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Highest Weight Theorem for GL(n, C), gl(n, C)

Polynomial representation of GL(n,C): group homomorphism
7w : GL(n,C) — GL(V) = GL(k,C)

s.t.: entries of m(g) are polynomials in the entries of g € GL(n, C).



Highest Weight Theorem for GL(n, C), gl(n, C)

Polynomial representation of GL(n,C): group homomorphism
7w : GL(n,C) — GL(V) = GL(k,C)

s.t.: entries of m(g) are polynomials in the entries of g € GL(n, C).
Example:
n=2,V={A¢& My(C) : trace(A) =0}, k =dim V = 3,

m(g)(A) = det(g)gAg
a2 2ab b?
a b
s < d) = | ac ad+ bc bd
¢ 2 2cd o2

Every polynomial representation of GL(n, C) is completely reducible.



A non-polynomial representation:

(A = (1 log (|detA|)) |

0 1

it is not completely reducible.



The character of a polynomial representation

The ‘usual’ character of 7 : GL(n,C) — GL(V) is

xv : GL(n,C) —» C
g > trace 7(g)

Basic properties:

@ It characterizes . (U(n) is compact)



The character of a polynomial representation

The ‘usual’ character of 7 : GL(n,C) — GL(V) is

xv : GL(n,C) —» C
g > trace 7(g)

Basic properties:

@ It characterizes . (U(n) is compact)

@ Even the restriction xy : Diag(n, C) — C characterizes m, this is
the actual character. (Jordan normal form)

X1
o If x = ) € Diag(n, C), then xv(x) is a symmetric
Xn
polynomial in xq, ..., X.



o yv(x)= Z Mo X7t oxp" = V = EB Vi

aeNg aeNg

with dim V, = m, and 7(x)|y, = x{™* ... x3" Id.

Py = {a € N§ : my # 0 (in fact m,, € N)}

is the set of weights of (m, V); V., is the weight space of «;
mg, is the multiplicity of «.



o yv(x)= Z Mo X7t oxp" = V = EB Vi

aeNg aeNg

with dim V, = m, and 7(x)|y, = x{™* ... x3" Id.

Py = {a € N§ : my # 0 (in fact m,, € N)}
is the set of weights of (m, V); V., is the weight space of «;

mg, is the multiplicity of «.

In the previous example:

2 b a2 2ab b2
T <c d> = |ac ad+ bc bd
c? 2cd d?

hence, if x = (Xl 0) then
0 x

xv(x) = x12 + x1%0 + x22 and Py = {(2,0),(1,1),(0,2)}.



e yv(x)= Z Mo x{t ..o xy" = V = @ Va,

a€eN] a€eN]

with dim V,, = my and 7(x)|v, = x{" ... x5 Id.

Py ={a € Nj : my # 0 (in fact m, € N)}

is the set of weights of (m, V); V, is the weight space of «;
my, is the multiplicity of «.

Order in Py: if (m, V) is a polyn repn of GL(n,C), o, 8 € Py:
Lexicographic: a > 8 <= a1 =f1,...,a, = By and a,11 > Bry1.

The highest weight of 7 is the maximal weight of Py in this order.



The highest weight of 7 is the maximal weight of Py, in this order.



The highest weight of 7 is the maximal weight of Py, in this order.

Theorem (Highest Weight Theorem)

If o is the highest weight of an irred polyn repn (m, V') of GL(n,C),
then:

a1 >ap > >a,=>0.

@ my, =1, that isdim V,, = 1.

1 *
o 7(g)|v, =1d forall g = <

characterizes .

. > € GL(n,C). This property
0 1

@ « characterizes ™ and in fact

Polyn Irreps R Partitions oy > -+ > ey > 0
of GL(n,C) with at most n parts




Partitions: if & =(3,2,2,1), we write o« = | (Young diagram)

and we say that « is a partition of 8 =3 + 2+ 2+ 1 and has 4 parts.



Irred polynomial
Irreps(GL(n, C)) = {repns F())f é'—(” C)} ’

Part. — Partitions o7 > --- > ap, >0
sn = with at most n parts ’

Highest Weight Theorem. The following map is a bijection:

Irreps(GL(n, C)) <— Part<,
(m, V) — the highest weight of 7 (or Py)
T $— (Schur functor).



Irred polynomial
Irreps(GL(n, C)) = {repns F())f é'—(” C)} 7

Part. — Partitions o7 > --- > ap, >0
sn = with at most n parts ’

Highest Weight Theorem. The following map is a bijection:

Irreps(GL(n, C)) <— Part<,
(m, V) — the highest weight of 7 (or Py)
T $— (Schur functor).

