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Blocks, Characters

Consider:
(K/Qp,R, k) = p-modular system

RG → KG

Z (RG )→ Z (KG )

A primitive idempotent in Z (RG ) becomes a sum of primitive
idempotents in Z (KG ).

Obtain: Blocks of irreducible characters of G .

I What do irreducibles in same block have in common?

I How many irreducibles appear in a given block?

I In what terms can we expect answers to questions like this?
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Defect Groups

If H ⊆ G , there is natural map

TrGH : (RG )H → (RG )G = Z (RG )

α 7→
∑

g∈G/H

g−1αg

If e is a block idempotent, D is called a defect group of e if D is
minimal such that

e = TrGD(β) for some β ∈ (RG )D .

Fact: D is determined up to conjugacy by e.
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Heights

Let χ be an irreducible character associated to e:

χ(1) = χ(e) = χ(TrGD(β)) = |G : D|χ(β).

Let |G |p = pa, and |D| = pd . Then

χ(1)p = pa−d+h

and h is called the height of χ.

Brauer’s Height Zero Conjecture:

h = 0 for all χ in e if and only if D is abelian.
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Lattices, Vertices, Sources

An RG -lattice is an RG -module that is free of finite rank over R.

I Let M̂ be a KG -module affording χ.

I Use a K -basis of M̂ to generate an RG -lattice, M.

I Let V be subgroup minimal such that

IndG
V (S) ∼= M ⊕ . . . for some RV -lattice S

Green:

I V is determined up to conjugacy by (isomorphism class of) M.

I The isomorphism class of S is determined up to conjugacy by
NG (V ).

I Can choose V ⊆ D.
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Knörr 1978

Again: V is minimal subgroup such that

IndG
V (S) ∼= M ⊕ . . . for some RV -lattice S .

Theorem
Let χ be irreducible, and M, V , D, and S as above. Then

h = height of χ = ν|D : V |+ ν(rank(S)).

Theorem
With the same assumptions

CD(V ) ⊆ V .

So if D is abelian, then V = D.
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Knörr 1988

Definition
Let L be an indecomposable RH-lattice. Let A = EndRH(L).

Assume that A = R · IdL + J(A).
Then L is a Knörr lattice if

trace(J(A)) 6= trace(A) ⊆ R

Examples:

I L affords an absolutely irreducible character.

I rank(L) is not divisible by p.

Theorem
The source of a Knörr lattice is itself a Knörr lattice.

Question:

I Can an abelian p-group have a Knörr lattice of rank divisible
by p?
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by p?
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Knörr 1988, example

Let R = Z2[21/3] and D = C2 × C2 × C2 × C2.

THEN: there is a rank 6 Knörr RD-lattice (gives four explicit 6× 6
matrices).



But...

The group Gal(Q2(21/3, ζ3)/Q2) is not abelian, yet χ can be
afforded by a KG module in which K/Q2 is cyclotomic!

Conclude: Knörr’s example does not count!
Conclude: Knörr’s strategy is still alive!

Specifically, if a positive height irreducible character of some finite
group in a 2-block with elementary abelian 16 defect group exists,
THEN a Knörr lattice of even rank defined over a cyclotomic
extension of Z2 exists. And Knörr does not display such a lattice.
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A better splitting field

Facts:

I Associated to χ is a division algebra component ∆ of the
group algebra QpG .

I Qp ⊆ Z (∆) ∼= Qp(χ) ⊆ K ′ ⊆ ∆, where K ′ is a maximal
subfield.

I There is a K ′G -module affording χ for each choice of K ′.

I There is a K ′ which is unramified over Z (∆) ∼= Qp(χ).

Also (Green/Brauer)

I If g ∈ G and gp is not conjugate to an element of D, then
χ(g) = 0.
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A better splitting field

Lemma
Let

K = Qp(all p′ roots of unity, ζpm)

where pm is the exponent of D. Let R be the valuation ring of K .
Then χ is afforded by an RG -lattice.

The point:

I A uniformizer for above R is 1− ζpm , and this shrinks the
category of RD-lattices.

