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Tensor categories

Let k be a field.

A tensor category over k is a k -linear abelian rigid monoidal
category C where:

I Hom spaces are finite dimensional.
I Objects have finite length.
I The monoidal product ⊗ : C × C → C is k -bilinear.
I The unit object 1 is scalar.

If C is a tensor category, ⊗ is bi-exact and 1 is simple.

A tensor category C is finite if it is finite as a k -linear abelian
category.

A tensor functor F : C → D is a k -linear exact strong monoidal
functor.

A tensor functor preserves duals. Moreover it is automatically
faithful.
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Normal tensor functors

Let F : C → D be a tensor functor.

F is dominant if any object Y of D is a subobject of F (X ), for
some X in C.

KerF := F−1(〈1〉) ⊆ C: full tensor subcategory of objects X of C
such that F (X ) is a trivial object of D.

Definition
A tensor functor F : C → D is normal if for any object X of C,
there exists a subobject X0 ⊂ X , such that F (X0) is the largest
trivial subobject of F (X ).

Characterizations:

I Suppose F admits a right (or left) adjoint R. Then:
F is normal⇔ R(1) belongs to KerF .

I Suppose C,D are fusion categories. F is normal iff
∀ simple object X , Hom(1,F (X )) 6= 0⇒ X ∈ KerF .
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Exact sequences of tensor categories
Let C′, C, C′′ be tensor categories over k .

A sequence of tensor functors

C′ f→ C F→ C′′

is an exact sequence of tensor categories if the following hold:

I The tensor functor F is dominant and normal;
I The tensor functor f is a full embedding;
I The essential image of f is KerF ;

Comments

I F : C → C′′ normal dominant exact sequence

KerF → C
F→ C′′.

I Suppose C′ f→ C F→ C′′ exact⇒ ∃ a Hopf algebra H st:

C′ ' comod-H.

H: the induced Hopf algebra of the exact sequence.
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Group extensions

Let
1→ G′′ ι→ G π→ G′ → 1

be an exact sequence of finite groups.

This gives rise to exact sequences of tensor categories:

rep G′ π∗→ rep G ι∗→ rep G′′.

and

C(G′′)→ C(G)→ C(G′),

where C(G): finite dimensional G-graded vector spaces over k .
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Equivariantization
Let C be a tensor category over k , G a group.

Aut⊗C: tensor autoequivalences of C and monoidal natural
transformations.

G: G and identities as only morphisms.

An action of G on C is a strong monoidal functor

ρ : G→ Aut⊗C.

A G-equivariant object is a pair (X ,u), where:

I X is an object of C, and
I u = (ug)g∈G, ug : ρgX → X is an isomorphism st:

ugρg(uh) = ughρ
g,h
2X
, ∀g,h ∈ G,

u1ρ0X = idX .

A G-equivariant morphism f : (X ,u)→ (Y , v) is a morphism
f : X → Y st: fug = vg f , ∀g ∈ G.
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CG: the G-equivariantization of C.

G-equivariant objects and G-equivariant morphisms.

CG is a tensor category and the forgetful functor

U : CG → C

is a normal dominant tensor functor.

Example
Let G be a group and let ρ the trivial action of G on veck .
Then

(veck )
G = rep G.

Equivariantization gives rise canonically to an exact sequence

rep G→ CG → C.
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Some properties of exact sequences

Proposition
Let C′ f→ C F→ C′′ be an exact sequence of tensor categories,
with induced Hopf algebra H.

The following are equivalent:

I The functor F has adjoints;

I The tensor category C′ is finite;

I The Hopf algebra H is finite-dimensional.

In particular, if C′ and C′′ are finite, so is C.

A fusion category C is integral if FPdim X ∈ Z, ∀X ∈ Irr(C).

C is weakly integral if FPdim C =
∑

X∈Irr(C)(FPdim X )2 ∈ Z.

Proposition
Let C′ → C → C′′ be an exact sequence of fusion categories.
Then C is (weakly) integral iff C′′ is (weakly) integral.
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Moreover, the sequence
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is exact iff FPdim C = FPdim C′ FPdim C′′.
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Hopf monads and their modules

Let C be a monoidal category. A monad T on C is an algebra
T ∈ End(C):

µ : T 2 → T , η : idC → T .

CT : T -modules in C. Objects: (X , r), X ∈ C, r : T (X )→ X , st:

rT (r) = rµX , rηX = idX .

Consider the forgetful functor U : CT → C.

A monad T is a bimonad iff CT is a monoidal category st U is
strict monoidal.

Equivalently, T is a comonoidal endofunctor:

T2(X ,Y ) : T (X ⊗ Y )→ T (X )⊗ T (Y ), T0 : T (1)→ 1,

∀X ,Y ∈ C, satisfying:
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Suppose C is rigid.

A bimonad T on C is a Hopf monad if CT is rigid.
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Example

Let C ' veck . If H is a finite dimensional Hopf algebra over k ,
then H⊗? : C → C is a k -linear Hopf monad on C.

H 7→ H⊗? defines an equivalence of categories between:

I Finite dimensional Hopf algebras over k , and
I k -linear Hopf monads on C.

