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The groups GI5(2,A) and SI£(2, A)
Basic ldea

To look at higher rank groups as non commutative
analogues of related lower rank groups

» Example: To look at the symplectic similitude group
GSp(2n, F) in 2n variables over a field F as a group GL(2)
with coefficients in the matrix ring over F, satisfying suitable
commutation relations which involve the transpose map*

» To extend to higher rank groups, successful methods used
for lower rank groups. In particular, having presentations
for higher rank classical groups as non commutative
versions of known presentations for the lower rank case.
These presentations can be used in constructing linear
representations for higher rank groups (generalized Weil
representations, for example)
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Non commutative generalizations of classical groups:
S (2, A)

Let (A, ) be a unitary ring with involution. Let ¢ = +1

A left e— Hermitian form H on a left A-module M is a
function which is biadditive, left linear in the first variable
and such that H(y, x) = eH(x, y)*, for all x,y € M.

Let us consider the special case where M = A?

We have a matrix description of left e— Hermitian forms.
Letus put T* = (1}7)13,-,,-32 for any

T = (tj))1<ij<m € M(2, A). Now, when a basis B = {ey, &>}
of the free A— module M has been chosen, we define the
matrix [H] of H with respect to B by [H] = (H(ei, €)))1<i j<2-
Then H(u, v) = u[H]v* (u,v € M) and conversely, given
a matrix T such that T* = ¢T we recover an e— Hermitian
form Hr by Hr(u,v) = uTv* (u,v € M).
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follow:



The groups GI£(2, A) and SI5(2, A) can be described as
follow:

The group GI5(2, A) is the set of all automorphisms g of
the A— module M = A x A such that H. o (g x g) = ugH:
(ng €A central and symmetric with respect to x)

or in matrix form as

GLE(2, A) = {M € M(2, A) : MJ-M* = pigJ.}

where J. = ( S (1) and ¢ = %1
while SI£(2, A) is the subgroup of GIZ(2, A) of those g such



In other words
SI£(2,A) is the group of g = ( i Z > such that

ab* = —<ba*

cd* = —edc*,
a‘c= —ec*a,
b*d = —ed*b,

ad* +ebc* = g*'d+ecc*b=1



Weil representations for G = SI5(2, A), G with a Bruhat
presentation

We assume that the group G = SI5(2, A) has a Bruhat
presentation, i.e.,



Weil representations for G = SI5(2, A), G with a Bruhat
presentation

We assume that the group G = SI5(2, A) has a Bruhat
presentation, i.e.,

if As = ASY™ (e-symmetric elements) is the set of a such

that a* + ca =0, G is generated by the following matrices
satisfying the minimal relations

([t 0 o (01
ht_<0 t*_1>(t€A),W—Wa—<€ O)and

Us = < g) f) (s € AYm)

hthy = hy, UpUy = Upyp;

W2 = hs;

htup = ugpe- ht;

why = hy.-1w;

WU;—1 WU_tWU;—1 = h_¢, with t an invertible e—symmetric
element in A.



Weakly euclidean rigs

» (A, ) is a weakly euclidean ring if given a, b € A such that
a*b = —eb*a, Aa+ Ab = A, then there are finite
sequences of elements sy, s1, ..., 5,1 € As and
r,r, ..., € Awith r, € A* such that
a= Syb+r
b=sir+nr

'n—2=38p-1lh—1+1n
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Weakly euclidean rigs

» (A, ) is a weakly euclidean ring if given a, b € A such that
a*b = —eb*a, Aa+ Ab = A, then there are finite
sequences of elements sy, s1, ..., 5,1 € As and
r,r, ..., Ih € Awith r, € A* such that
a= Syb+r
b=sir+nr

'n—2=38p-1lh—1+1n

» We observe that if ( a b
c d

c) satisfy above
» and we have:

If (A, %) is a weakly euclidean ring, then the elements us, h;
and w, generate the group SL;(2, A).

) € SL:(2,A), then aand b (or
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In what follows we suppose that:
A is a finite involutive (unitary) ring

We fix the following functions with the below properties,
which will be useful in the construction of the Weil
representation of G. Let M be a finite (right) A—module
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a € AX such that:
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1. A bi-ggditive function x : M x M — C* and a character
a € AX such that:

1.1 x(xt,y) = o(tt*)x(x,yt*) for x,y € Mand t € A* (xis
a-balanced).