The hope:

I Knörr lattices (with rank divisible by p) for abelian p-groups
with above uniformizer might be understandable.
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First results

Theorem
Let D be elementary abelian of order 2d with d ≥ 2. Let M be a
Knörr RD-lattice. Then

ν(rank(M)) ≤ d − 2.

Idea: If g ∈ D, then χM(g) 6= 0. This forces M〈g〉 to have a rank 1
summand. Transfer the projection to an RD-endomorphism of M.

Theorem
Let D be elementary abelian of order 8, and assume R/Z2 is
unramified. Then an even rank Knörr RD-lattice must have rank
at least 14.
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at least 14.



First results

Theorem
Let D be elementary abelian of order 2d with d ≥ 2. Let M be a
Knörr RD-lattice. Then

ν(rank(M)) ≤ d − 2.

Idea: If g ∈ D, then χM(g) 6= 0. This forces M〈g〉 to have a rank 1
summand. Transfer the projection to an RD-endomorphism of M.

Theorem
Let D be elementary abelian of order 8, and assume R/Z2 is
unramified. Then an even rank Knörr RD-lattice must have rank
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Idea for a rank 6 lattice with D ∼= C2 × C2 × C2

I Let H be a maximal subgroup of D. If MH has an odd-rank
summand, consider the transfer of the projection to an
RD-endomorphism of M. We conclude that MH has no
odd-rank summands.

I If MH has a projective summand, then MH
∼= P ⊕ 2. This

forces χM(g) = 0 for some g ∈ H.

I If M has no projective summands, then a result of MCR
Butler shows that (using fact that R/(2) = k)

2M ⊆ (MH)ss ⊆ M.

Now (MH)ss is an RD-lattice with a rank-1 summand.
Consider multiplication by 2 followed by projection.
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Cyclic examples

A cyclic lattice is a quotient of the regular lattice M ∼= RD/I , for
some pure ideal I ⊆ RD.

Assume now that D is an abelian p-group.

I Cyclic RD-lattices are determined by the characters they
afford.

I If R contains ζpm , and χ is a multiplicity-free character of D,
there will be a unique cyclic RD-lattice affording χ.

Lemma
Let M be a cyclic RD-lattice with rank(M)p = ph. Then M is a
Knörr lattice if and only if

χM(g) ≡ χM(1) (mod πph)

for all g ∈ D.
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Cyclic examples

Lemma
Let g have order p, and let χ be a character of D. Then

χ(g) ≡ χ(1) (mod πph)

if and only if [χ〈g〉, λ] ≡ 0 (mod ph) for all λ ∈ ˆ〈g〉.

If D is an elementary abelian 2-group, and h = 1, this is equivalent
to saying that

det(χ)(g) = 1.

For example

χ = 1D + λ1 + λ2 + λ3 + λ4 + λ1λ2λ3λ4

is the character afforded by a cyclic rank-6 lattice for the e.a.
group of order 16. Here D̂ = 〈λi | 1 ≤ i ≤ 4〉.
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Subsets of Fd
p

Assume now that D is elementary abelian. If χ is multiplicity-free,
then χ can be thought of as a subset of the Fp vector space D̂.

χ ⊆ D̂

Lemma
Let χ be multiplicity-free character of the e.a. p-group D. Say
χ(1)p = ph. Then χ is the character of a cyclic Knörr RD-lattice if
and only if

|χ ∩W | ≡ 0 (mod ph)

for every codimension 1 hyperplane W in D̂.

Theorem
If |D| = pd , then h ≤ d

2 . This bound is tight.
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Open Problems

I Does the e.a. group of order p3 have a height 1cyclic Knörr
lattice for all p ≥ 5?

I Count the height 1cyclic Knörr lattices for e.a. p3 as a
function of p.

I If R has uniformizer as above, does there exist a positive
height Knörr lattice which is not a syzygy of a cyclic lattice?

I If R/Z2 is unramified, does the e.a. group of order 8 have a
height 1 Knörr lattice at all?

I If χ is an irreducible character of G , is χ necessarily afforded
by a lattice with a cyclic source?

I Examples: G = Sn etc.

I Powers of radical.

I Stabilizer of source in NG (D)?
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height Knörr lattice which is not a syzygy of a cyclic lattice?

I If R/Z2 is unramified, does the e.a. group of order 8 have a
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