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sl(2): Lie algebra over C with basis E ,H,F , such that:

[H,E ] = 2E , [H,F ] = −2F , [E , f ] = H.

V (m): irred sl(2)-module highest weight m, with basis {A0, . . . ,Am},
considered as an abelian Lie algebra of dimension m + 1.

gm = sl(2) n V (m) is a perfect Lie algebra (m > 0),

[H,Ai ] = (m−2i)Ai , [E ,Ai ] = (m−i+1)Ai−1, [F ,Ai ] = (i+1)Ai+1.

s = sl(2), r = V (m), and a faithful representation of gm (for m = 4) is

X 7→



4h 4e 0 0 0 a0
f 2h 3e 0 0 a1
0 2f 0 2e 0 a2
0 0 3f −2h e a3
0 0 0 4f −4h a4

0

 ,

for X = e E + h H + f F +
∑m

i=0 aiAi ∈ gm.



Other representation of gm = sl(2) n V (2), (m = 2):

h e a2 −2a1 a0 0
f −h 0 a2 −2a1 a0

3h 3e 0 0 a2 −2a1 a0 0 0 0
f h 2e 0 0 a2 −2a1 a0 0 0
0 2f −h e 0 0 a2 −2a1 a0 0
0 0 3f −3h 0 0 0 a2 −2a1 a0

5h 5e 0 0 0 0
f 3h 4e 0 0 0
0 2f h 3e 0 0
0 0 3f −h 2e 0
0 0 0 4f −3h e
0 0 0 0 5f −5h

Here V ' V (1)⊕ V (3)⊕ V (5) as sl(2)-modules.

Key facts:

(1) r = V (2) ↪→ V (2)1 ⊂ Hom(V (3),V (1)) ' V (1)⊗ V (3),

(2) r = V (2) ↪→ V (2)2 ⊂ Hom(V (5),V (3)) ' V (3)⊗ V (5)

(3) [V (2)1,V (2)2] = 0.

In this case, (3) follows from the fact:

Λ2r has no common factors with Hom(V (5),V (1)) ' V (1)⊗ V (5)
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Again gm = sl(2) n V (2), (m = 2), now acting on V ∗:

V ∗ ' V (5)⊕ V (3)⊕ V (1) as sl(2)-modules.

5h 5e 0 0 0 0 10v0 0 0 0
f 3h 4e 0 0 0 4v1 6v0 0 0
0 2f h 3e 0 0 v2 6v1 3v0 0
0 0 3f −h 2e 0 0 3v2 6v1 v0
0 0 0 4f −3h e 0 0 6v2 4v1
0 0 0 0 5f −5h 0 0 0 10v2

3h 3e 0 0 3v0 0
f h 2e 0 2v1 v0
0 2f −h e v2 2v1
0 0 3f −3h 0 3v2

h e
f −h

Recall that V (k) ' V (k)∗ as sl(2)-modules for all k .

Uniserial module: a g-module V is uniserial if

it has a unique composition series (i.e. submodules for a chain), or

soci (V )/soci−1(V ) is irreducible for all i .
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Our results (Lie algebras and reps are finite-dim over C).

Theorem

Assume g = sn r perfect, r abelian, V1, ...,Vn irreducible s-modules.

Then V = V1 ⊕ · · · ⊕ Vn admits a structure of uniserial g-module iff

(1) there exist non-zero s-homomorphisms fi+1,i : r→ V ∗i+1 ⊗ Vi ,

(2) 〈{f2,1(X ) + · · ·+ fn,n−1(X ) : X ∈ r}〉Lie ⊂ gl(V ) is abelian.

Item (2) is granted if Λ2r is s-disjoint with V ∗i+2 ⊗ Vi for all i .

V (ν): is the irred s-module of highest weight ν.

Theorem

Let g = sn V (µ), µ a dominant weight of s.
Let λ be a dominant weight of s and b ∈ N0.
Then V = V (λ)⊕ V (λ+ µ∗)⊕ · · · ⊕ V (λ+ bµ∗) admits a unique
structure of uniserial g-module, say Z (λ, b). The dual Z (λ, b)∗ has
socle factors V (λ∗ + bµ)⊕ · · · ⊕ V (λ∗ + µ)⊕ V (λ∗).
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Classification of the uniserial reps of gm = sl(2) n V (m)

Clebsch-Gordan for sl(2) leads to the classif. uniserial rep of length 2:

V (m) ↪→ Hom(V (b),V (a)) ' V (a)⊗ V (b)

if and only if a + b ≡ m mod 2 and 0 ≤ |a− b| ≤ m ≤ a + b.

