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Abstract

The purpose of these talks, is twofold:

. To present a historical perspective of Invariant Theory comparing differential and
integral methods. We start with the formulation of the First and Second
fundamental problem, its inicial solution by Hilbert using differential methods for
the case of binary forms. This was followed by the introduction of integral
methods by Hurwitz and Weyl that solved completely the general problems in
characteristic zero for the case of semisimple groups. Concerning positive
characteristic we will talk about the results —along the 1960/70’s— by Mumford,
Nagata, Haboush and Popov (and many others) that gave a complete solution to
the problems. At the end we will revisit the differential methods.
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. In the second part, time allowing, we will talk about the important concept of
observable subgroup introduced in the 1960’s with the purpose of studying
extensions of representations from subgroups to groups. It can be considered as
an intermediate step in the concept of reductivity and it has been recently
generalized to the concept of observable action.
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!l!se rva!!e su!g roups

In a joint paper by A. Bialynicki-Birula, G. Hochschild, G.D. Mostow,
Extensions of representations of algebraic linear groups, Amer. J. Math. 85
(1963), 131-144, the concept of observable subgroup of an affine algebraic
group G, was first introduced.

It is very easy to see that in the case of finite groups, if K ¢ G is a group and
a subgroup and V is a representation of K, then KG ®y V with its natural
G-structure, is a G-module that contains V as an H—submodule.

This extension problem, does not have a positive answer for other categories
of groups —more about this in a minute—, and leads to the following definition
for the category of algebraic groups.

Definition
Let G be an affine algebraic group and K a closed subgroup. We say that K

is observable in G if every finite dimensional rational H—module V can be
embedded as an H—submodule in a rational G-module.
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We write down the following definition:
Definition
Assume that K C G is an inclusion in the category of Lie groups —or

finite, analytic, affine algebraic, etc. A representation V of K extends
to a representation W of G, if V ¢ W as K modules.

A basic question many authors were trying to solve in the late 1950s
is: Is it true that for an arbitrary pair of a group and a subgroup, every
finite dimensional representation of K admits a finite dimensional
extension? If not, what restrictions one has to ask in order to
guarantee that fact?

As | mentioned before in the case of finite groups, the problem has an
obvious positive answer.

In the case of Lie groups the situation is much more akward,
considering that the natural construction given by induction even if it
were available, is not expected to produce a finite dimensional result.



The finite dimensionality for algebraic groups

We did not mention in the definition of observable subgroup, that the
extension W had to be finite dimensional, because it is unnecessary.

If we have an inclusion V C W with V a finite dimensional rational
K—module and W an arbitrary rational G-module, the G-submodule of
W generated by V has to be also finite dimensional.

This is a consecuence of the very definition of rational representation.

If G is an affine algebraic group and W an arbitrary linear space, a
rational linear action of G on W is a linear action satisfying the following
additional properties: 1) If w € W then the orbit G - w generates a finite
dimensional vector space. 2) Moreover, if we call {wy,--- , w,} a basis of
this space and write x - w = ", fi(x)w; the functions f; : G — K, are
polynomials in G.

The first property is called the local finiteness of the action and
guarantees what we want.
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”!e case 0! !le groups

Hochschild and Mostow in a couple of papers in 1957/58 only obtained
positive answers for this situation under the strong hypothesis that K is
normal in G and with additional restrictions. For example, one of their
main result reads as follows. We write it down in detail to show the
technicalities that appear in this situation.

Let K C G be as above, with K normal. Assume that there is an analytic
subgroup H of G such that: G = HK, Hn K is compact and there is a
finite dimensional representation of H that is faithful on HN K.

Let p be a representation of K, then p can be extended to a
representation of G if and only if p’([rad(K), G]) = 1, where the bracket
represents the commutator subgroup, rad(K) is the radical of K and p’ is
the semisimple representation associated to p.

Even though the formulation of the theorem is rather restrictive, the
authors show that it is very useful to simplify the proofs of some
theorems concerning the existence of faithful representations due to
E. Cartan, Gotd, Malceyv, etc.
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From Lie groups to algebraic groups

In the above result and in others, specially for the case of analytic
groups, ideas and specific theorems from the theory of linear
algebraic groups started to be systematically used.

