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The quantum enveloping algebra Ug(gl,,)

@ Ugy(gl,) is the associative algebra over C(q) with generators
e,fi, 1<i<n, KK, 1<i<n

subject to certain relations involving the indeterminate q.
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The quantum enveloping algebra Ug(gl,,)

@ Ugy(gl,) is the associative algebra over C(q) with generators
e,fi, 1<i<n, KK, 1<i<n

subject to certain relations involving the indeterminate q.

@ Ugy(sly) is the subalgebra generated by e, f;, KKJrl and K~ lK,H.
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Comultiplication on U,(gly)

@ The comultiplication A : Ug(gl,) ® Ug(gl,) — Uq(gl,,) gives an
action on tensor products of Ug(gl,)-modules:

Ale)=6®@1+K 'Kip1®e, Alf)=f@ KK +1®F,

A(K,) = K; ® K;
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Young tableaux

@ A sequence of non-negative integers A = (A1, \2,..., Ap) is a
partitionof rif Ay >---> A, >0and A\ +---+ A, =r.
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Ar Example. (2,2,1) 45
@ The Young diagram of shape A is an arrangement of
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Young tableaux

@ A sequence of non-negative integers A = (A1, \2,..., Ap) is a
partitionof rif Ay >---> A, >0and A\ +---+ A, =r.

Ar Example. (2,2,1) 45
@ The Young diagram of shape A is an arrangement of

r=MA+ -+ At boxes in k left-justified rows with the ith row
consisting of \; boxes.

Example. A\ = (2,2,1) = [)\] =

@ A \-tableau is obtained by filling the boxes of the Young diagram of
shape A with numbers from the set {1,2,...,n}.
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Semistandard Young tableaux
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Semistandard Young tableaux

@ T is semistandard since the entries in its rows are weakly increasing
and entries in its columns are strictly increasing. S is column
increasing but not semistandard.
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Highest weight modules

o A Uq(gl,)-module V is a highest weight module if it contains a
highest weight vector v, where e;jv = 0 for 1 < i < n, such that
Ucl(g[n)v =V.
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Highest weight modules

o A Uq(gl,)-module V is a highest weight module if it contains a
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Ucl(g[n)v =V.

@ For each partition A with at most n nonzero parts there is a unique
highest weight finite-dimensional irreducible U, (gl,,)-module V().
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Highest weight modules

o A Uq(gl,)-module V is a highest weight module if it contains a
highest weight vector v, where e;jv = 0 for 1 < i < n, such that
Ucl(g[n)v =V.

@ For each partition A with at most n nonzero parts there is a unique
highest weight finite-dimensional irreducible U, (gl,,)-module V().

e For x = (x1,---,Xn), an n-tuple of nonnegative integers, the
subspace V(A)X ={v € V() | Kiv=gXiv, i=1,...,n} is a weight
space and

V() = o, VX
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Fundamental modules

o Let Ay =(1,...,1,0,...,0) 4k < n; can write A = >_7_; a;/;.
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Fundamental modules

o Let Ay =(1,...,1,0,...,0) 4k < n; can write A = >_7_; a;/;.
e The Uq(gl,)-modules V(Ay) are called fundamental modules.

o V(Ax) is an (})-dimensional vector space with basis

{[T]| T column increasing} labeled by one-column Young tableau of
shape Ay = (1) with entries from {1,2,..., n}.
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Fundamental modules cont'd

o [T] ifi¢g T
KilTl = { q[T] otherwise

FIT] = 0 ifi+1eTori¢T
"1 [T'] otherwise, where i is replaced with i + 1

&[T] = 0 ifi+1¢ TorieT
"I [T] otherwise, where i+ 1 is replaced with i
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Fundamental modules cont'd

