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Indecomposable representations

I In the paper The Future of Atomic Physics (Int. J. Theor.
Phys. 23 (1984) 677), Dirac call matrices of the form

T =

(
A L
0 B

)
pathological representations.

I A and B are representation of the Lorentz group
∼ SO(3, 1).

I The Lorentz group is the group of transformations that
leave the inner product −(ct)2 + x2 + y2 + z2 invariant.

I This is the basic invariant of the theory of special relativity
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Indecomposable representations in physics

Quoting Dirac:

“We have a theory in which infinite factors appear when we try
to solve the equations. These infinite factors are swept into a
renormalization procedure. The result is a theory which is not
based on strict mathematics, but is rather a set of working rules.

Many people are happy with this situation because it has a
limited amount of success. But this is not good enough.
Physics must be based on strict mathematics. One can
conclude that the fundamental ideas of the existing theory are
wrong. A new mathematical basis is needed.”
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Indecomposable representations

I T =

(
A L
0 B

)
acts on the vector ψ =

(
ψA
ψB

)
with

Tψ → ψ′ : ψ′A = AψA + LψB
ψ′B = BψB

I Models the disintegration of an atom represented by ψA
into a new state of this atom AψA plus another emitted
particle represented by ψB.

In this talk:

I Eventually discuss (finite dimensional) indecomposable
representations of Poincaré.

I it contains Lorentz ∼ SO(3, 1) as a subgroup
I it also contains 4 space-time translation
I representations are “naturally” of the indecomposable type

I Start by discussing E(2): group of Euclidean motion in 2d

I it contains rotations in the plane ∼ SO(2) as a subgroup
I it also contains translations in the plane
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I it contains Lorentz ∼ SO(3, 1) as a subgroup
I it also contains 4 space-time translation
I representations are “naturally” of the indecomposable type

I Start by discussing E(2): group of Euclidean motion in 2d

I it contains rotations in the plane ∼ SO(2) as a subgroup
I it also contains translations in the plane



Indecomposable representations

I T =

(
A L
0 B

)
acts on the vector ψ =

(
ψA
ψB

)
with

Tψ → ψ′ : ψ′A = AψA + LψB
ψ′B = BψB

I Models the disintegration of an atom represented by ψA
into a new state of this atom AψA plus another emitted
particle represented by ψB.

In this talk:
I Eventually discuss (finite dimensional) indecomposable

representations of Poincaré.
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Why pathological?

According to Wigner’s theorem:

I Transformations of quantum mechanical states should be
unitary or antiunitary transformations.

I This is required to preserve probabilities:

I The probability of finding a system in a state |χ〉 given it is
in a state |ξ〉 is |〈χ | ξ 〉|2.

I If we transform the system - translate or rotate the axes etc.
- by some operation T , then

|χ〉 → |χ′〉 = |Tχ〉 , |ξ〉 → |ξ′〉 = |Tζ〉

I This should not change the probabilities:
|〈Tχ |Tξ 〉|2 = |〈χ | ξ 〉|2.
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E(2)

The group E(2) is the group of Euclidean motion in the plane.

I One rotation in the plane.

(x, y)→ (x cos θ − y sin θ, y cos θ + x sin θ)

I Two commuting translations

(x, y)→ (x+ a, y + b)

I “Natural” representation

π : T (θ; a, b) 7→

 cos θ − sin θ a
sin θ cos θ b

0 0 1


I This is an example of an indecomposable representation:

I non-unitary
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Basic examples

I Go to complex coordinates z = x+ iy

π : T (θ;x, y) 7→
(

eiθ z
0 1

)

π̃ : T (θ;x, y) 7→
(

1 0
z̄ e−iθ

)
z̄ = x− iy

I Composition rule

T (θ1; z1) · T (θ2; z2) = T (θ1 + θ2; z1 + z2eiθ)

.

.

.
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Basic setup

π(T (θ, z)) a rep. of E(2) on V (finite dim.) (z̄ implicit).

I Decompose V = ⊕Wk into a finite sum of “weight”
subspaces Wk.

I Wk is an SO(2) subspace: if v ∈Wk then

π(T (θ, 0)) v = e−ikθv

I Since T (θ + 2π; 0) = T (θ; 0)⇒ k ∈ Z
I Generators realized as

`0 = i
∂

∂θ
π(T (θ, z)) p+ =

∂

∂z
π(T (θ, z)) p− =

∂

∂z̄
π(T (θ, z)) .

I Commutators: [p+, p−] = 0 , [`0, p±] = ±p±.
I Ladder action: `0Wk ⊆Wk; p±Wk ⊆Wk±1
I Finite dimensional: ∃M s.t. p+WM = 0 and ∃N s.t.
p−WN = 0.
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String representations

Assume all Wk are of dim=1.

I Every 1d rep of E(2) is: χk : T (θ; z) 7→ e−ikθ k ∈ Z.
I p+p− = 0

I Choose ϕk ∈Wk arbitrary 6= 0 vector

p+p−ϕk = αkϕk Wk is 1-dim.

