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The groups Glε∗(2,A) and Slε∗(2,A)
Basic Idea

I

To look at higher rank groups as non commutative
analogues of related lower rank groups

I Example: To look at the symplectic similitude group
GSp(2n, F) in 2n variables over a field F as a group GL(2)
with coefficients in the matrix ring over F, satisfying suitable
commutation relations which involve the transpose map*

I To extend to higher rank groups, successful methods used
for lower rank groups. In particular, having presentations
for higher rank classical groups as non commutative
versions of known presentations for the lower rank case.
These presentations can be used in constructing linear
representations for higher rank groups (generalized Weil
representations, for example)
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Non commutative generalizations of classical groups:
Slε∗(2,A)

I

Let (A, ∗) be a unitary ring with involution. Let ε = ±1

I

A left ε− Hermitian form H on a left A -module M is a
function which is biadditive, left linear in the first variable
and such that H(y , x) = εH(x , y)∗, for all x , y ∈ M.

Let us consider the special case where M = A2

I

We have a matrix description of left ε− Hermitian forms.
Let us put T ∗ = (t∗ji )1≤i,j≤2 for any
T = (tij))1≤i,j≤m ∈ M(2,A). Now, when a basis B = {e1,e2}
of the free A− module M has been chosen, we define the
matrix [H] of H with respect to B by [H] = (H(ei ,ej))1≤i,j≤2.

I

Then H(u, v) = u[H]v∗ (u, v ∈ M) and conversely, given
a matrix T such that T ∗ = εT we recover an ε− Hermitian
form HT by HT (u, v) = uTv∗ (u, v ∈ M).
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I

The groups Glε∗(2,A) and Slε∗(2,A) can be described as
follow:

I

The group Glε∗(2,A) is the set of all automorphisms g of
the A− module M = A× A such that Hε ◦ (g × g) = µgHε

(µg ∈A central and symmetric with respect to ∗)
or in matrix form as

GLε∗(2,A) = {M ∈ M(2,A) : MJεM∗ = µgJε}

where Jε =

(
0 1
ε 0

)
and ε = ±1

while Slε∗(2,A) is the subgroup of Glε∗(2,A) of those g such
that µg = 1
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I

In other words

Slε∗(2,A) is the group of g =

(
a b
c d

)
such that

ab∗ = −εba∗

cd∗ = −εdc∗,
a∗c = −εc∗a,
b∗d = −εd∗b,
ad∗ + εbc∗ = a∗d + εc∗b = 1



Weil representations for G = Slε∗(2,A), G with a Bruhat
presentation

I

We assume that the group G = Slε∗(2,A) has a Bruhat
presentation, i.e.,

I

if As = Asym (ε-symmetric elements) is the set of a such
that a∗ + εa = 0 , G is generated by the following matrices
satisfying the minimal relations

ht =

(
t 0
0 t∗−1

)
(t ∈ A×), w = wε =

(
0 1
ε 0

)
and

us =

(
1 s
0 1

)
(s ∈ Asym)

htht ′ = htt ′ , ubub′ = ub+b′ ;
w2 = hε;
htub = utbt∗ht ;
wht = ht∗−1w ;
wut−1wu−εtwut−1 = h−εt , with t an invertible ε−symmetric
element in A.
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Weakly euclidean rigs

I (A, ∗) is a weakly euclidean ring if given a,b ∈ A such that
a∗b = −εb∗a, Aa + Ab = A, then there are finite
sequences of elements s0, s1, ..., sn−1 ∈ As and
r1, r2, ..., rn ∈ A with rn ∈ A× such that
a = s0b + r1
b = s1r1 + r2
. . .
rn−2 = sn−1rn−1 + rn

I We observe that if
(

a b
c d

)
∈ SLε∗(2,A), then a and b (or

c) satisfy above
I and we have:

I

If (A, ∗) is a weakly euclidean ring, then the elements us, ht
and w , generate the group SLε∗(2,A).
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I