1.2 x(y,x) = [x(x,y)] . We observe that
[x(X,¥)]7¢ = x(—ex,y) (xis e-symmetric).

1.3 x(x,y) =1forany x € M, impliesy =0 (xis
non-degenerate).

2. A function v : A x M — C* such that:

21 v(b+ b, x) =~(b,x)v(b, x), for all b, b’*¥™ and x € M.

2.2 (b, xt) = ~y(tbt*, x) or equivalently v(b, x) = ~y(tbt*, xt=),
forallbe A te A% and x € M.

2.3 y(t, x4+ z) = v(t, x)v(t, 2)x(x, zt) for all x,z € M, t € AY™.
where t is e— symmetric invertible in A and ¢ € C* satisfies

c? M| = a(e).
3. We assume moreover that these data are related by the
equation:

C’Y(_Et’ X) Z X(_€X>y)'7(t71ay) = Oé(—t).
yem
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The following two relations are equivalent:

1. ey(—et,x) X x(—ex, y (171, y) = a(-1).
yem



As a consecuence we have

The following two relations are equivalent:

1. ey(—et,x) X x(—ex, y (171, y) = a(-1).
yem

2. Y A(t,y) =20,
yeM
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Weil Representation defined via a presentation

We have the following result:

» Theorem
There is a representation (CM, p) of G defined as follows on the
basis of Dirac delta functions {ex}xem (given by ex(y) =1 if
y = X; ex(y) =0 otherwise):
pu,(€x) = v(b, x)ex
ph(€x) = a(t)ex—

Pw(ex) =cC Z X(_5X7y)ey
yeMm

forx e M,be Ax N A* t e A*.
This representation is called the generalized Weil
representation of SLS(2, A) associated to the data (M, «,~, x).



Proof: It is enough to verify that py, , ps,, pw defined as
above, satisfy the relations corresponding to the universal
relations in the Bruhat presentation of G.
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Proof: It is enough to verify that py, , ps,, pw defined as
above, satisfy the relations corresponding to the universal
relations in the Bruhat presentation of G.

To this end, we observe that

a) (pn, © pn,)(€x) = pn(a(t)exp-1) = a(t)a(t)€yp-1p-1 =
Oé(t/)a(t)ex(n\/)—1
= (X(tt/)ex(tt/)—1 = ph",(ex)



Proof: It is enough to verify that py, , ps,, pw defined as
above, satisfy the relations corresponding to the universal
relations in the Bruhat presentation of G.
To this end, we observe that

> a) (pn © ph,)(€x) = pn(a(t) 1) = a(t)a(t)ey—11-1 =
a(t)a(t) ey
= a(tt") e+ = ph,(€x)

> b)(puy © pu, )(€x) = YU, X)v(b, X)ex = (b + b/, X)ex =
(Pub+b/ )(€ex)



Proof: It is enough to verify that py, , ps,, pw defined as
above, satisfy the relations corresponding to the universal
relations in the Bruhat presentation of G.

To this end, we observe that

a) (pn, © pn,)(€x) = pr(a(t) 1) = a(t)a(t)eyp—11-1 =
a(t)a(t) ey

= a(tt") e+ = ph,(€x)

b)(pub © pUb/)(eX) = ’Y(blﬂ x)y(b, x)ex = ~y(b+ b, X)ex =
(Pub+b/ )(€ex)

¢)(pw o pw)(ex) = ¢? ZM ZMX(—€X7}’)X(—€}’7 2)e, =
zeMye

a(e)eXE = Ph. ey



Proof: It is enough to verify that py, , ps,, pw defined as
above, satisfy the relations corresponding to the universal
relations in the Bruhat presentation of G.

