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L introduction

Joint work with N. Andruskiewitsch and G. Carnovale.
Problem: Determine when a Lie rack is of type D.

In group-theoretical terms:

Let O be a conjugacy class in a finite group G. Are there elements
r, s € O such that their conjugacy classes in the subgroup (r,s) of
G are different and (rs)? # (sr)??

We deal concretely with the case when G is a finite group of Lie
type.
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L Simple racks
p!

Definition

A rack is a non-empty set X endowed with an map>: X x X — X
satisfying

(a) x>__ is a bijection for any x € X,

(b) xp(y>z)=(xpy)>(x>2z) forall x,y,z € X.

The archetypical example of a rack is a conjugacy class in a group.

We say that a rack is simple if | X| > 1 and any rack epimorphism
X — Y is bijective or | Y| = 1.
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Definition

A rack X is of type D if it contains a decomposable subrack
Y =R][S and elements r € R, s € S such that

re(s>(r>s)) #s.

If O is a conjugacy class in a finite group G, then the rack O is of
type D if and only if the answer to our first question is positive.

Facts: » If Z is a finite rack that admits a rack epimorphism
Z — X, where X is of type D, then Z is of type D.

» If Z is indecomposable, then it admits a rack epimorphism
Z — X with X simple.

Hence

Problem

Determine all simple racks of type D
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Finite simple racks where classified in [AG] ! and [J]?.

We are interested in the (twisted) conjugacy classes of type (L, u):
» (L, t,0) a triple where L is a simple non-abelian finite group,

t € Nand 0 € Aut(L).

» u an automorphism of L* defined by

u(fl, ... ,ft) = (9(&),[1, ... ,ftfl) with #1,...,¢; € L.

Definition

If L is a finite group of Lie type, we call a (twisted) conjugacy class
of type (L', u) a Lie rack.

Thus, non-trivial (twisted) conjugacy classes in simple groups of
Lie type are Lie racks.

IN. Andruskiewitsch and M. Grafia, From racks to pointed Hopf algebras,
Adv. Math. 178 (2003), 177-243.
D. Joyce, Simple quandles, J. Algebra 79 2 (1982), 307-318.
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classification of finite dimensional pointed Hopf algebras over
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Let X be a finite rack and q a 2-cocycle with values in GL(n, C).
When is the Nichols algebra B(X, q) finite dimensional?

An indecomposable finite rack X collapses if for any cocycle q,
dimB(X,q) = .

Moreover, in [AFGV] 3 it was proved

If X is a finite rack of type D, then X collapses.

3N. Andruskiewitsch, F. Fantino, M. Grafia and L. Vendramin,
Finite-dimensional pointed Hopf algebras with alternating groups are trivial.
Ann. Mat. Pura Appl. (4), to appear.
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L Reduction to semisimple and unipotent classes

Let p be a prime number, m € N and g = p™.

» G algebraic reductive group defined over the algebraic closure of
Fq and G = G(FFy) finite group of F4-points.

» Take x € G; we want to investigate the orbit (’)f.

» If x = xsx, is the Chevalley-Jordan decomposition, then
Xs, Xy € G.

» Let K = Cg(xs), a reductive subgroup of G. Then
K=KnNG = Cs(xs).

Since x, € K, OX is a subrack of OF and we can reduce our study
to the case when x is either unipotent or semisimple.
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element. Then O, is of type D if and only if n %2 or n =2 and q
is a square different from 9.

*S. Freyre, M. Grafia and L. Vendramin, On Nichols algebras over PGL(2, q)
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LUnipotent classes in SL(2, q)

L Main Theorem

Assume q is odd and let u € SL(n, q) be a nontrivial unipotent
element. Then O, is of type D if and only if n %2 or n =2 and q
is a square different from 9.

Note: Even if the conjugacy classes (’)fL(M) are not of type D for
g not a square, by [FGV]*, (’)LS,L(2’q) collapses for g odd.