In what follows we suppose that:

I

A is a finite involutive (unitary) ring

I

We fix the following functions with the below properties,
which will be useful in the construction of the Weil
representation of G. Let M be a finite (right) A—module
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1. A bi-additive function χ : M ×M → C× and a character
α ∈ Â× such that:
1.1 χ(xt , y) = α(tt∗)χ(x , yt∗) for x , y ∈ M and t ∈ A× (χ is

α-balanced).
1.2 χ(y , x) = [χ(x , y)]−ε. We observe that

[χ(x , y)]−ε = χ(−εx , y) (χ is ε-symmetric).
1.3 χ(x , y) = 1 for any x ∈ M, implies y = 0 (χ is

non-degenerate).

2. A function γ : Asym ×M → C× such that:
2.1 γ(b + b′, x) = γ(b, x)γ(b′, x), for all b,b′sym and x ∈ M.
2.2 γ(b, xt) = γ(tbt∗, x) or equivalently γ(b, x) = γ(tbt∗, xt−1),

for all b ∈ Asym, t ∈ A× and x ∈ M.
2.3 γ(t , x + z) = γ(t , x)γ(t , z)χ(x , zt) for all x , z ∈ M, t ∈ Asym.

where t is ε− symmetric invertible in A and c ∈ C× satisfies
c2 |M| = α(ε).

3. We assume moreover that these data are related by the
equation:
cγ(−εt , x)

∑
y∈M

χ(−εx , y)γ(t−1, y) = α(−t).
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I

As a consecuence we have

I

The following two relations are equivalent:

1. cγ(−εt , x)
∑

y∈M
χ(−εx , y)γ(t−1, y) = α(−t).

2.
∑

y∈M
γ(t , y) = α(εt)

c .
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Weil Representation defined via a presentation

I

We have the following result:

I Theorem
There is a representation (CM , ρ) of G defined as follows on the
basis of Dirac delta functions {ex}x∈M (given by ex (y) = 1 if
y = x ; ex (y) = 0 otherwise):
ρub (ex ) = γ(b, x)ex
ρht (ex ) = α(t)ext−1

ρw (ex ) = c
∑

y∈M
χ(−εx , y)ey

for x ∈ M,b ∈ A× ∩ A×, t ∈ A×.
This representation is called the generalized Weil
representation of SLε∗(2,A) associated to the data (M, α, γ, χ).
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I

Proof: It is enough to verify that ρub , ρht , ρw defined as
above, satisfy the relations corresponding to the universal
relations in the Bruhat presentation of G.
To this end, we observe that

I a) (ρht ◦ ρht′
)(ex ) = ρht (α(t ′)ext ′−1) = α(t ′)α(t)ext ′−1t−1 =

α(t ′)α(t)ex(tt ′)−1

= α(tt ′)ex(tt ′)−1 = ρhtt′
(ex )

I b)(ρub ◦ ρub′ )(ex ) = γ(b′, x)γ(b, x)ex = γ(b + b′, x)ex =
(ρub+b′ )(ex )

I c)(ρw ◦ ρw )(ex ) = c2 ∑
z∈M

∑
y∈M

χ(−εx , y)χ(−εy , z)ez =

α(ε)exε = ρhεex

I d)(ρht ◦ ρub )(ex ) = γ(b, x)α(t)ext−1 =
α(t)γ(tbt∗, xt−1)ext−1 = (ρtbt∗ ◦ ρht )(ex )
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I e)ρw ◦ ρht )(ex ) = cα(t)
∑
y
χ(−εxt−1, y)ey =

c
∑
y
χ(−εx , yt∗

−1
)α(t∗

−1
)ey =

ρh
t∗−1 (c

∑
y
χ(−εx , y)ey ) = (ρh

t∗−1 ◦ ρw )(ex )

I f)Finally, a computation shows that
(ρwρut−1ρwρu−εt )(ex ) =∑
z

c2γ(−εt , x)

(∑
y
χ(−εx , y)γ(t−1, y)χ(−εy , z)

)
ez

(ρh−εtρu−t−1ρwρhε)(ex ) =

cα(−t)
∑
z
χ(−εx ,−εzt)γ(−t−1,−εzt)ez .