To this end, we observe that

a) (pn, © pn,)(€x) = pr(a(t) 1) = a(t)a(t)eyp—11-1 =
a(t)a(t) ey

= o(tt))ex(ry-1 = ph, (6x)

b)(pub © pUb/)(eX) = ’Y(blﬂ x)y(b, x)ex = ~y(b+ b, X)ex =
(Pub+b/ )(€ex)

) (pw o pw)(ex) = %> > x(—ex,y)x(—ey,z)e; =
zeMyeM

a(e)ex: = pn.ex

d)(pn, © pu,)(€x) = V(b X)a(t)ey—1 =

a(t)y(tbt*, xt=")eu—1 = (pwr- © pn,)(€x)



> €)pw o pp,)(€x) = Ca(f)gx(—ffﬁ_t}’)ey =
o3 X(—ex. vt a(t ey =
Ph s (CZy?x(—Ex,}/)ey) = (pn, s © pw)(€x)



> €)pw o pp,)(€x) = COé(f);X(—ffoqa}’)ey =
o3 X(—ex. vt a(t ey =
Ph s (czij(—ax,y)ey) = (pn, s © pw)(€x)

» f)Finally, a computation shows that
(owpu,_s pwpu_..)(€x) =

;CZ’Y(_Etv X) <§X(_5X7y)7(t_1’y))((_€y7 Z)) €z

(Ph_.ipu_,Pwpn.)(€x) =
ca(—1)> x(—ex, —ezt)y(—t~', —ezt)e,.
z



> €)pw o pp,)(€x) = COé(f);X(—ffoqa}’)ey =
o3 X(—ex. vt a(t ey =
Ph s (czij(—ax,y)ey) = (pn, s © pw)(€x)

» f)Finally, a computation shows that
(owpu,_s pwpu_..)(€x) =

;CZ’Y(_Etv X) <§X(_5X7y)7(t_1’y))((_€y7 Z)) €z

(Ph_.ipu_,Pwpn.)(€x) =
ca(—1)> x(—ex, —ezt)y(—t~', —ezt)e,.
z

So we want to prove that
C’Y(_Stﬂ X)ZX(—EX, y)')/(t_1 ) y)X(_€y7 Z) =
y

a(—t)x(—ex, —ezt)y(—t~1, —ezt)



> €)pw o pp,)(€x) = COé(f);X(—ffoqa}’)ey =
o3 X(—ex. vt a(t ey =
Ph s (czij(—ax,y)ey) = (pn, s © pw)(€x)

» f)Finally, a computation shows that
(owpu,_s pwpu_..)(€x) =

ZCZV(_EL X) <ZX(_5X7y)7(t_1)y)X(_Ey7 Z)) €z
z y
(Ph_gt/)u,,q pwpn.)(€x) =
ca(—1)> x(—ex, —ezt)y(—t~', —czt)e,.

z
So we want to prove that
C’Y(_Stﬂ X)ZX(—EX, y)')/(t_1 ) y)X(_€y7 Z) =

y

o —t)x(—ex, —ezt)y(—t~1, —ezt)

But by hypothesis

cy(—et, x —2) ZMX(—E(X —ez),y)y(—etyt1) = a(-1),
ye



SO
C’Y(—e?t, X);X(_ngy)’y(t_17y)X(_6y’ Z) =

cv(—et, ) x(—ex + Z, y)y(—et,yt 1) =
y



SO

cy(—et, X)X x(—ex, y)v(t~ ", ¥)x(—ey, 2) =
y

cv(—et, ) x(—ex + Z, y)y(—et,yt 1) =
y

a(—t) y(—et,x)a(—t)

C’Y(_gt’ X) cy(—etx—ez)  y(—etX)y(—et,—ez)x(x,21)
o —t)x(—ex, —ezt)y(—t~1, —ezt),




SO
C’Y(—e?t, X);X(_ngy)’y(t_17y)X(_6y’ Z) =

cv(—et, ) x(—ex + Z, y)y(—et,yt 1) =
y

a(—t) y(—et,x)a(—t)

C’Y(_gt’ X) cy(—et,x—ez) v(—et,x)y(—et,—ez)x(x,zt) -
o —t)x(—ex, —ezt)y(—t~1, —ezt),
from which our theorem follows.




We mention an example:

We take A to be the full matrix ring M,(k), where k denotes the
finite field IFq with g elements, endowed with the transpose
involution .

