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Unipotent characters of GL(n; q)

Gn = GL(n; q), K a su�ciently large �eld of characteristic 0.

Unipotent characters of Gn are constituents of M = Ind
Gn
B (1) (B a

Borel) and are indexed by partitions of n.

EndKGn(M) is isomorphic to Hn, Hecke algebra of type A
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Unipotent characters of GL(n; q)

The Hecke algebra Hn of type A over a �eld F , q 2 F , has generators

fT1;T2; : : :Tn�1g and relations:

T 2
i = (q � 1)Ti + q:1;

TiTj = TjTi ; 1 6 i < j � 1 6 n � 2;

TiTi+1Ti = Ti+1TiTi+1; i = 1; 2; : : : n � 2:
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Decomposition numbers

G a �nite group

Brauer theory: K ;O; k , `-modular system, de�ned as

` a prime integer

K a su�ciently large �eld of characteristic 0

O a complete discrete valuation ring with quotient �eld K

k residue �eld of O, chark = `

A representation of G over K is equivalent to a representation over

O, can be reduced mod ` to get a modular representation of G over

k .
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Decomposition numbers

Can compare ordinary and `-modular (Brauer) characters. The

decomposition matrix D (over Z) is the transition matrix between

ordinary and Brauer characters. Entries of D are decomposition

numbers.

The matrix D for Gn when ` does not divide q is our main object of

study.
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Decomposition numbers

Describe the `-modular decomposition matrix of Gn.

Work done on blocks and decomposition matrices of �nite reductive

groups: Dipper-James, Geck, Gruber, Hiss, Kessar, Malle .. by

modular Harish-Chandra theory.
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Decomposition numbers

Three objects: Gn;Hn;Sn

Hn and Sn (q-Schur algebra) de�ned over a �eld F , q 2 F

� ` n. Let x� =
P

w2W�
Tw 2 Hn, W� a parabolic

De�ne Sn = EndHn
(��x�Hn), the q-Schur algebra

Theorem (Dipper-James): Sn �= EndGn(��M
�), M� = Ind

Gn
P�
(1) (P�

a parabolic)

Note: Hn = EndGn(x�M) for � = 1n.
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Decomposition numbers

Dipper-James theory (continued):

Hn has Specht modules, irreducible modules

Sn has Weyl modules, irreducible modules

Gn has Specht modules (for unipotent representations), irreducible

modules
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Decomposition numbers

Characteristic of F is 0, or ` not dividing q,

q 2 F a primitive e-th root of unity,

1 + q + q2 : : : qe�1 = 0:

Can talk of D for

Gn, prime `

Hn and Sn, q as above
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Decomposition numbers

Dipper-James theory (continued):

Characteristic of F is `:

When q is a primitive e-th root of unity, the decomposition matrix of

Sn is square, has entries the multiplicities of irreducibles in Weyl

modules.

There is a square part of the `-decomposition matrix of Gn, rows

indexed by unipotent characters, columns by Brauer characters.

These two matrices are the same!
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Decomposition numbers

Brundan-Kleshchev: Consider Hn over a �eld F .

Hn can be made into a Z-graded F -algebra. Uses KLR-algebras,

which are naturally graded. Thus can talk of Graded Representation

Theory of (cyclotomic) Hecke algebras.

(with Wang) Graded Specht modules

Leads to: Graded decomposition numbers
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Decomposition numbers

Ariki (2009): F=�eld, q 2 F , Sn and Hn as before. Using work of

Brundan-Kleshchev and Hemmer-Nakano,

Sn is a Z-graded F -algebra.

Weyl modules W (�), irreducible modules L(�) are graded.

Graded decomposition number d��(v) =
P

k2Z (W (�) : L(�)[k])v k ,

polynomial in v .
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Modular Representation Theory and Lie Theory

New modular representation theory connects decomposition numbers

for symmetric groups, (cyclotomic) Hecke algebras, with Lie theory.

The quantized Kac-Moody algebra Uv (csle) over Q(v) is generated by

ei ; fi ; ki ; k
�1
i ; : : :, (0 6 i 6 e � 1) with some relations.
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Modular Representation Theory and Lie Theory

Consider the Fock space �n>0K0(FHn �mod), F a �eld of

characteristic 0. Then Uv (csle) acts on this space!

ei ; fi are functors on the Fock space, called i -induction, i -restriction.

Work of Ariki (1996), Grojnowski, Vazirani, Lascoux-Leclerc-Thibon,

Varagnolo-Vasserot, ...

Decomposition matrix D for Hn with q a e-th root of unity, appears

as transition between two bases of the Fock space.
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Modular Representation Theory and Lie Theory

Ariki (2009):

d��(v) = e+��(v
�1),

where e+�� are entries of the transition matrix.

Over a �eld of characteristic 0, d��(v) can be computed by the LLT

algorithm when � is e-restricted.

