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The outline of my talk

Ordinary Representations of S,

@ Combinatorics of tableaux

Modular Representations of S,

Blocks

Decomposition Numbers

New Methods: Lie Theory
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Ordinary Representations

G is a finite group, K a field.
If K has characteristic 0, a homomorphism p: G — GL(n, K) is an
ordinary representation of G. Equivalently, we have a KG-module of

dimension n.
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Ordinary Representations

G is a finite group, K a field.
If K has characteristic 0, a homomorphism p: G — GL(n, K) is an

ordinary representation of G. Equivalently, we have a KG-module of
dimension n.
p is reducible if for a fixed T T~'p(g)T is of the form
*
(,ol(g) ) Or; The G-module has a proper submodule.

0 p(g)
Otherwise, p is irreducible, G-module is simple.
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Ordinary Representations

K = C, then the character of p is the function x : G — C,
x(g) = Trace p(g), the degree of x is n.
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Ordinary Representations

K = C, then the character of p is the function x : G — C,
x(g) = Trace p(g), the degree of x is n.

Number of irreducible characters = number of conjugacy classes
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Ordinary Representations

Important invariant of Representation Theory: Character Table, rows

show characters, columns show classes

Important classical tool: Frobenius induction: Given a character of a
subgroup H of G, get a character of G.
Ind§ : Ko(KH) — Ko(KG)
(Indg ($))(g) = 1/|H| Cxe P(x 'gx)
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Ordinary Representations

Important invariant of Representation Theory: Character Table, rows

show characters, columns show classes

Important classical tool: Frobenius induction: Given a character of a
subgroup H of G, get a character of G.
Ind§ : Ko(KH) — Ko(KG)
(Indg ($))(g) = 1/|H| Cxe P(x 'gx)

Ko(KG) is the Grothendieck group, i.e. free abelian group with basis
(isomorphism classes of ) simple modules of G. If K has characteristic

0 can use characters for a basis.
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Modular Representations (Classical)

Richard Brauer developed the modular representation theory of finite

groups, starting in the thirties.

G a finite group

a prime integer

a sufficiently large field of characteristic 0

a complete discrete valuation ring with quotient field K
residue field of O, char k=p

x>~ QO X T

A representation of G over K is equivalent to a representation over
O, and can then be reduced mod p to get a modular representation
of G over k.
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Modular Representations (Classical)

Brauer character of a modular representation: a complex-valued
function on the p-regular elements (order prime to p) of G. Then we

can compare ordinary and p-modular (Brauer) characters.
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Modular Representations (Classical)

Brauer character of a modular representation: a complex-valued
function on the p-regular elements (order prime to p) of G. Then we
can compare ordinary and p-modular (Brauer) characters.

Number of irreducible Brauer characters = number of p-regular

classes,

The decomposition matrix D is the transition matrix between

ordinary and Brauer characters.
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Modular Representations (Classical)

Consider the algebras KG and kG. KG is semisimple, kG is not
semisimple if p divides the order of G.

where the B; are "block algebras”, indecomposable ideals of kG,
reductions mod p of some ideals in OG.

Each irreducible representation over K or k belongs to precisely one
block.
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Modular Representations (Classical)

At the character level:

X1, X2 are in the same block if there is a chain X1, Xx11, X12...X2
such that any two consecutive characters have a Brauer character in

common when reduced mod p.
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Modular Representations (Classical)

Leads to:

@ a partition of the ordinary characters, or KG-modules, into
blocks

@ a partition of the Brauer characters, or kG-modules, into blocks

@ a partition of the decomposition matrix into blocks
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Modular Representations (Classical) Main Problems

Some main problems of modular representation theory:

@ Describe the blocks as sets of characters, or as algebras

@ Describe the irreducible modular representations, e.g. their
degrees

@ Find the decomposition matrix D, the transition matrix between
ordinary and Brauer characters.

@ Global to local: Describe information on the block B by "local
information”, i.e. from blocks of subgroups of the form Ng(P),

P a p-group
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Symmetric Groups

The symmetric group S, is generated by the transpositions
{(12)) (23)’ s (n - 1) n)}

Partitions A of n play a big role.