It has been proved that the group SL; (2, A) has a Bruhat
presentation

Let M be the k—vector space @ ;. ,, Ei,where E; = k",
endowed with a non-degenerate k—quadratic form Q, with
associated k—bilinear form By, defined by

Bo(u, v) = Qo(u + v) = Qo(u) — Co(Vv)

u,vekn
This induces canonically a non degenerate A—valued quadratic
formQon M



given by

1. Q( )u:QO( )
2. Q(x);j = Bo(xi, X))
3. Q(x); =0
forall x = (xq,...,xm) € M,1 <ij<n.

and a k bilinear form B on M with values in A given by
B(x,y)j = Bo(Xi, ¥j)

If we pass now to the quotient modulo “anti-traces", i.e. if
we defineQ=proQ: M — A, and

B =proB: Mx M — Awhere pr denotes the canonical
projection of A onto A/A°, with A° = {a — a*|a € A},

We fix moreover a non trivial character ¢ of k™ and we
denote by tr the usual matrix trace from A onto k.

«4O0>» «Fr «=)r» « )

nae



given by
1. Q(X),',‘ = Qo(X,')



given by

1. Q(x)i = Qo(xi)
2. Q(x)j = Bo(xi, X))



given by

1. Q(x)i = Qo(Xi)
2. Q(X)/ = BO(XI7X/)
3. Q(x);i=0
forall x = (xq,...,xXm) e M,1 <i,j<n.
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2. Q(x)j = Bo(xi, X))
3. Q(X)/',' =0
forall x = (xq,...,xXm) e M,1 <i,j<n.

and a k bilinear form B on M with values in A given by
B(x,y)ij = Bo(Xi, )



given by

1. Q(X),',‘ = Qo(X,')
2. Q(x)j = Bo(xi, X))
3. Q(X)/',' =0
forall x = (xq,...,xXm) e M,1 <i,j<n.

and a k bilinear form B on M with values in A given by
B(x,y)ij = Bo(Xi, )

If we pass now to the quotient modulo “anti-traces", i.e. if
we defineQ=proQ: M — A, and

B=proB:Mx M — Awhere pr denotes the canonical
projection of A onto A/A°, with A° = {a — a*|a € A},

We fix moreover a non trivial character + of k™ and we
denote by tr the usual matrix trace from A onto k.



Then ¢ = ¢ o tr is a non trivial character of A" such that
(ab) = 1 (ba) and y(a*) = +(a) for all a, b € A. On the other
hand, we have

gO@:@Z}OQ

where Q denotes the k—valued non-degenerate quadratic form
tr o Q over k, whose associated k—bilinear form will be denote
by B.



We put here



We put here
1. y(s,x) = 9(sQ(x))



We put here

1. 7(8,x) = ¥ (sQ(x))
2. x(x,y) = ¢(sB



We put here
1. y(s,x) = 1(sQ(x))

2. x(x,y) = ¥(sB(x, y)).

3. a = 1(whenm is even)



We put here
1. (s, x) = ¢(sQ(x))

2. x(x,y) = ¥(sB(x, y)).

3. a = 1(whenm is even)

To get a Weil representation



Weil representations for G = SI5(2, A), G via vector
bundles

» A G-Hilbert vector bundle is a tuple (E, p, B, 7) where E is
the total space, B is the base, p : E — B is the projection,
and 7 = (T,TB) is the action of G on E and B, respectively,
such that po 75 = 78 o pfor all g € G. The fiber p~'(b)

(b € B) is denoted by E;, and is a (finite dimensional)
Hilbert space with inner product <, >.
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» A G- equivariant connection on G is a family of Hilbert
space isomorphisms H = (E, p, B, 1)

M= {Vb’,b ‘ Yo' b - Ep, — Ebl}b,b’eB such that
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i (v b(F), v p(h)) = (f, by (f,he Ep)
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and 7 = (T,TB) is the action of G on E and B, respectively,
such that po 75 = 78 o pfor all g € G. The fiber p~'(b)
(b € B) is denoted by E;, and is a (finite dimensional)
Hilbert space with inner product <, >.

