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Lie racks of type D: Unipotent conjugacy classes in finite groups of Lie type

Introduction

Joint work with N. Andruskiewitsch and G. Carnovale.

Problem: Determine when a Lie rack is of type D.

In group-theoretical terms:

Question

Let O be a conjugacy class in a finite group G . Are there elements
r , s ∈ O such that their conjugacy classes in the subgroup 〈r , s〉 of
G are different and (rs)2 6= (sr)2?

We deal concretely with the case when G is a finite group of Lie
type.
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Racks

Simple racks

Definition

A rack is a non-empty set X

endowed with an map . : X ×X → X
satisfying

(a) x . is a bijection for any x ∈ X ,

(b) x . (y . z) = (x . y) . (x . z) for all x , y , z ∈ X .

The archetypical example of a rack is a conjugacy class in a group.

We say that a rack is simple if |X | > 1 and any rack epimorphism
X � Y is bijective or |Y | = 1.
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Racks

Racks of type D

Definition

A rack X is of type D if

it contains a decomposable subrack
Y = R

∐
S and elements r ∈ R, s ∈ S such that

r . (s . (r . s)) 6= s.

If O is a conjugacy class in a finite group G , then the rack O is of
type D if and only if the answer to our first question is positive.

Facts: I If Z is a finite rack that admits a rack epimorphism
Z � X , where X is of type D, then Z is of type D.
I If Z is indecomposable, then it admits a rack epimorphism
Z � X with X simple.

Hence

Problem

Determine all simple racks of type D
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Racks

Lie racks

Finite simple racks where classified in [AG] 1 and [J]2.

We are interested in the (twisted) conjugacy classes of type (Lt , u):
I (L, t, θ) a triple where L is a simple non-abelian finite group,
t ∈ N and θ ∈ Aut(L).
I u an automorphism of Lt defined by
u(`1, . . . , `t) = (θ(`t), `1, . . . , `t−1) with `1, . . . , `t ∈ L.

Definition

If L is a finite group of Lie type, we call a (twisted) conjugacy class
of type (Lt , u) a Lie rack.

Thus, non-trivial (twisted) conjugacy classes in simple groups of
Lie type are Lie racks.

1N. Andruskiewitsch and M. Graña, From racks to pointed Hopf algebras,
Adv. Math. 178 (2003), 177–243.

2D. Joyce, Simple quandles, J. Algebra 79 2 (1982), 307–318.
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Racks

Relation to quantum groups

The rack formulation is more effective for applications to the
classification of finite dimensional pointed Hopf algebras over
non-abelian groups.

Question

Let X be a finite rack and q a 2-cocycle with values in GL(n,C).
When is the Nichols algebra B(X ,q) finite dimensional?

An indecomposable finite rack X collapses if for any cocycle q,
dimB(X ,q) =∞.

Moreover, in [AFGV] 3 it was proved

Theorem

If X is a finite rack of type D, then X collapses.

3N. Andruskiewitsch, F. Fantino, M. Graña and L. Vendramin,
Finite-dimensional pointed Hopf algebras with alternating groups are trivial.
Ann. Mat. Pura Appl. (4), to appear.
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If X is a finite rack of type D, then X collapses.

3N. Andruskiewitsch, F. Fantino, M. Graña and L. Vendramin,
Finite-dimensional pointed Hopf algebras with alternating groups are trivial.
Ann. Mat. Pura Appl. (4), to appear.
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Lie racks of type D: Unipotent conjugacy classes in finite groups of Lie type

Reduction to semisimple and unipotent classes

Let p be a prime number, m ∈ N and q = pm.

I G algebraic reductive group defined over the algebraic closure of
Fq and G = G(Fq) finite group of Fq-points.

I Take x ∈ G ; we want to investigate the orbit OG
x .

I If x = xsxu is the Chevalley-Jordan decomposition, then
xs , xu ∈ G .

I Let K = CG(xs), a reductive subgroup of G. Then
K = K ∩ G = CG (xs).

Since xu ∈ K , OK
xu is a subrack of OG

x and we can reduce our study
to the case when x is either unipotent or semisimple.
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Unipotent classes in SL(2, q)

Main Theorem

Theorem

Assume q is odd and let u ∈ SL(n, q) be a nontrivial unipotent
element. Then Ou is of type D if and only if n 6= 2 or n = 2 and q
is a square different from 9.

Note: Even if the conjugacy classes OSL(2,q)
u are not of type D for

q not a square, by [FGV]4, OSL(2,q)
u collapses for q odd.

4S. Freyre, M. Graña and L. Vendramin, On Nichols algebras over PGL(2, q)
and PSL(2, q), J. Algebra Appl., Vol. 9, No. 2 (2010), 195–208.
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Unipotent classes in SL(2, q)

Sketch of the proof

For a ∈ (F∗
q)n−1, define

ra =


1 a1 0 . . . 0
0 1 a2 . . . 0
...

. . .
. . . 0

0 . . . . . . 1 an−1

0 . . . . . . 0 1

 .

A unipotent element u ∈ GL(n, q) is of type λ = (λ1, . . . , λk) if it
is conjugate to the element

u =


u1 0 . . . 0
0 u2 . . . 0
...

. . .
...

0 . . . . . . uk

 where ui = r1 ∈ Fλi×λiq .

If x ∈ GL(n, q) is of type (n), we call it regular .
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Unipotent classes in SL(2, q)

Sketch of the proof

Lemma 1

Let u ∈ SL(n, q) be a unipotent element of type (λ1, . . . , λk) with

ui ∈ Fλi×λiq .

If OSL(λi ,q)
ui is of type D, then Ou is of type D.

Sketch of the proof: Assume OSL(λ1,q)
u1 is of type D.

Let H be the image of the natural embedding of
SL(λ1, q)× · · · × SL(λk , q) into SL(n, q) containing u.

Then OH
u is a subrack of OSL(n,q)

u and the projection of H onto its

first factor induces a rack epimorphism of OH
u onto OSL(λ1,q)

u1 .
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Unipotent classes in SL(2, q)

Sketch of the proof

Lemma 2

Assume that n > 2 and q is odd.

Then the conjugacy class of a
unipotent regular element in SL(n, q) is of type D.

Corollary

Assume q is odd and let u ∈ SL(n, q) be a unipotent element of
type (λ1, . . . , λk).If λ1 > 2, then the conjugacy class Ou is of type
D.
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Unipotent classes in SL(2, q)

Sketch of the proof

Lemma 3

Assume q is odd. Let u ∈ SL(n, q) be a unipotent element of type
(2, 2) or (2, 1). Then the conjugacy class Ou is of type D.

Case (2, 2) in SL(4, 3) done with GAP.

Lemma 4

Assume q = pm is odd. Then any non-trivial unipotent conjugacy
class in SL(2, q) is of type D if and only if q is a square different
from 9.
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Unipotent classes in type A` and other types

All results can be used to prove the main theorem for PSL(n, q)
and PGL(n, q) since the rack structures are not deformed by taking
the quotients.

Assume G is a simple algebraic group and F : G→ G is a
Steinberg automorphism which is Fq-split.

Translating the techniques used for SL(n, q) using Lie theory one
can extend the result to other types, for example

If the Dynkin diagram of G has at least a component of rank
greater than 1, then every regular unipotent class of GF is of type
D.
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