Examples.
o In the previous example, yv(x) = x2 + x1x2 + x5 and a = (2,0).

e If V=C and 7 : GL(n,C) — GL(V), m(g) = 1 is the trivial
representation, xv(x) =1 and a = (0, 0).

o If V=C"and 7 : GL(n,C) — GL(V), 7(g) = g is the canonical
representation, xv(x) = x1 + -+ x, and o = (1,0).



o V=C"and 7:GL(n,C) = GL(V®Y), 7(g) = g¥9 is the
d-tensor power representation (it is not irred),
xv(x) = (x4 -+ x0)9.
Thus: Irreps(GL(n, C), (C")®?) «— Part<,(d)
where

Irred polynomial repns of
nedy __ poly p
Irreps(GL(n, C), (C")™) = {GL(n, C) appearing in ((C")®d}’

[ Partitions oy > --- > ap >0
Part<n(d) = { of d with at most n parts }



o V=C"and 7:GL(n,C) = GL(V®Y), 7(g) = g¥9 is the
d-tensor power representation (it is not irred),
xv(x) = (x4 -+ x0)9.
Thus: Irreps(GL(n, C), (C")®?) «— Part<,(d)
where

Irred polynomial repns of
med poly p
IrrepS(GL(n,C) ((C )® ) {GL( (C) appearing in (C")®d}

[ Partitions oy > --- > ap >0
Part<n(d) = { of d with at most n parts }

Examples. V = C".
ed=1 Vel =Vv=0
0o d=2VR2=VaV=Sm(V)eN(V)= o & H

0 d=3 VB =gm(V)eN(V)ew= o0 o [ & 2



Weyl modules and Schur functor
V : vector space of dimension n (V = C"). As GL(n, C)-modules

V®d = @ Ao Tay a, €N
acPart<,(d)



Weyl modules and Schur functor
V : vector space of dimension n (V = C"). As GL(n, C)-modules

ved — @ an Ta, a, €N
acPart<,(d)

= Sym?(C) @ N (C e W

—EED@@@ @ A0 T

acPart<,(d)
a#(d,0,...,0)
a#(1,1,...,1)

Sym?(V) : the subspace of V®? of symmetric tensors,
A9(V) : the subspace of V®? of skew-symmetric tensors,

Symd(V) = { Z Vo(1) @ -+ @ Vo(d) € V®d}

g€Gy

A(V) = { Y (D)) @@ vy € v®d}
geGy



Weyl modules and Schur functor
Let a € Part<,(d), V =C".
The Weyl module S, (V) is a GL(n, C)-submodule of V&€



Weyl modules and Schur functor

Let a € Part<,(d), V =C".
The Weyl module S, (V) is a GL(n, C)-submodule of V&€

— For o = o=/,

Sa(V) = Sym*(V) = { 3 vy @+ @ vy € VO
c€Gy
= o - V&, with ¢, = Z o€ C[&4]
ceGy
- For a :E ,

AV ={ 3 (1)) @ @ vogq) € V)

€GBy

=, - VO, with co = > (-1)llo € C[&4].
ceGy



For arbitrary o € Part<,(d): need to define Young symmertizer c,.



For arbitrary o € Part<,(d): need to define Young symmertizer c,.

If o =

pa:ZU,

g€Py

Qo = Z (_1)|U‘Ua

O'Ero

Co = PaGa € C[Gd]

' then T, = nE 3 is the tableau of o

16]7]

H
P, = {0 € &4 : o preserves each row of T,};
Qn = {O’ € 6y

: o preserves each column of T,};



For arbitrary o € Part<,(d): need to define Young symmertizer c,.

If o = l , then T, = i g 3] is the tableau of «
] 6]7]
(8]
Po = Z o, P, = {0 € &4 : o preserves each row of T,};
g€Py

Qo = Z (_1)|U‘U’ Qo = {U € Gy

: o preserves each column of T,};
O'Ero

Ca = Pafa € C[Gd]

—Fora=mo=nD, pa =3 ,cs,0 Ga=1, Ca = Pa-

- For (0% :E ' pa = 11 qa = ZO’EGd(_l)lO—‘O" Ca = qa'



- Fora = l ,Ta:i

Po={(1),(12)},  pa=1+(12);
Q={(1).(13)},  ga=1-(13);
o= (1+(12)) (1~ (13))

=1+ (12) — (13) — (132) € C[&4].



- Fora = l ,Ta:i

Pa=A{(1),(12)},  pa=1+(12)
Qo ={(1),(13)},  ga=1-(13)
o= (1+(12)) (1~ (13))

=1+ (12) — (13) — (132) € C[&4].

Sa(v) =Ca- ves

= span{v1®vz®V3 + VeVIeVs — V3eWeVv] — V3®V1®V2}



For a € Part<,(d), V =C"

Pa = Z o, P, = {0 € &4 : o preserves each row of T,};
gePy

o = Z (—1)""0, Qo = {0 € G4 : o preserves each column of T,};
0€Qq

Co = Pada in C[G4].

Then
Sa(V) = ¢, - V&9

is a GL(n, C)-invariant submodule of V®9 and
it is irreducible of highest weight «.



For a € Part<,(d), V =C"

Pa = Z o, P, = {0 € &4 : o preserves each row of T,};
gePy

o = Z (—1)""0, Qo = {0 € G4 : o preserves each column of T,};
0€Qq

Co = Pada in C[G4].