» A G- equivariant connection on G is a family of Hilbert
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Weil representations for G = SI5(2, A), G via vector
bundles

» A G-Hilbert vector bundle is a tuple (E, p, B, 7) where E is
the total space, B is the base, p : E — B is the projection,
and 7 = (1, 78) is the action of G on E and B, respectively,
such that po 75 = 78 o pfor all g € G. The fiber p~'(b)

(b € B) is denoted by E;, and is a (finite dimensional)
Hilbert space with inner product <, >.

» A G- equivariant connection on G is a family of Hilbert
space isomorphisms H = (E, p, B, 1)

M= {’yb/ b ‘ Yo' b - Eb — Ebl}bb’ such that

i () n(h) = (F.H)  (f.he Ep)

i. (yo,6(f), h) = (F, 0 (h)) (f€ Ep,he Ep)

iii. Yb,b' © Vbbb = Vbb = idEb (b, b e B)

V. Yo b 0 b = pr (D, 0, 0)vprp (b, b, 0" € B)
for a suitable mapping ur : B x B x B — C*, called the
multiplier of T

V. TgOo Y b= Vrg(b),7(b) © Tg (b, b e B,g € G)



Representation of G by contraction of the fiber bundle
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» The projective unitary representation (Vj, p°) of G is
defined as follows:
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Representation of G by contraction of the fiber bundle
over b

» The projective unitary representation (Vj, p°) of G is
defined as follows:
i. V, =Ep, as aHilbert space,
ii. pg(v) = .80)7g (v) forallge Give Vp
whose cocycle c is given by
c(g,h) = ur(b,g.b,gh.b) forallg,he G.Iflisflat, i.e., if
the function yr is 1, then p? is a true representation of G.

» We Dbriefly present now a construction of G = SI7(2, A)
using Lagrangian fiber bundles:
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Weil representation of G by contraction of Lagrangian
fiber bundles

» We assume that A is a finite k—algebra with an involution
that fixes the finite base field.

» Let S be a left A—module (which is right A—module via
s.a=a*.sforac A, s € S), finite dimensional as k—vector
space

» Letn: S x S — k. be anon-degenerate, k—bilinear,
symmetric A—balanced pairing (i.e. n(s.a, t) = n(s, a.t) for

acA steS
» We set W =S @ S and we define a symplectic form B on
W by

B((Sv t)> (S,, t/)) = 7](5» t,) - n(tv Sl)

for all (s,1t),(s’,t') € W. We fix a non trivial character v of
the additive group k™ of k and we put y = v o B.
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» A Lagrangian Lin W is a A—submodule which is maximal
totally isotropic for B, i.e., L = L+

» The group G acts on W by matrix multiplication, and we
have B(gw, gw’) = B(w, w')

» Then the Lagrangian bundle of G associated to S is given
by

i Bis the set of all Lagrangiansof W =S @ S
i E is the disjoint union of the spaces

EL={f:W—C|f(w+¢)=x(w.Of(w); we W, ¢elL},

for L € B, each endowed with the inner product given by

(f.h) = > _ f(w)h(w)

weW



i p: E— Bisgivenby p(f)=Liffe E,
iv 7 denotes the action of G in E and B given by

(rg(f)) (w) = f(g~'w), 74(L) = g(L),

forge G.fe E,we W, Le B.
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i p: E— Bisgivenby p(f)=Liffe E
iv 7 denotes the action of G in E and B given by

(r9(£)) (W) = f(g~"w), 74(L) = g(L),
forge G,fe E,we W, Le B.



G—equivariant connections
Assume that 2 € A is invertible. Then the family

C={w.olwe EL—= Ev}yep

of linear isomorphisms

(W) = ———=>"x(w,{N(w+{), (fe EL,we W)
ILIIL nr&e

is a G-equivariant connection with multiplier

L// L/ ’L// ﬁ L/ S L L/ L// L L/ L//
]LQUHUQHM|W(” ) (LL,LEB),

where the geometric Gauss sum Sy/(L; L', L") is given by

Sw(l_; L/7 L//) — Z X(CI + C//)

CeLn(L L")
where ¢ € LN(L' + L") is written as ¢’ + ¢" with ' e L', (" e L".
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