With each A = n, a Young subgroup H,, used to construct

representations of S,.

Example: A= {5, 4, 2}, H>\ = 5{1’2,374,5} X 5{6,7,8,9} X 5{10711}
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Symmetric Groups

Example: Character table of S;.

order of element |1 | 2 | 3
classsize 113 |2
X1 111 1] 1
X2 11-1]1
X3 21 0 | -1
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Symmetric Groups

Example: Character table of S,.

order of element 1| 2 | 2 | 3 | 4
classsize 116|386
X[4] 1] 1] 1]1]1
X[31] 311 |-1|0 |-1
X[22] 2/ 0] 2|-1|0
X[212] 3|-1|-1,0 |-1
X[14 1/-1] 1] 1 ]-1
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Symmetric Groups

Character Table of Ss

orderof element (1| 2 | 2 | 3 | 6 | 4 | 5
classsize 1110|1520 |20 |24 |24

X5 1{1}1 11 1]1

X15 1{-1} 1|1 |-1/-1]1
X41 412101 |-1]{0 -1
X213 41 -2, 0|1 |1 ]0]|-1

X32 5/1 |1 |-1]1]|-1]0

X221 5(-1|1|-1|-1| 1|0

X312 6(0|-2] 00|01
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Symmetric Groups

@ Ordinary characters of S,: parametrized by partitions of n
@ Given partition A , have x, € lrr(S,)
@ A has associated Young tableaux

@ Hook length formula:

(1) = /T by

Here hj; is the hook length of node (i, /), i.e. from the node (i, /) go
right and down.
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Symmetric Groups

Example:

Hook lengths are {4,3,1,2,1}, Dimension of x3, = 120/4.3.2=5
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Symmetric Groups

Dimension of X3, = Number of Standard tableaux of shape 3,2
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Symmetric Groups

Example of reduction mod 2: The irreducible representation of

0
dimension 2 of S3 becomes reducible mod 3, since (123) — <Lg 2>
w

01
where w is a primitive cube root of unity, and (12) — (1 0> :

10 1 0
becomes (123) — , (12) — ,mod 3.
01 0 -1
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Example: In S5, p=2, D =

I = R
T =)



Symmetric Groups

Module version: Specht modules indexed by partitions of n, defined
over any field F. Denote by Sy. S, has a unique irreducible quotient
D,.
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Symmetric Groups

Module version: Specht modules indexed by partitions of n, defined
over any field F. Denote by Sy. S, has a unique irreducible quotient
D;.

If F has characteristic 0 then S, = D,, these are all the simples up to
isomorphism.

If F has characteristic p, take A to be p-regular (each part appears
less than p times). Then D, are all the simples up to isomorphism.

Decomposition matrix has entries (Sy : D).
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Symmetric Groups

Example: Ss, p = 2: Brauer characters

order of element |1 | 3 | 5
classsize 1120 |24

Us 111 1] 1
Ya 411 -1
P32 41 -2|-1
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Symmetric Groups

Character Table of Ss

orderof element (1| 2 | 2 | 3 | 6 | 4 | 5
classsize 1110|1520 |20 |24 |24

X5 1{1}1 11 1]1

X15 1{-1} 1|1 |-1/-1]1
X41 412101 |-1]{0 -1
X213 41 -2, 0|1 |1 ]0]|-1

X32 5/1 |1 |-1]1]|-1]0

X221 5(-1|1|-1|-1| 1|0

X312 6(0|-2] 00|01
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Symmetric Groups

Decomposition matrix of S5, p = 2:

5 41 32
5/ 1 0 0
a1 0 1 0
2 1 0 1
312 2 0 1
21 1 0 1
213 0 1 O
| 1 0 0
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Symmetric Groups

@ Given A, have x, € lrr(S,)

@ p positive integer: Have p-hooks, p-core of A.