In the case of an analytic group G and a closed, normal subgroup K,
theorems as the above started to be obtained. The main difference
with the case of Lie groups was methodological as D. Mostow for
example, started to use in a systematic way some of his own results
in the theory of affine linear groups concerning linearly reductive
subgroups and what is now called Mostow decomposition.

This decomposition theorem guarantees that a connected affine
algebraic group in characteristic zero, is the semidirect product of its
unipotent radical and a linearly reductive group.

Once the methods of the theory of affine algebraic groups were used
to deal with the situation of analytic groups, it was clear that there
were good perspectives that a reasonable theory of extensions could
be developed in the algebraic environment.
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Observability and invariants

The concept of observable subgroup has been extensively studied in
connection with some important aspects of invariant theory.

There are many characterizations of observability, for example K ¢ G
is observable, if and only if for an arbitrary rational character v of K,
there is a K semi—invariant polynomial f on G with respect to the
character v—i.e. for all x € K, x - f = v(x)f—. Another characterization
of observability has an important geometric content: K C G is
observable, if and only if the homogeneous space G/K is a
quasi—affine variety.

The importance of observability for the theory of invariants becomes
very transparent when we look at the concept of strong observabilty.
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!trong o!serva!z!zty

Let G be an affine algebraic group and K C G a closed subgroup. We say
that K is strongly observable (Cline, Parshall and Scott c. 1975) in G, if every
finite dimensional rational K—module V/, it can be emebedded in a rational
G-module W with the property that VX = WE. In other words when
extending the representation the K—invariants become G-invariants.

The following theorem illustrates the relationship between strong observability
and integrals —and consequently with a fundamental invariant theoretical
tool—-.

Theorem
The subgroup K is strongly observable in G if and only if K admits a total
integral with values in K[G].

Recall that an integral for an affine group H is a linear map o : K[H] — K that
is invariant by the action of H —i.e. o(x - f) = o(f) for x € H and f € K[H]—.

In the case that the ¢ takes values in a rational H—-module algebra R
and it is H—equivariant we say that it is an integral with values in R
and we say it is total if o(1) = 0.
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Observability and integrals

Let us say a few words about the proof of the above theorem.

Proof: Assume that K is strongly observable and consider the K—module
K[K]. By the hypothesis of strong observability, one can find an inclusion
K[K] € M where M is a rational G-module and K[K]K = K = MC.

Take a linear functional « on M such that «(1) = 1 and define
f— o(f) : K[K] = K[G] as: o(f)(x) = a(x - f) for x € G.

a(1)(x)=a(x-1)=a(1) =1.
For the proof of the K—equivariance of ¢ we go:
o(y-Hx) =alx-y-f)=alxy-f)=o(f)(xy) = (y - o(F))(x).
The proof of the converse is harder and can be found for example in

the book by A. Rittatore, WFS, Actions and invariants of affine
algebraic groups. CRC. Press.
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!! ofivation

Once the concept of observable subgroup was established, concept that
deals with the case of an action of the subgroup K acting on G by translations
and inducing a morphism K x G — G; it seemed natural to generalize it for
the general situation where the affine algebraic group K acts on a general
affine variety X by a rational map K x X — X. In other words, one wants to
step up from the concept of observable subgrup to the concept of observable
action of a group.

Even though at the end the generalization was not that hard, it took almost 50
years (from 1963 until 2009) to figure out the correct definition.

The first step was given when an equivalent definition of observability in the
case of group subgroup —that made sense in a more general context—
appeared in the mentioned book by A. Rittatore and WFS.

Theorem (A.Rittatore, WFS; (2005))

Let G be an affine algebraic group and K a closed subgroup, then K is
observable in G if and only if for every ideal 0 # | C K[G] that is K—stable,
then 1N K[G]K # 0.
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!l!serval!!e actions

Definition (A. Rittatore, L. Renner; (2009))

Let K be an affine algebraic group and X an affine variety endowed
with a rational action K x X — X. We say that this action is
observable if for an arbitrary, proper, closed and K—stable subvariety
Y C X, there is an invariant function 0 # f € K[X]X that is zero on Y.
Equivalently, the action is observable if and only if for every ideal

0 # | C K[X] that is K—stable, there is an invariant function

0 # f e INK[X]K.

Unless explicitly mentioned, all the main results considered bellow
are due to the authors mentioned above.