[T] ifi¢g T
q[T] otherwise

Ki[T] = {

FIT] = 0 ifi+1eTori¢gT
"1 [T'] otherwise, where i is replaced with i + 1

&[T] = 0 ifi+1¢ TorieT
"I [T] otherwise, where i+ 1 is replaced with i

Example. n =3, V(A;) has basis

) = - (<

[] is a highest weight vector.
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The highest weight Ug(gl,)-module V())

o Let A\=3"", a;/A; be a partition into at most n parts.
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The highest weight Ug(gl,)-module V())

o Let A\=3"", a;/A; be a partition into at most n parts.

o W(A) = V(A)®" @ V(Ap_1)®1® - @ V(A)® is a
Uq(gl,)-module.

o Let vy be the tensor product of highest weight vectors of each V/(A;).
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The highest weight Ug(gl,)-module V())

Let A =37, a;j/A; be a partition into at most n parts.

W(>\) = V(/\n)®an ® V(/\n—l)@a"*l R ® V(/\1)®al is a
Uq(gl,)-module.

Let vy be the tensor product of highest weight vectors of each V/(A;).

V(A) = Ug(gln)va
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Example. n =3, A =(2,1) = A1 + Ny, W(A) = V(A2) ® V(A1)
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o= | o [m] -

o[ [+ |3
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Example. n =3, A =(2,1) = A1 + Ny, W(A) = V(A2) ® V(A1)

o= | o [m] -

o[ [+ |3

s

®© [} , V(A) = Ug(glz)va.

NE

Anna Stokke (University of Winnipeg) Global bases & g-Schur algebras June 2, 2012



Example. n =3, A =(2,1) = A1 + Ny, W(A) = V(A2) ® V(A1)

o= | o [m] -

o] || [m]- |2

VN = [

@ Basis for W() is indexed by column-increasing A-tableaux;
B ={w(T)| T column-increasing }

®© [} , V(A) = Ug(glz)va.
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Bases for V()

@ Dimension of V/(\) is number of semistandard tableaux of shape A
with entries in {1,2,...,n}.
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Bases for V()

@ Dimension of V/(\) is number of semistandard tableaux of shape A
with entries in {1,2,...,n}.

@ Global crystal basis (Kashiwara, Lusztig, 1996)
o (LT-basis) Leclerc-Toffin basis (2000)
o (CL-basis) Carter-Lusztig basis (AS, 2005)

o Carter-Lusztig basis in terms of g-Schur algebra (G. Cliff, AS, 2010).
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Global crystal basis for V()

e W/(X) has basis B(A\) = {w(T) | T column increasing }
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Global crystal basis for V()

e W/(X) has basis B(A\) = {w(T) | T column increasing }

o A={f/h|f heC[q], h(0)# 0}
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Global crystal basis for V()

e W/(X) has basis B(A\) = {w(T) | T column increasing }
e A={f/h|f,heClq], h(0)# 0}

o Let Lyy(\) denote the A-span of B(\) (crystal lattice of W())).
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Global crystal basis for V()

e W/(X) has basis B(A\) = {w(T) | T column increasing }

A= {f/h|f,heClq, h(0)#0}

Let Luw/(A) denote the A-span of B(\) (crystal lattice of W(A)).

@ Define an involution — : Uq(gl,) — Uq(gl,) by

=

gG=e, i=f, K=K’ g=q ' 1<i<n 1<j<n
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Global crystal basis for V()

e W/(X) has basis B(A\) = {w(T) | T column increasing }

A= {f/h|f,heClq, h(0)#0}

Let Luw/(A) denote the A-span of B(\) (crystal lattice of W(A)).

@ Define an involution — : Uq(gl,) — Uq(gl,) by

=

gG=e, i=f, K=K’ g=q ' 1<i<n 1<j<n

e For w = uvy € V(X), define w = vy, u € Uq(gl,).
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Global crystal basis for V()

Theorem. (Kashiwara) There exists a unique Q[q, g~*]-basis

{G(T) | T semistandard} of V/(A) with the properties that
Q G(T)=w(T) mod gLw(A)

Q@ G(T)=G(T).
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Theorem. (Kashiwara) There exists a unique Q[q, g~*]-basis

{G(T) | T semistandard} of V/(A) with the properties that
Q G(T)=w(T) mod gLw(A)

Q@ G(T)=G(T).