Then
Sa(V) = ¢, - V&9

is a GL(n, C)-invariant submodule of V®9 and
it is irreducible of highest weight «.

By the way,
Ly = co - C[&y4]

is a Sy-invariant submodule of C[&4] and it is isomorphic to the
irreducible G4-module corresponding to .



Example. V =C"

leta=H" T, =P
Po ={(1),(12)},  pa =1+ (12);
Qo = {(1),(13)},  ga =1-(13);
= (1+(12)(1-(13)
=1+ (12) - (13) — (132) € C[&4].

Sa(V) =c, - V&3

= span{v1®vz®V3 + VRVI®VZ — V3RWVLRV] — V3®V1®V2}



Example. V =C"

et a =1 , Ta =+
Po= (1,12},  pu=11+(12),
={(1).(13)},  ga=1-(13);
= (1+(12)(1-(13))
— 14 (12) - (13) — (132) € C[&).

Sa(V) =c, - V&3

= span{vi®neV; + neVvieVv; — V3eV»eVv] — V3eVIeaV) )

(CM3 = Sym3(CM) @& A3(C") & 2 So(V) = [T & @ o 2 P



There was a free choice in the definition of ¢,: for a € Part<4(d)

1[2[3
Ta: ii] WPaaQaWpa’anCa

16|7]

L8]

. =~ [e[5]2] -

We could have started with Ta = (4] 8] ~5 Cq-

|1/3]
7]




There was a free choice in the definition of ¢,: for a € Part<4(d)

To = 411.53] ~ Py Qo ~ Pa, Ga ~ Ca
16]7]
B
We could have started with To = jg 2 ~ Gy
13
This leads to different 2
Sa(V)=co- V¥ L, =c, C[64]
Sa(V)=2,- V¥  [,=2¢, C[&4]

This freedom amounts to k, different choices of ¢4, ko = dim(Ly)



There was a free choice in the definition of ¢,: for a € Part<4(d)

To = 1%3] ~ Py Qo ~ Pa, Ga ~ Ca
16]7]
B
We could have started with To = jg 2 ~ .
13
This leads to different 2
Sa(V)=co- V¥ L, =c, C[64]
Sa(V)=2,- V¥  [,=2¢, C[&4]

This freedom amounts to k, different choices of ¢4, ko = dim(Ly)

Theorem (Peter and Weyl)

Clesl= P dim(La) La,

a€Part<4(d)

P Lol

a€Part<4(d)

as G 4-mod

as G4 x G4-mod




There was a free choice in the definition of ¢,: for a € Part<4(d)

To = 1%3] ~ Py Qo ~ Pa, Ga ~ Ca
16]7]
B
We could have started with To = jg 2 ~ .
13
This leads to different 2
Sa(V)=co- V¥ L, =c, C[64]
Sa(V)=2,- V¥  [,=2¢, C[&4]

This freedom amounts to k, different choices of ¢4, ko = dim(Ly)

Theorem (Schur Duality for GL(n) x &4)
Let V = C", then

V®d _

P dim(La) Sa(V),

as GL(n)-mod
a€Part<,(d)

= P La®SuV),

a€Part<,(d)

as G4 x GL(n)-mod




Hermite's reciprocity law states that
Sym" (Symm(Cz)) ~ Sym™ (Sym”((C2))
as GL(2,C)-modules. Equivalently

SED (Vi) =~ S[@ (V).
n times m times
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Sym" (Symm(Cz)) ~ Sym™ (Sym”((C2))
as GL(2,C)-modules. Equivalently

SED (Vi) =~ S[@ (V).
n times m times

Manivels's extension (2007) if Hermite's reciprocity law:

Se=n (Vin)
ki: :

n

is symmetric in m, n, k as SL(2, C)-modules.



Hermite's reciprocity law states that
Sym" (Symm(Cz)) ~ Sym™ (Sym”((C2))
as GL(2,C)-modules. Equivalently

SED (Vi) =~ S[@ (V).
n times m times

Manivels's extension (2007) if Hermite's reciprocity law:

Se=n (Vin)
ki: :

n
is symmetric in m, n, k as SL(2, C)-modules.

Question: find other solutions for the plethysm equation:
Sa (Vim) =~ Sg (Vh), unknokns: «, 3, m, n

as SL(2,C) or GL(2,C)-modules.



We introduce the following notation:

1 ] = Sa (Vz-1), a=(3,2,2,1).

Lz




We introduce the following notation:

T s.(Vol), a=(3,221).

Lz

Theorem (joint with D. Penazzi)

Let x1,...,x, and y1,...,yn be two sequences in Z>q,

set x| =>"xi, ly| = yi,

and let u, v,z € Z>g.

Then the following SL(2, C)-isomorphism holds:

X1 ...Xp U Y1 ... ¥n X1 -..Xnp V Y1 ... ¥n
X1 X1
Xn ~ Xn
\" u
» y1
Il X+l +v+z il X+ lyl+u+tz
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