I

So we want to prove that
cγ(−εt , x)

∑
y
χ(−εx , y)γ(t−1, y)χ(−εy , z) =

α(−t)χ(−εx ,−εzt)γ(−t−1,−εzt)

I

But by hypothesis
cγ(−εt , x − εz)

∑
y∈M

χ(−ε(x − εz), y)γ(−εt , yt−1) = α(−t),
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I

so
cγ(−εt , x)

∑
y
χ(−εx , y)γ(t−1, y)χ(−εy , z) =

cγ(−εt , x)
∑
y
χ(−εx + z, y)γ(−εt , yt−1) =

I

cγ(−εt , x) α(−t)
cγ(−εt ,x−εz) = γ(−εt ,x)α(−t)

γ(−εt ,x)γ(−εt ,−εz)χ(x ,zt) =

α(−t)χ(−εx ,−εzt)γ(−t−1,−εzt),

I

from which our theorem follows.
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We mention an example:

We take A to be the full matrix ring Mn(k), where k denotes the
finite field Fq with q elements, endowed with the transpose
involution ∗.
It has been proved that the group SL−1

∗ (2,A) has a Bruhat
presentation
Let M be the k−vector space

⊕
1≤i≤m Ei ,where Ei = kn ,

endowed with a non-degenerate k−quadratic form Q0 with
associated k−bilinear form B0, defined by

B0(u, v) = Q0(u + v)−Q0(u)−Q0(v)

u, v ∈ kn

This induces canonically a non degenerate A−valued quadratic
form Q on M



I

given by

1. Q(x)ii = Q0(xi )
2. Q(x)ij = B0(xi , xj )
3. Q(x)ji = 0

for all x = (x1, . . . , xm) ∈ M,1 ≤ i , j ≤ n.

I

and a k bilinear form B on M with values in A given by
B(x , y)ij = B0(xi , yj)

I

If we pass now to the quotient modulo “anti-traces", i.e. if
we define Q = pr ◦Q : M → Ā, and
B = pr ◦ B : M ×M → Ā where pr denotes the canonical
projection of A onto A/A0, with A0 = {a− a∗|a ∈ A},
We fix moreover a non trivial character ψ of k+ and we
denote by tr the usual matrix trace from A onto k .
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Then ψ = ψ ◦ tr is a non trivial character of A+ such that
ψ(ab) = ψ(ba) and ψ(a∗) = ψ(a) for all a,b ∈ A. On the other
hand, we have

ψ ◦Q = ψ ◦Q

where Q denotes the k−valued non-degenerate quadratic form
tr ◦Q over k , whose associated k−bilinear form will be denote
by B.



I

We put here

1. γ(s, x) = ψ(sQ(x))

2. χ(x , y) = ψ(sB(x , y)).
3. α = 1(when m is even)

I

To get a Weil representation
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Weil representations for G = Slε∗(2,A), G via vector
bundles

I A G-Hilbert vector bundle is a tuple (E ,p,B, τ ) where E is
the total space, B is the base, p : E → B is the projection,
and τ = (τ , τB) is the action of G on E and B, respectively,
such that p ◦ τE

g = τB
g ◦ p for all g ∈ G. The fiber p−1(b)

(b ∈ B) is denoted by Eb, and is a (finite dimensional)
Hilbert space with inner product <,>.

