object X of C,
there exists a subobject Xy C X, such that F(Xp) is the largest
trivial subobject of F(X).

Characterizations:

» Suppose F admits a right (or left) adjoint R. Then:
F is normal < R(¥) belongs to Ketr.

» Suppose C, D are fusion categories. F is normal iff
v simple object X, Hom(¥, F(X)) # 0 = X € Retr.
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Exact sequences of tensor categories
Let C’,C,C" be tensor categories over k.

A sequence of tensor functors
¢tLcher
is an exact sequence of tensor categories if the following hold:

» The tensor functor F is dominant and normal;
» The tensor functor f is a full embedding;
» The essential image of f is Ketf;

Comments
» F :C — C" normal dominant ~ exact sequence
F A
Retp - C —C".
» Suppose C’ el e exact=3Ja Hopf algebra H st:

C' ~ comod-H.



Group extensions

Let
1-G@ 5G5 G —~1

be an exact sequence of finite groups.



Group extensions

Let
1-G@ 5G5 G —~1

be an exact sequence of finite groups.

This gives rise to exact sequences of tensor categories:



Group extensions

Let
160G 5G5 G —1

be an exact sequence of finite groups.

This gives rise to exact sequences of tensor categories:

repG X repG S rep G'.



Group extensions

Let
160G 5G5 G —1

be an exact sequence of finite groups.

This gives rise to exact sequences of tensor categories:
repG SrepGSrep G

and



Group extensions

Let
1-G@ 5G5 G —~1

be an exact sequence of finite groups.

This gives rise to exact sequences of tensor categories:
repG X repG S rep G'.
and

C(G") — C(G) — C(G),



Group extensions

Let
1-G@ 5G5 G —~1

be an exact sequence of finite groups.

This gives rise to exact sequences of tensor categories:
repG X repG S rep G'.
and

C(G") — C(G) — C(G),

where C(G): finite dimensional G-graded vector spaces over k.
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Equivariantization
Let C be a tensor category over k, G a group.

Aut, C: tensor autoequivalences of C and monoidal natural
transformations.

G: G and identities as only morphisms.
An action of G on C is a strong monoidal functor

p:G— Aut.C.
A G-equivariant object is a pair (X, u), where:

» X is an object of C, and
> U= (Uu9)geg, U9 : p9X — X is an isomorphism st:
uIp9(u) = u9"pd". Wg.he G,

Uipox = idx .

A G-equivariant morphism f : (X, u) — (Y, v) is @ morphism
f: X = Yst fug = vyf, Vg € G.
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CC: the G-equivariantization of C.
G-equivariant objects and G-equivariant morphisms.

CC is a tensor category and the forgetful functor
u:ct-c
is a normal dominant tensor functor.

Example
Let G be a group and let p the trivial action of G on vecy.

Then

(veck)® =rep G.

Equivariantization gives rise canonically to an exact sequence

repG — C% - C.
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Some properties of exact sequences

Proposition
Letc' % ¢ £ ¢ be an exact sequence of tensor categories,
with induced Hopf algebra H.

The following are equivalent:
» The functor F has adjoints;
» The tensor category C' is finite;

» The Hopf algebra H is finite-dimensional.
In particular, if C' and C" are finite, so is C.
A fusion category C is integral if FPdim X € Z, VX € Irr(C).
C is weakly integral if FPAimC = 3y (¢ (FPdim X)? € Z.
Proposition

LetC’ — C — C” be an exact sequence of fusion categories.
Then C is (weakly) integral iff C" is (weakly) integral.
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Proposition

LetC,C’, C" be fusion categories, i : C' — C, F : C — C”, tensor
functors. Assume that F is dominant, i is full and i(C) C Retf.

Then FPdimC > FPdimC’ FPdimC".

Moreover, the sequence
cheher
is exact iff FPdim C = FPdimC’ FPdimC”.

If so, then ¥ simple object Y € C”,

1

> my(F(X))FPdim X,
Xelrr(C)

where my(F(X)) = dimHom¢~ (Y, F(X)).
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Let C be a monoidal category. A monad T on C is an algebra
T € End(C):
p:T? =T, n:ide — T.

CT: T-modules in C. Objects: (X, r), X €C, r: T(X) — X, st:
rT(r) = rux, rmx =idy.

Consider the forgetful functor ¢/ : CT — C.

A monad T is a bimonad iff CT is a monoidal category st/ is
strict monoidal.