Proposition
Let C be a tensor category over k, T a k-linear right exact Hopf
monad on C. Then:

CT is a tensor category over k and the forgetful functor
U : CT → C is a tensor functor.
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Monadicity

Let F : C → D be a tensor functor st F admits a left adjoint G.

Then the adjunction G ` F is monadic: T = FG is a Hopf
monad on D and we have

C ' DT ,

as tensor categories.

If C,D are finite tensor categories⇒ F admits a left adjoint.

Therefore in this case F is monadic.
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Main theorem

Definition
Let C be a tensor category.
A k -linear right exact Hopf monad T on C is normal if T (1) is a
trivial object of C.

The following theorem classifies extensions of tensor
categories in terms of Hopf monads.

Theorem
Let C′, C′′ be tensor categories over a field k st C′ is finite.

The following data are equivalent:
I A normal faithful k-linear right exact Hopf monad T on C′′,

with T |〈1〉 = H, st C′ ' comod-H;
I An extension C′ → C → C′′ of C′′ by C′ with induced Hopf

algebra H.
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Equivariantization revisited

Let C be a tensor category over k .

Let ρ : G→ Aut⊗C be an action of a finite group G on C. Then:

I The k -linear exact endofunctor

T ρ =
⊕
g∈G

ρg

is canonically a Hopf monad on C;
I There is a canonical isomorphism:

CG ' CTρ
.

I The Hopf monad T ρ is faithful, normal, and cocommutative.
I The induced Hopf algebra of T is kG.



Equivariantization revisited

Let C be a tensor category over k .

Let ρ : G→ Aut⊗C be an action of a finite group G on C. Then:

I The k -linear exact endofunctor

T ρ =
⊕
g∈G

ρg

is canonically a Hopf monad on C;
I There is a canonical isomorphism:

CG ' CTρ
.

I The Hopf monad T ρ is faithful, normal, and cocommutative.
I The induced Hopf algebra of T is kG.



Equivariantization revisited

Let C be a tensor category over k .

Let ρ : G→ Aut⊗C be an action of a finite group G on C. Then:

I The k -linear exact endofunctor

T ρ =
⊕
g∈G

ρg

is canonically a Hopf monad on C;

I There is a canonical isomorphism:

CG ' CTρ
.

I The Hopf monad T ρ is faithful, normal, and cocommutative.
I The induced Hopf algebra of T is kG.



Equivariantization revisited

Let C be a tensor category over k .

Let ρ : G→ Aut⊗C be an action of a finite group G on C. Then:

I The k -linear exact endofunctor

T ρ =
⊕
g∈G

ρg

is canonically a Hopf monad on C;
I There is a canonical isomorphism:

CG ' CTρ
.

I The Hopf monad T ρ is faithful, normal, and cocommutative.
I The induced Hopf algebra of T is kG.



Equivariantization revisited

Let C be a tensor category over k .

Let ρ : G→ Aut⊗C be an action of a finite group G on C. Then:

I The k -linear exact endofunctor

T ρ =
⊕
g∈G

ρg

is canonically a Hopf monad on C;
I There is a canonical isomorphism:

CG ' CTρ
.

I The Hopf monad T ρ is faithful, normal, and cocommutative.

I The induced Hopf algebra of T is kG.



Equivariantization revisited

Let C be a tensor category over k .

Let ρ : G→ Aut⊗C be an action of a finite group G on C. Then:

I The k -linear exact endofunctor

T ρ =
⊕
g∈G

ρg

is canonically a Hopf monad on C;
I There is a canonical isomorphism:

CG ' CTρ
.

I The Hopf monad T ρ is faithful, normal, and cocommutative.
I The induced Hopf algebra of T is kG.



Hopf monad of a group extension
Let 1→ G′′ ι→ G π→ G′ → 1 be an exact sequence of finite
groups.

Then we have an exact sequence:

rep G′ π
∗
→ rep G ι∗→ rep G′′.

Identify: G′′ E G, G′ = G/G′′.

Then i∗ = ResG
G′′ (restriction functor).

The induction functor IndG
G′′ : rep G′′ → rep G is left adjoint to

ResG
G′′ .

Let Y be a kG′′-module. Then:

T (Y ) = ResG
G′′ IndG

G′′(Y ) ' ⊕γ∈G′
γY ,

where γY denotes the kG′′-module conjugated to Y . (Mackey’s
Subgroup Theorem.)

In fact, conjugation under γ ∈ G′ = G/G′′ defines an action of
G′ on rep G′′ by tensor autoequivalences.
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Tensor functors of small index

The Frobenius-Perron index of a dominant tensor functor
F : C → D between fusion categories is:

FPind(F ) = FPind(C : D) = FPdim C
FPdimD

.

FPind(F ) is an algebraic integer.

Theorem
Suppose char k = 0. Let C,D be fusion categories over k and
let F : C → D be a dominant tensor functor. If FPind(C : D) = 2,
then F is an equivariantization.

Theorem
Suppose char k = 0. Let C,D be fusion categories over k st C is
weakly integral. Let F : C → D be a dominant tensor functor. If
FPind(C : D) = p, where p is the smallest prime divisor of
FPdim C, then F is an equivariantization.
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