The p-core is obtained from the Young diagram of A by removing as

many p-hooks as you can.
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Symmetric Groups

Example: Removing 3-hooks to get a 3-core
| ole]
[ ]
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Symmetric Groups

Theorem (Brauer-Robinson) x», X, are in the same p-block if and

only if A, u have the same p-core.

Example: S5, p = 3, blocks are {Xs;X221,X213}1 {X41,X32,X15},

{X312}
| |

, no 3-hooks, D with 3 block matrices along diagonal.
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Symmetric Groups

Summary: Blocks of S, known.

Decomposition matrix not known in general, but shape is known.

Describe new methods, from Lie theory.
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Modular Representations and Lie Theory

Recall: Irreducible KS,-modules indexed by partitions of n

Partition of n is represented by a diagram with n nodes.

Induction (resp. restriction) from S, to S,.1 (resp. S, to S,_1 ) is
combinatorially represented by adding (resp. removing) a node from

a partition.
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Modular Representations and Lie Theory

residue r at the (7, )-node of a diagram is defined as

r=(j —i)(mod p).

Define r-induction (resp. r-restriction) from S, to S,;1 (resp.
S, to S,_1), for various r. Represent induction or restriction and

cutting to a block.

GdeB.Robinson: Operators ¢; and f;, 0 < i < (p — 1), which move

only nodes with residue i. Then Ind = 35! f; and Res = > ) ' e;.

Bhama Srinivasan (University of lllinois at Chicago Modular Representations Regina, May 2012 30/ 36



Modular Representations and Lie Theory

Example of 0 — ind:
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Bhama Srinivasan (University of lllinois at Chicago

Modular Representations

Regina, May 2012

31/36



Modular Representations and Lie Theory

k a field of characteristic p.

A = ®,>0Ko(kS, — mod)

Then s, acts on A. Generators e;, f; of U(sl,) act like i-induction
and J/-restriction defined above.

Generators h; act by characters called weights.

The affine Weyl group acts on the set of weights.

Bhama Srinivasan (University of lllinois at Chicago Modular Representations Regina, May 2012 32/ 36



Modular Representations and Lie Theory

Theorem (Lascoux, Leclerc and Thibon) The decomposition of A
into p-blocks coincides with the decomposition into weight spaces for
5/;. Two blocks of symmetric groups have the same p-weight if and

only if they are in the same orbit under the action of the affine Weyl

group.
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Modular Representations and Lie Theory

Recall: p-weight of a block of kS,= number of hooks removed to get
core

Here consider blocks as algebras over k.
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Modular Representations and Lie Theory

Recall: p-weight of a block of kS,= number of hooks removed to get
core

Here consider blocks as algebras over k.

If Ais a k-algebra, DP(A) is the bounded derived category of the
category A — mod of finitely generated A-modules. It is a
triangulated category. Two algebras A and B are derived equivalent if

DP(A) and D*(B) are equivalent as triangulated categories.
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Modular Representations and Lie Theory

Recall: p-weight of a block of kS,= number of hooks removed to get
core

Here consider blocks as algebras over k.

If Ais a k-algebra, DP(A) is the bounded derived category of the
category A — mod of finitely generated A-modules. It is a
triangulated category. Two algebras A and B are derived equivalent if

DP(A) and D*(B) are equivalent as triangulated categories.

Theorem (Chuang-Rouquier) Two p-blocks of symmetric groups

which have the same p-weight are derived equivalent.
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Modular Representations and Lie Theory

Dimension of S, = f,, number of standard Young tableaux.
Application to the Ballot Problem: (R.Stanley, Enumerative
Combinatorics, Vol 2)

A1, Ao ... are the parts of A.

Ways in which n voters can vote sequentially for candidates

A1, Az, ... so that A; gets A; votes, A, gets A, votes,... and so that
A; never trails A;,; if the votes are counted consecutively. How many
such sequences are there?

Answer: the number f, of standard tableaux.

Example: 5 voters, 2 candidates: A = {3,2}
{11122,11212,11221,12112,12121}
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Modular Representations and Lie Theory
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