Bhama Srinivasan (University of Illinois at Chicago) Representations of GL Honolulu, March 2012 15 / 24



Modular Representation Theory and Lie Theory

Ariki (2009):

d��(v) = e+��(v
�1),

where e+�� are entries of the transition matrix.

Over a �eld of characteristic 0, d��(v) can be computed by the LLT

algorithm when � is e-restricted.

Bhama Srinivasan (University of Illinois at Chicago) Representations of GL Honolulu, March 2012 15 / 24



Modular Representation Theory and Lie Theory

Special cases:

Varagnolo-Vasserot: v = 1 gives decomposition numbers of Sn

Brundan-Kleshchev: Graded decomposition numbers of Hn given by

the formula, so � is e-restricted (charF = 0)
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Modular Representation Theory and Lie Theory

Consider Gn, F has characteristic `.

There are functors, from bimodules de�ned above:

Hn �mod ! FGn �mod

Hn �mod ! Sn �mod

Sn �mod ! fGn �mod

Extend these to the graded case.

Theorem. (i) FGn is graded.

(ii) We can de�ne graded decomposition numbers d��(v).

Comparison with decomposition numbers for Sn holds in graded case.

Remark. Cannot relate these with e+��(v
�1): need James' Conjecture.

Bhama Srinivasan (University of Illinois at Chicago) Representations of GL Honolulu, March 2012 17 / 24



Modular Representation Theory and Lie Theory

Consider Gn, F has characteristic `.

There are functors, from bimodules de�ned above:

Hn �mod ! FGn �mod

Hn �mod ! Sn �mod

Sn �mod ! fGn �mod

Extend these to the graded case.

Theorem. (i) FGn is graded.

(ii) We can de�ne graded decomposition numbers d��(v).

Comparison with decomposition numbers for Sn holds in graded case.

Remark. Cannot relate these with e+��(v
�1): need James' Conjecture.

Bhama Srinivasan (University of Illinois at Chicago) Representations of GL Honolulu, March 2012 17 / 24



Modular Representation Theory and Lie Theory

Ingredients in the proof:

(CPS) Morits equivalence from FGn=J �mod to Sn �mod , J

the ideal annihilating unipotent characters

Functors of Dipper connecting FGn=J-modules and Sn-modules

Extend these to the graded case.
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Modular Representation Theory and Lie Theory

An example of a decomposition matrix D for n = 4, e = 4:0
BBBBBB@

4jj 1 0 0 0

31jj 1 1 0 0

211jj 0 1 1 0

1111jj 0 0 1 1

1
CCCCCCA
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Modular Representation Theory and Lie Theory

From such a matrix we can read:

(Part of) transition between two bases of the Fock space as

csle-module

Decomposition numbers for Hn (also cyclotomic) over

characteristic 0

(conjecturally) part of `-decomposition matrix of GL(n; q)
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Modular Representation Theory and Lie Theory

Summary

Known: Graded Decomposition numbers for Hn (also

cyclotomic) over characteristic 0

Known: Decomposition numbers for GLn(q), ` large

Not known: Decomposition numbers for Sn (symmetric group),

GLn(q), all `
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Modular Representation Theory and Lie Theory

An example of a v -decomposition matrix D for n = 4, e = 4:0
BBBBBB@

4jj 1 0 0 0

31jj v 1 0 0

211jj 0 v 1 0

1111jj 0 0 v 1

1
CCCCCCA
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Modular Representation Theory and Lie Theory

An example of the inverse of a v -decomposition matrix D for n = 6,

e = 2:

0
BBBBBBBBBBBBBBBBBBBBBBBBBB@

1 0 0 0 0 0 0 0 0 0

�v 1 0 0 0 0 0 0 0 0

v 2 �v 1 0 0 0 0 0 0 0

�v 0 �v 1 0 0 0 0 0 0

�v 3 v 2 �v 0 1 0 0 0 0 0

v 2 �v v 2 �v �v 1 0 0 0 0

v 2 0 v 2 �v �v 0 1 0 0 0

0 0 �v 3 v 2 v 2 �v �v 1 0 0

0 0 v 2 �v 0 0 v 2 �v 1 0

0 0 0 0 0 0 �v 3 v 2 �v 1

1
CCCCCCCCCCCCCCCCCCCCCCCCCCA

Here the rows are indexed as: 6; 51; 42; 412; 32; 313; 23; 2212; 214; 16

Source: GAP, MAPLE
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Modular Representation Theory and Lie Theory

References:

A.Kleshchev, Bulletin of AMS 47 (2010), 419-481.

Dipper-James, proc. London Math. Soc. 59 (1989), 23-50

S.Ariki, Graded q-Schur algebras, ArXiv:0903.3453v2

B.Srinivasan, Graded Representations of GL(n; q), Preprint

C.Stroppel , B.Webster, Quiver Schur algebras and q-Fock spaces

arXiv.1110.1115v1

Bhama Srinivasan (University of Illinois at Chicago) Representations of GL Honolulu, March 2012 24 / 24


	Unipotent characters of GL(n,q)