For simplicity, we assume that all the varieties are irreducible and all
the affine algebraic groups are connected. Once this situation is
understood, it is a technicality to go to the general situation.
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First results on observable actions

The following result is well known for observable subgroups.

Theorem (1963)

The subgroup K of G is observable if and only if every K—invariant
rational function on G is the quotient of two K—invariant polynomials.
In symbolic terms that means that [K[G]]X = [K[G]X].

Sketch of proof: The inclusion [K[G]X] c [K[G]] is always true.
Assume that K is observable in G and take an element R < [K[G]]¥.
Consider the ideal of the numerators of R, or more explicitly

Ir = K[G]RNK[@G]. This is a non zero K—stable ideal that has a non
zero fixed element f;. We write then f; = Rf; and it is clear that we
have in that manner obtained a representation of R as a quotient of
two K—invariant polynomials.

The proof of the converse, i.e. that [K[G]]X = [K[G]K] implies that K
is observable in G is more elaborate and can be found for example in
the original 1963 paper.
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Assume that K is observable in G and take an element R < [K[G]]¥.
Consider the ideal of the numerators of R, or more explicitly
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is observable in G is more elaborate and can be found for example in
the original 1963 paper.

Q.E.D.



First results on observable actions

It is clear that the above proof can be generalized to observable actions.
Hence we can guarantee that: If the action of K on the affine variety X is
observable, then every K—invariant rational function on X is the quotient of
two K—invariant polynomials —i.e. [K[X]]X = [K[X]*]-.

The converse is not true in the case of arbitrary actions. We need one
additional hypothesis that is invisible in the case of group subgroup because

it is automatically verified. In that sense the following theorem was proved by
Rittatore and Renner.

Theorem (2009)

The action of K on X is observable if and only if every K—invariant rational
function on X is the quotient of two K—invariant polynomials and X has an
open set of closed orbits.

In the case that the subgroup K acts on G by translations , all the

orbits are closed as they are the right cosets of K on G. So that the
open set of closed orbits is the entire group G.
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orbits are closed as they are the right cosets of K on G. So that the
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! ransitivity results

There is a whole subtheme on invariant theory that has to do with

transitivity results . One example is the following —goes under the name of
Matsushima’s criterion—.

Assume that K C Gis a closed subgroup of an affine algebraic group. If G/K
is affine and G is reductive, then K is reductive.

The above can be seen as a transitivity result if we read it as:
If Gis reductive and K is reductive in G, then K is reductive .

Rittatore and Renner in their 2009 paper, proved an interesting transitivity
result. In order to explain it we need to describe an elementary geometric

construction that generalizes the construction of the homogeneous space
G/K.

Assume K C Gis a closed subgroup of the affine group G and that X

is a rational affine K—variety. The induced variety G xx X has also a
natural G—action, and if G/K is affine so is G xx X.
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A transitivity result for observable actions

The authors formulated the following result on observability using geometric
terminology.

Theorem

Suppose that K is a closed subgroup of G with G/K affine, and let X be an
affine variety equipped with an action of K. The induced G-action on the
—affine— variety G xx X is observable if and only if the original K action on X
is observable.

| will change it into an algebraic result. Assume that G and K are as above
and that R is a rational K—module algebra. Then the following two assertions
are equivalent: (A) For every non trivial K—stable ideal / ¢ R then /X # 0; (B)
For every non trivial G-stable ideal J ¢ (K[G] ® R)* then J¢ # 0.

First we notice that the fact that (B) implies (A) is valid assuming only that K
is observable in G. This condition is weaker than the one assumed by the
authors as we have seen before that if G/K is affine, then it is also quasi
affine and hence K is observable in G.
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Algebraic version of transitivity

Sketch of part of the proof:

Let us take a K—stable ideal | ¢ R, and consider the G—stable ideal
J = (K[G] ® DK c (K[G] ® R)X. ltis an easy exercise on observable
subgroups to prove that in this situation J # 0. Then, by hypothesis
one can guarantee that J¢ # 0. But a direct computations shows that
J% = [X. And we are done.

For the converse we refer the reader to the original paper mentioned

above. The authors assume the full hypothesis of the affiness of G/K
but it is my impression that we can get by supposing only that K ¢ G
is observable.
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