*S. Freyre, M. Grafia and L. Vendramin, On Nichols algebras over PGL(2, q)
and PSL(2,q), J. Algebra Appl., Vol. 9, No. 2 (2010),-195-208.
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LSketch of the proof

For a € (F;)"!, define

1 dl 0 0
0 1 an 0
ra — T, i 0
0 1 ap
0 0 1

A unipotent element u € GL(n, q) is of type A = (A1,..., \x) if it
is conjugate to the element

upy O 0
0 u ... 0

u=| . _ | whereu;=n € IE‘;"'X)"'.
0 P 4

If x € GL(n, q) is of type (n), we call it regular.
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LSketch of the proof

Let u € SL(n, q) be a unipotent element of type (A1, ..., \k) with
uj € Fé"'X)"’. If Oi.L()""q) is of type D, then O, is of type D.

Sketch of the proof: Assume OEIL(AI’C’) is of type D.

Let H be the image of the natural embedding of
SL(A1,q) X -+ x SL(Ak, q) into SL(n, q) containing u.
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Let u € SL(n, q) be a unipotent element of type (A1, ..., \k) with
uj € Fé"'X)"’. If Oi.L()""q) is of type D, then O, is of type D.

(17)

Sketch of the proof: Assume (9 is of type D.

Let H be the image of the natural embedding of
SL(A1,q) X -+ x SL(Ak, q) into SL(n, q) containing u.

Then (’)H is a subrack of OSL(" 9)

first factor induces a rack epimorphism of O onto O

and the projection of H onto its
SL()\Lq)
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L Sketch of the proof

Assume that n > 2 and q is odd.
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Assume that n > 2 and g is odd. Then the conjugacy class of a
unipotent regular element in SL(n, q) is of type D.

Assume g is odd and let u € SL(n, q) be a unipotent element of
type (A1,..., Ak)-
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LUnipotent classes in SL(2, q)
LSketch of the proof

Assume that n > 2 and g is odd. Then the conjugacy class of a
unipotent regular element in SL(n, q) is of type D.

Assume g is odd and let u € SL(n, q) be a unipotent element of
type (A1,..., Ak).If A1 > 2, then the conjugacy class O, is of type
D.
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LUnipotent classes in SL(2, q)

L Sketch of the proof

Assume g is odd. Let u € SL(n, q) be a unipotent element of type
(2,2) or (2,1). Then the conjugacy class O, is of type D.




Lie racks of type D: Unipotent conjugacy classes in finite groups of Lie type

LUnipotent classes in SL(2, q)
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Assume g is odd. Let u € SL(n, q) be a unipotent element of type
(2,2) or (2,1). Then the conjugacy class O, is of type D.

Case (2,2) in SL(4,3) done with GAP.
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LUnipotent classes in SL(2, q)
LSketch of the proof

Assume g is odd. Let u € SL(n, q) be a unipotent element of type
(2,2) or (2,1). Then the conjugacy class O, is of type D.

Case (2,2) in SL(4,3) done with GAP.

m

Assume g = p
class in SL(2, q) is of type D if and only if g is a square different
from 9.

is odd. Then any non-trivial unipotent conjugacy




Lie racks of type D: Unipotent conjugacy classes in finite groups of Lie type

LUnipotent classes in type Ay and other types

All results can be used to prove the main theorem for PSL(n, q)
and PGL(n, q) since the rack structures are not deformed by taking
the quotients.
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If the Dynkin diagram of G has at least a component of rank
greater than 1,
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LUnipotent classes in type Ay and other types

All results can be used to prove the main theorem for PSL(n, q)
and PGL(n, q) since the rack structures are not deformed by taking
the quotients.

Assume G is a simple algebraic group and F : G — G is a
Steinberg automorphism which is Fg-split.

Translating the techniques used for SL(n, q) using Lie theory one
can extend the result to other types, for example

If the Dynkin diagram of G has at least a component of rank

greater than 1, then every regular unipotent class of GF is of type
D.
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