(p+p−)nϕk = αn
kϕk

= (p+)n(p−)nϕk p+, p− commute.

= 0 for n > N s.t. pN−ϕk = 0.

I Thus αN
k = 0⇒ αk = 0.



String representations

Assume all Wk are of dim=1.

I Every 1d rep of E(2) is: χk : T (θ; z) 7→ e−ikθ k ∈ Z.

I p+p− = 0

I Choose ϕk ∈Wk arbitrary 6= 0 vector

p+p−ϕk = αkϕk Wk is 1-dim.

(p+p−)nϕk = αn
kϕk

= (p+)n(p−)nϕk p+, p− commute.

= 0 for n > N s.t. pN−ϕk = 0.

I Thus αN
k = 0⇒ αk = 0.



String representations

Assume all Wk are of dim=1.

I Every 1d rep of E(2) is: χk : T (θ; z) 7→ e−ikθ k ∈ Z.
I p+p− = 0

I Choose ϕk ∈Wk arbitrary 6= 0 vector

p+p−ϕk = αkϕk Wk is 1-dim.

(p+p−)nϕk = αn
kϕk

= (p+)n(p−)nϕk p+, p− commute.

= 0 for n > N s.t. pN−ϕk = 0.

I Thus αN
k = 0⇒ αk = 0.



p+p− = 0

This means:

I Some graphs are allowed:

p−ϕm+1 = 0

p+ϕm 6= 0

p−ϕm+1 6= 0

p+ϕm = 0

p−ϕm+1 = 0

p+ϕm = 0.

. .

.

.

.

I Graphs cannot contain

p−ϕm+1 6= 0

p+ϕm 6= 0 .
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Example: a reducible representation

T (θ, z) 7→



e2iθ 0 0

e2iθz̄ eiθ z

0 0 1

e−iθ e−2iθz

0 e−2iθ


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Example: the “natural” representation
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I There are weight multiplicities
I p+p− nilpotent.
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12v w�

02v w�

22v w�

32v w�

0w

1w

2w

3w

1v

00v w�

10v w�

20v w�

30v w�

01v w�

31v w�

02 11 0wv wP P v+ − = � ≠�
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⊗
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4

3
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1
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22v w⊗
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0w

1w

2w

3w
0v

1v

2v

00v w⊗

10v w⊗

20v w⊗

30v w⊗

01v w⊗

31v w⊗

02 11 0wv wP P v+ − = ⊗ ≠⊗

I There are weight multiplicities
I p+p− nilpotent.



Parallelograms
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.

.

.

.

.

.

0v

1v 0w

⊗ =
0 0v w⊗

1w−

1 1v w−⊗

0 1v w−⊗

1 0v w⊗

Claim: it is indecomposable.
Proof: Assume it does: V = V1 ⊕ V2.

I Pick v = a v0 ⊗ w0 + b v1 ⊗ w−1 ∈ V1 with a 6= 0.
I p+p−v = a v1 ⊗ w−1 ∈ V1 ⇒ v1 ⊗ w−1 ∈ V1
I Thus v − b v1 ⊗ w−1 = a v0 ⊗ w0 ∈ V1 ⇒ v0 ⊗ w0 ∈ V1.
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Parallelograms

Likewise, this parallelogram is indecomposable:
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.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0v w⊗

3 3v w−⊗
2 2v w−⊗



Subrepresentations and Quotients

.

.

.

.

.

.

.2 1v w−⊗

1 3v w−⊗

3 2v w−⊗

2 3v w−⊗0 1v w−⊗

0 0v w⊗

.

.

.

.

.

.

are also indecomposable.



Combinations and general strings
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. 2ie θ

2 ir e θ
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ie θ−

2 2ir e θ−

3ire θ−

4ie θ−

2 2ir e θ−

3ire θ

ire θ−

2ie θ−

31 ie
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θ−

1 ie
r

θ−

1

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 2ie θ

2 ir e θ

r

ie θ−

2 2ir e θ−

3ire θ−

4ie θ−

2 2ir e θ−

3ire θ

ire θ−

2ie θ−

31 ie
r

θ−

1 ie
r

θ−

1

are also indecomposable. Note this last is a string.



Extension to Poincaré

Can this be adapted to Poincaré ?

e(2) ∼ [R2]so(2) p3,1 ∼ [R4]so(3, 1)

Rotations so(2) spacetime rotations so(3, 1)

irreps are 1d irreps are finite and∞ dim.

translations R2 spacetime translations R4

{pxpy} {px, py, pz, E/c}

p± transform by 1d irreps Pi transform by 4-dim irrep

invariant: invariant: P · P = −(mc)2

P · P = p+p− = 0 = p2x + p2y + p2z − (E/c)2.



so(3, 1)C → sl(2,C)⊕ sl(2,C)
I Finite dimensional reps of so(3, 1) are reps of
sl(2,C)⊕ sl(2,C).