Equivalently, T is a comonoidal endofunctor:
(X, Y): TX®Y)=>T(X)T(Y), To:TW)—WK,

vX,Y € C, satisfying:
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(T2(X, Y)®idr(z)) T2(X®@Y, Z) = (id7(x) @T2(Y, 2)) T2(X, Y®2Z),

(idrx) @To) T2(X, ) = id7(x) = (To @ id7(x)) T2(, X),
and st i, n are monoidal transformations, that is:

To(X, V)uxey = (ux @ py) T2(T(X), T(Y)) T(T2(X, Y)),
Tope = ToT(To), Tao(X,Y)nxey =nx ®@ny, Tome =idg.

Suppose C is rigid.
A bimonad T on C is a Hopf monad if C is rigid.
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Example

Let C ~ veck. If H is a finite dimensional Hopf algebra over k,
then H®? : C — C is a k-linear Hopf monad on C.

H — H®? defines an equivalence of categories between:

» Finite dimensional Hopf algebras over k, and
» k-linear Hopf monads on C.

Proposition
LetC be a tensor category over k, T a k-linear right exact Hopf
monad on C. Then:

CT is a tensor category over k and the forgetful functor
U:CcT — Cis atensor functor.
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Monadicity

Let F: C — D be a tensor functor st F admits a left adjoint G.

Then the adjunction G+ F is monadic: T = FG is a Hopf
monad on D and we have

C~ DT,
as tensor categories.

If C, D are finite tensor categories = F admits a left adjoint.

Therefore in this case F is monadic.
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Main theorem

Definition

Let C be a tensor category.

A k-linear right exact Hopf monad T on C is normal if T(¥) is a
trivial object of C.

The following theorem classifies extensions of tensor
categories in terms of Hopf monads.

Theorem
LetC’, C" be tensor categories over a field k st C’ is finite.
The following data are equivalent:
» A normal faithful k-linear right exact Hopf monad T on C”,
with Ty, = H, stC' ~ comod-H;
» An extensionC' — C — C" of C" by C’ with induced Hopf
algebra H.
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Equivariantization revisited

Let C be a tensor category over k.
Let p : G — Aut,C be an action of a finite group G on C. Then:

» The k-linear exact endofunctor

Tp:@pg

geG

is canonically a Hopf monad on C;
» There is a canonical isomorphism:

cG~cT.

» The Hopf monad T7 is faithful, normal, and cocommutative.
» The induced Hopf algebra of T is kC.
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Hopf monad of a group extension
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Hopf monad of a group extension
Let1 - G’ % G G — 1 be an exact sequence of finite
groups.

Then we have an exact sequence:

repG 5 rep G S rep G'.
Identify: G" < G, G = G/G".
Then i* = Res$, (restriction functor).

The induction functor Indg,, :rep G” — rep G is left adjoint to
Res§,.

Let Y be a kG"-module. Then:
T(Y) =Res&, Ind&,(Y) ~ @.,ca"Y,

where 7Y denotes the kG”-module conjugated to Y. (Mackey’s
Subgroup Theorem.)

In fact, conjugation under v € G' = G/G" defines an action of
G on rep G” by tensor autoequivalences.
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The Frobenius-Perron index of a dominant tensor functor
F : C — D between fusion categories is:

FPind(F) = FPind(C : D) = m.

FPind(F) is an algebraic integer.

Theorem

Suppose char k = 0. LetC, D be fusion categories over k and
let F : C — D be a dominant tensor functor. If FPind(C : D) = 2,
then F is an equivariantization.

Theorem

Suppose char k = 0. LetC, D be fusion categories over k stC is
weakly integral. Let F : C — D be a dominant tensor functor. If
FPind(C : D) = p, where p is the smallest prime divisor of
FPdimC, then F is an equivariantization.



References

[§ A.Bruguiéres, S. Natale.
Exact sequences of tensor categories.
Int. Math. Res. Not. 2011 (24) 5644-5705, 2011.

[§ A.Bruguiéres, S. Natale.
Central exact sequences of tensor categories,
equivariantizations and applications.
Preprint arxiv:1112.3135, 2011.

[@ A.Bruguiéres, S. Lack, A. Virelizier.
Hopf monads on monoidal categories.
Adv. Math. 227 745-800, 2011.



	Exact sequences of tensor categories
	Definitions
	Examples

	Exact sequences and Hopf monads
	Classification of exact sequences
	Applications


