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Intro and Main Result

Frobenius-Schur Indicators

@ Let G be a finite group, and (7, V) an irreducible complex
representation of G with character .
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@ Let G be a finite group, and (7, V) an irreducible complex
representation of G with character .

@ The Frobenius-Schur indicator of , or of x, is
e(X) = 157 Lgec X (8-
@ Then e(x) = 1, —1, or 0 when 7 is an R-representation, x is

real-valued but 7 is not an R-representation, or  is not
real-valued, respectively.
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Intro and Main Result

Frobenius-Schur Indicators

@ Let G be a finite group, and (7, V) an irreducible complex
representation of G with character .

@ The Frobenius-Schur indicator of , or of x, is
e(X) = 157 Lgec X (8-

@ Then e(x) = 1, —1, or 0 when 7 is an R-representation, x is
real-valued but 7 is not an R-representation, or  is not
real-valued, respectively.

o Ife(y) = —1, x is symplectic. If £(x) = 1, x is orthogonal.
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Intro and Main Result

Basic Goal

@ Given a finite group of Lie type G, determine the
Frobenius-Schur indicator €(x) for each complex irreducible
character x of G. This determines the classification of the
irreducible representations of G over R.
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Intro and Main Result

Basic Goal

@ Given a finite group of Lie type G, determine the
Frobenius-Schur indicator €(x) for each complex irreducible
character x of G. This determines the classification of the
irreducible representations of G over R.

@ Much work has been done on this question (along with the
related questions regarding rationality) by Geck, Gow, Janusz,
Lusztig, Malle, Marberg, Ohmori, Prasad, Przygocki, Tiep,
Turull, Zalesski,...
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Intro and Main Result

However, this goal is not yet completely accomplished for the finite
unitary group, G = U(n, F,). )
Here, U(n, F,) is defined as G”, where G = GL(n, F,) and

F((ag) ="(a) ™"

Note that on GL(1,F,), which we may identify with F*, F acts as
Fla) =a™1.
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Intro and Main Result

Semisimple characters

Let G be a connected reductive group with connected center, defined
over I, by Frobenius F, and let G = G". Suppose p = char(F,) is a
good prime for G. Then x € Irr(G) is a semisimple character of G
when x (1) is prime to p.
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Intro and Main Result

Main Result

Theorem (Srinivasan-V)

Let G = U(2m,F,), with q odd. Then the number of semisimple
symplectic characters of G is ¢" ', and these are in one-to-one
correspondence with self-dual polynomials in F,[t] of degree 2m with
constant term —1.

A polynomial f(¢) € F,[{] is self-dual when it is monic, and « € F,, is
a root of f(¢) with multiplicity k if and only if o~ is.
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Outline of Proof

Proposition (Ohmori, V)

Let G = U(n,F,), and x € Irt(G) a semisimple real-valued
character. Then:
Q Ifnisoddorqis even, then (x) = 1.

© Ifniseven and q is odd, then £(x) = wy(z), where w, is the
central character of the representation affording x, and z is a

generator for Z(G).

That is, G can only have semisimple symplectic characters if n = 2m

and g is odd.

Semisimple Symplectic Characters
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Outline of Proof

Remark. Ohmori calculated £(y) when Y is a unipotent character of
G =U(n,F,), q odd. The result implies there can be no ¢t € Z(G)
such that e(x) = wy () for all x € Irr(G).
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Outline of Proof

Real-valued semisimple characters

o If G is a connected reductive group with connected center,
defined over I, by Frobenius F, let G* be a group dual to G,
with dual Frobenius F*. Let G = G' and G* = G*F".
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Outline of Proof

Real-valued semisimple characters

o If G is a connected reductive group with connected center,
defined over I, by Frobenius F, let G* be a group dual to G,
with dual Frobenius F*. Let G = G' and G* = G*F".

o The Deligne-Lusztig theory of characters for G gives a

bijection (s) <> x(,) between semisimple classes of G* and
semisimple characters of G.
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Outline of Proof

Real-valued semisimple characters

o If G is a connected reductive group with connected center,
defined over I, by Frobenius F, let G* be a group dual to G,
with dual Frobenius F*. Let G = G' and G* = G*F".

o The Deligne-Lusztig theory of characters for G gives a
bijection (s) <> x(,) between semisimple classes of G* and

semisimple characters of G.

@ The conjugacy class (s) is real if s is conjugate to s~ .
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Outline of Proof

Real-valued semisimple characters

In the bijection (s) < X(s), (8) is a real semisimple class if and only if
X(s) is a real-valued character.