I denoted by two integers (λ, µ)
I dim V (λ, µ) = (λ+ 1)(µ+ 1)
I The action of Pi on ϕ ∈ V (λ, µ):

Piϕ ⊂ V (λ+ 1, µ− 1)⊕ V (λ+ 1, µ+ 1)

⊕V (λ− 1, µ− 1)⊕ V (λ− 1, µ+ 1)
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so(3, 1)C → sl(2,C)⊕ sl(2,C)
I Finite dimensional reps of so(3, 1) are reps of
sl(2,C)⊕ sl(2,C).

I denoted by two integers (λ, µ)
I dim V (λ, µ) = (λ+ 1)(µ+ 1)
I The action of Pi on ϕ ∈ V (λ, µ):

Piϕ ⊂ V (λ+ 1, µ− 1)⊕ V (λ+ 1, µ+ 1)

⊕V (λ− 1, µ− 1)⊕ V (λ− 1, µ+ 1)

.

.

.

..

.

( )1, 1V λ µ− +( )1, 1V λ µ− −

( )1, 1V λ µ+ +( )1, 1V λ µ+ −

( ),V λ µ



so(3, 1)C → sl(2,C)⊕ sl(2,C)

I In general, for ϕ,∈ V (λ, µ):

PiPk ϕ = ϕ′ + pieces in other V (λ′, µ′)

P · P ϕ = αϕ

.

.

.

..

.

( )1, 1V λ µ− +( )1, 1V λ µ− −

( )1, 1V λ µ+ +( )1, 1V λ µ+ −

( ),V λ µ

..

.

.
.

( ),V λ µ

( )2, 2V λ µ+ +( )2,V λ µ+

( )1, 1V λ µ+ −

( )1, 1V λ µ− −
( )1, 1V λ µ− +

( ), 2V λ µ +

( )1, 1V λ µ+ +



String representations in p(3, 1)

I Naive generalization of
(raising) string representations:

I Suppose rep has a lowest weight ψ ∈ V (λ, µ).
I Pi maps states in V (λ′, µ′)→ V (λ′ + 1, µ′ + 1).
I V is indecomposable

I Slightly less naive generalization:

I Pi maps vectors ∈ V (λ′, µ′) to one of

V (λ′, µ′)→


V (λ′ + 1, µ′ − 1) or

V (λ′ − 1, µ′ + 1) or

V (λ′ − 1, µ′ − 1)

I V (λ1, µ1)
Pi

−→ V (λ2, µ2)
Pj

−→ V (λ3, µ3) with

V (λ3, µ3) 6= V (λ1, µ1)
I Still indecomposable.
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Pj

−→ V (λ3, µ3) with

V (λ3, µ3) 6= V (λ1, µ1)
I Still indecomposable.



String representations in p(3, 1)

I Even less naive generalization:

V (λ′, µ′)
Pi
−→ V (λ′ + 1, µ′ + 1)

⊕V (λ′ − 1, µ′ + 1)

I The notion of “raising” or “lowering”
action is formally lost, although the
map still defines a direction.

I A string should not contains the
sequence of maps V (λ, µ)→ V (λ′, µ′)→ V (λ, µ).

I Probably indecomposable.
I Note that, for such strings, P · P = 0 i.e. they would

describe “decay” of 0-mass particles.

.

.

.
.

( ),V λ µ

( )2, 2V λ µ+ +

( )1, 1V λ µ− +

( ), 2V λ µ +

( )1, 1V λ µ+ +
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Parallelograms in p(3, 1)

I The tensor product of two (generalized) strings will yield a
(generalized) parallelogram.

I On such parallelograms we have P · P nilpotent.
I Properties?

I Indecomposable?
I Quotients and subrepresentations?

I Interpretation?



Parallelograms in p(3, 1)

I The tensor product of two (generalized) strings will yield a
(generalized) parallelogram.

I On such parallelograms we have P · P nilpotent.

I Properties?

I Indecomposable?
I Quotients and subrepresentations?

I Interpretation?



Parallelograms in p(3, 1)

I The tensor product of two (generalized) strings will yield a
(generalized) parallelogram.

I On such parallelograms we have P · P nilpotent.
I Properties?

I Indecomposable?
I Quotients and subrepresentations?

I Interpretation?



Parallelograms in p(3, 1)

I The tensor product of two (generalized) strings will yield a
(generalized) parallelogram.

I On such parallelograms we have P · P nilpotent.
I Properties?

I Indecomposable?
I Quotients and subrepresentations?

I Interpretation?



Other work

I Andrew Douglas & Joe Repka, on various aspects,

I David Ridout (Australian National University) on
indecomposable representations of Virasoro, applications
in logarithmic conformal field theory (with St-Aubin, with
Kytölä)

I Lots of early work on indecomposable of Poincaré (60s,
70s, 80s):

I Gruber, J.Phys. A 19 (1986) 1
I Raczka, Ann. Inst. Henri Poincaré XIX (1973) 341

(discusses a theory of relativistic unstable particles with 0
mass using induced representations)

I George and Lévy-Nahas, JMP 7 (1966) 980

I Thank you.
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(discusses a theory of relativistic unstable particles with 0
mass using induced representations)
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