Thus V (a)⊕ V (b) admits a structure of uniserial
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m
gm-module if and only if {a, b,m} is a ‘triangular’ set:

Key step: To determine the uniserial reps of length 3.

Lemma. An sl(2)-module V (a)⊕ V (b)⊕ V (c)
admits a structure of uniserial gm-module if and only if

{a, b,m} and {b, c ,m} are triangular and

{a, c , k} is not triangular for all k such that V (k) ↪→ Λ2V (m)
(this is k = 2m − 2, 2m − 6, . . . ).

In this case, the structure is unique.
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Theorem

Let gm = sl(2) n V (m), where m ≥ 1. Then the only sl(2)-modules
admitting a structure of uniserial gm-module are (apart from duals)

Z (`, b) = V (`)⊕ V (`+ m)⊕ · · · ⊕ V (`+ bm)

with the following exceptions:

Length 2. V (`1)⊕ V (`2), with {`1, `2,m} triangular.

Length 3. V (0)⊕ V (m)⊕ V (`), where ` ≡ 2m mod 4 and ` ≤ 2m.

Length 4. V (0)⊕ V (m)⊕ V (m)⊕ V (0), in case that m ≡ 0 mod 4.

In all cases the structure of uniserial gm-module is unique, except for
V (0)⊕ V (m)⊕ V (m)⊕ V (0), m ≡ 0 mod 4; in this case the
isomorphism classes are parametrized by the complex numbers.



Example. The one parameter family, parametrized by z ∈ C, of
non-isomorphic uniserial sl(2) n V (4)-modules with socle factors
V (0), V (4), V (4), V (0) is given by:

0 v4 −4v3 6v2 −4v1 v0
4h 4e 0 0 0 6v2 −12v1 6v0 0 0 z v0
f 2h 3e 0 0 3v3 −3v2 −3v1 3v0 0 z v1
0 2f 0 2e 0 v4 2v3 −6v2 2v1 v0 z v2
0 0 3f −2h e 0 3v4 −3v3 −3v2 3v1 z v3
0 0 0 4f −4h 0 0 6v4 −12v3 6v2 z v4

4h 4e 0 0 0 v0
f 2h 3e 0 0 v1
0 2f 0 2e 0 v2
0 0 3f −2h e v3
0 0 0 4f −4h v4

0

.



Ingredients of the proof.

Assume that {a, b, p} and {b, c, q} are triangular. Let

f1 : V (p) ↪→ V (a)⊗ V (b)

f2 : V (q) ↪→ V (b)⊗ V (c)

A =

{(
0 f1(r1) 0

0 0 f2(r2)

0 0 0

)∣∣∣∣ r1∈V (p)

r2∈V (q)

}
⊂ End

(
V (a)⊕ V (b)⊕ V (c)

)
What’s the sl(2)-module structure of A (or, of the block (1, 3) of A)?
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V (k)

g1

y
V (p)⊗ V (q)
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ca
b

f1 ⊗ f2−−−−−−→ V (a)⊗V (b) ⊗ V (b)⊗V (c)

xµ = product

V (a)⊗ V (c)
h−−−−−−−−−−−−→

Answer: h =

{
q
2

k
2

p
2

a
2

b
2

c
2

}
× canonical inclusion. (This is the 6j-symbol)
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If {x , y , z} is triangular, let ιx ,yz : V (z) ↪→ V (x)⊗ V (y)

Implicit definition of the Racah-Wigner 6j -symbol:

– a real number

{
j1 j2 j3
j4 j5 j6

}
associated to six half-integers ji ∈ 1

2Z≥0

– defined by the transition matrix between the following two basis of

Homsl(2)

(
V (2j5) , V (2j1)⊗V (2j2)⊗V (2j4)

)
B1 =

{
V (2j5) ↪→ V (2j3)⊗V (2j4) ↪→

(
V (2j1)⊗V (2j2)

)
⊗V (2j4)

}
j3≥0

B2 =
{

V (2j5) ↪→ V (2j1)⊗V (2j6) ↪→ V (2j1)⊗
(

V (2j2)⊗V (2j4)
)}

j6≥0(
ι2j1,2j22j3

⊗ 1
)
◦ ι2j3,2j42j5

=
∑
j6

{
j1 j2 j3
j4 j5 j6

}(
1⊗ ι2j2,2j42j6

)
◦ ι2j1,2j62j5

.
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