I A G- equivariant connection on G is a family of Hilbert
space isomorphisms H = (E ,p,B, τ)
Γ =

{
γb′,b | γb′,b : Eb → Eb′

}
b,b′∈B such that

i. 〈γb′,b(f ), γb′,b(h)〉 = 〈f ,h〉 (f ,h ∈ Eb)
ii. 〈γb′,b(f ),h〉 = 〈f , γb,b′(h)〉 (f ∈ Eb,h ∈ Eb′)
iii. γb,b′ ◦ γb′,b = γb,b = idEb (b,b′ ∈ B)
iv. γb′′,b′ ◦ γb′,b = µΓ(b′′,b′,b)γb′′,b (b,b′,b′′ ∈ B)

for a suitable mapping µΓ : B × B × B → C×, called the
multiplier of Γ.

v. τg ◦ γb′,b = γτg(b′),τg(b) ◦ τg (b,b′ ∈ B,g ∈ G).
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Representation of G by contraction of the fiber bundle
over b

I The projective unitary representation (Vb, ρ
b) of G is

defined as follows:

i. Vb = Eb as a Hilbert space,
ii. ρb

g(v) = γb,τB
g (b)τ

E
g (v) for all g ∈ G, v ∈ Vb

whose cocycle c is given by
c(g,h) = µΓ(b,g.b,gh.b) for all g,h ∈ G. If Γ is flat, i.e., if
the function µΓ is 1, then ρb is a true representation of G.

II We briefly present now a construction of G = Sl−∗ (2,A)
using Lagrangian fiber bundles:
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Weil representation of G by contraction of Lagrangian
fiber bundles

I We assume that A is a finite k−algebra with an involution
that fixes the finite base field.

I Let S be a left A−module (which is right A−module via
s.a = a∗.s for a ∈ A, s ∈ S), finite dimensional as k−vector
space

I Let η : S × S → k . be a non-degenerate, k−bilinear,
symmetric A−balanced pairing (i.e. η(s.a, t) = η(s,a.t) for
a ∈ A, s, t ∈ S

I We set W = S ⊕ S and we define a symplectic form B on
W by

B((s, t), (s′, t ′)) = η(s, t ′)− η(t , s′)

for all (s, t), (s′, t ′) ∈W . We fix a non trivial character ψ of
the additive group k+ of k and we put χ = ψ ◦ B.
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I A Lagrangian L in W is a A−submodule which is maximal
totally isotropic for B, i.e., L = L⊥

I The group G acts on W by matrix multiplication, and we
have B(gw ,gw ′) = B(w ,w ′)

I Then the Lagrangian bundle of G associated to S is given
by

i B is the set of all Lagrangians of W = S ⊕ S
ii E is the disjoint union of the spaces

EL = {f : W → C | f (w + ζ) = χ(w , ζ)f (w); w ∈W , ζ ∈ L} ,

for L ∈ B, each endowed with the inner product given by

〈f ,h〉 =
∑

w∈W

f (w)h(w)
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I

iii p : E → B is given by p(f ) = L if f ∈ EL
iv τ denotes the action of G in E and B given by(

τg(f )
)

(w) = f (g−1w), τg(L) = g(L),

for g ∈ G, f ∈ E ,w ∈W ,L ∈ B.
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G−equivariant connections
Assume that 2 ∈ A is invertible. Then the family

Γ =
{
γL′,L | γL′,L : EL → EL′

}
L,L′∈B

of linear isomorphisms

γL′,L(f )(w) =
1√

|L| |L ∩ L′|

∑
ζ′∈L′

χ(w , ζ ′)f (w+ζ ′), (f ∈ EL,w ∈W )

is a G-equivariant connection with multiplier

µΓ(L′′,L′,L) =

√
|L′′ ∩ L′|

|L ∩ L′′| |L′ ∩ L| |L|
SW (L; L′,L′′) (L,L′,L′′ ∈ B),

where the geometric Gauss sum SW (L; L′,L′′) is given by

SW (L; L′,L′′) =
∑

ζ∈L∩(L′,L′′)

χ(ζ ′ + ζ ′′)

where ζ ∈ L ∩(L′ + L′′) is written as ζ ′ + ζ ′′ with ζ ′ ∈ L′, ζ ′′ ∈ L′′.
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