Navarro-Tiep: One may replace "real" with "rational" in the above,
for a more general result.
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Outline of Proof

Take G in duality to G* as before, with respect to the F-stable
maximal torus T of G, in an F-stable Borel, and an F*-stable maximal
torus T* of G* in an F*-stable Borel of G*. There is an isomorphism

()" = 1n(T),

which gives rise to a homomorphism z +— z from Z(G*)f" to linear
characters of G*'.
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Outline of Proof

This map, in turn, allows us to define a map s — § from semisimple
elements of G* (an F*-stable element of the center of Cg=(s)) to
linear characters of Cg(s)F.

Lemma (Fong-Srinivasan)

Let G' = U(n, Fy), X(s) be a semisimple character of G', and
z € Z(GF). Then Wy, (@) = 3(2).
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Outline of Proof

3(2) = 2(s)

So, for G = U(2m, Fy), g odd, we have £(x(y)) = wy, (z) = Z(s) for
real-valued x ), where z is a generator for Z(G).
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Outline of Proof

When G = U(n,F,), q is odd, and z is a generator of Z(G), then for
any semisimple s of G, 2(s) = (—1)X, where k is the multiplicity of —1
as an eigenvalue of s.

To obtain the main result, we now analyze the real semisimple classes
of U(n,Fy).
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Outline of Proof

o When G" = U(n,F,), F(a) = a~%fora € Fy.
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Outline of Proof

o When G" = U(n,F,), F(a) = a~%fora € Fy.

o A semisimple class of G consists of a choice of F-orbits [
with multiplicity, with total size n.
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Outline of Proof

o When G" = U(n,F,), F(a) = a~%fora € Fy.
o A semisimple class of G consists of a choice of F-orbits [
with multiplicity, with total size n.

e The semisimple class is real whenever the orbit [«|r always has
the same multiplicity as [a~!].
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Outline of Proof

o When G" = U(n,F,), F(a) = a~%fora € Fy.
o A semisimple class of G consists of a choice of F-orbits [
with multiplicity, with total size n.

e The semisimple class is real whenever the orbit [«|r always has
the same multiplicity as [a~!].

o If F(a) = a4, then [o]; U [a~ ']z = [a]r U [a"']F.
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Outline of Proof

It follows that real semisimple classes of U(n, F,) correspond to
self-dual polynomials in IF,[z] of degree n.

When n = 2m, g odd, the constant term of the polynomial
corresponding to real (s) is exactly (—1)¥, where k is the multiplicity
of —1 as an eigenvalue of (s).
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Outline of Proof

The main result follows, since, for (s) a real semisimple class, X(s) is
real-valued, and

e(x(s) = 2(s) = (=),

while (—1)* is precisely the constant term of the self-dual polynomial
of degree 2m in IF,[t] corresponding to (s).

One can quickly enumerate the number of such self-dual polynomials
with k odd to be ¢” !, corresponding to semisimple symplectic
characters, and those with k even to be g™, corresponding to
semisimple orthogonal characters.
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The Last Two Slides

e As mentioned, when G = U(n, F,), g odd, Ohmori determined
g()) for ¢ unipotent. We also know £(x(5)) When Xy is
semisimple.
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The Last Two Slides

e As mentioned, when G = U(n, F,), g odd, Ohmori determined
g()) for ¢ unipotent. We also know £(x(5)) When Xy is
semisimple.

o If one can understand the behavior of the F-S indicator under
Deligne-Lusztig induction RY, we could take advantage of the
Jordan decomposition of characters, and then the basic goal of
computing () would be reduced to that of unipotent characters.
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The Last Two Slides

@ More generally, if G = G” is a finite reductive group, and y is a
complex irreducible character of G with Jordan decomposition
(s,7), so s is a semisimple element of G*, and 1) is a unipotent
character of Cg-(s), precisely what conditions of (s, ) are
equivalent to y being real-valued? It seems we need s is a real
element of G*, and if wsw™! = s—!, then we also need 1) = ).
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The Last Two Slides

@ More generally, if G = G” is a finite reductive group, and y is a
complex irreducible character of G with Jordan decomposition
(s,7), so s is a semisimple element of G*, and 1) is a unipotent
character of Cg-(s), precisely what conditions of (s, ) are
equivalent to y being real-valued? It seems we need s is a real
element of G*, and if wsw™! = s—!, then we also need 1) = ).

@ Thank you!
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