@ In general, difficult to find.
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Global crystal basis for V()

Theorem. (Kashiwara) There exists a unique Q[q, g~*]-basis
{G(T) | T semistandard} of V/(A) with the properties that

Q G(T)=w(T) mod gLw(A)

Q@ G(T)=G(T).

@ In general, difficult to find.

o Leclerc, Toffin provided an intermediate basis for V(\), related to
global crystal basis by an upper triangular matrix. Yields an algorithm
for producing the global crystal basis.
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(Quantum) Carter-Lusztig basis

@ Let f;;y1 = f; and for j > i + 1, define

fij = fiv1jfi — q M ifia.
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(Quantum) Carter-Lusztig basis

@ Let f;;y1 = f; and for j > i + 1, define

fij = fiv1jfi — q M ifia.

@ Define f( ) = [IQ],, where [k] = q:__;;m

and [k]! = [K][k — 1]...[1].
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(Quantum) Carter-Lusztig basis

@ Let f;;y1 = f; and for j > i + 1, define

fij = fiv1jfi — q M ifia.

o Define £ = /1, where [K] = C=5 and [k]! = [K][k — 1]...[1]

@ For T a semistandard A-tableau, define

Fr = H f’_J(’ij) _ 'c1(2712),:1(’3v13) o fl(l’(hk)fz(;x) . fz(l’(vzk) . fk(jtit;,k)
1<i<k,i<j<n

where 7 is number of entries equal to j in row i of T.
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(Quantum) Carter-Lusztig basis

@ Let f;;y1 = f; and for j > i + 1, define

f'k

@ Define fi(k) = i+ Where [k] = =%,

fij = fiv1jfi — q M ifia.

m m

q—q~1

@ For T a semistandard A-tableau, define

and [k]! = [K][k — 1]...[1].

Fr = H f’_J(’ij) _ 'c1(2712),:1(’3v13) o fl(l’(hk)fz(;x) . f—z(l’(vzk) 1)

1<i<k,i<j<n

k—1,k

where 7 is number of entries equal to j in row i of T.

o Example. Let T; =

3], Then Fr, = fiofas

1 2‘and T, = 1
3 2

and Fr, = fi3 = fa3fio — g Loz
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@ Theorem (AS) The set {Frv, | T semistandard } is a basis for V().
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@ Theorem (AS) The set {Frv, | T semistandard } is a basis for V().

e Example. Let A =(2,1), n=3.
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@ Theorem (AS) The set {Frv, | T semistandard } is a basis for V().

e Example. Let A =(2,1), n=3.

V/()) has one 2-dimensional weight space; Any basis for the weight

space is indexed by tableaux T; = ; 3‘ and Tr = ; 2 ‘
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@ Theorem (AS) The set {Frv, | T semistandard } is a basis for V().
e Example. Let A =(2,1), n=3.

V/()) has one 2-dimensional weight space; Any basis for the weight

space is indexed by tableaux T; = ; 3‘ and Tr = ; 2 ‘

CL-basis is {:"_T1 Vi, FT2V)\} = {f13v,\ = (fgfl - q_lﬂfz)V)\, f]_sz)\}
which is not the same as the global basis.
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Example co

Replace FT1 vy with FT1 vy + q_lFTQV)\ = fhfivy. Then EV)\ = hifivy.
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Example cont'd

Replace FT1 vy with FT1 vy + q_lFTQV)\ = fhfivy. Then EV)\ = hifivy.

hfiv = __ @[3 +9 __ @ [2]].

fifyun = __ o [[2]] +4 __ inl
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Example cont'd

Replace FT1 vy with FT1 vy + q_lFTQV)\ = fhfivy. Then EV)\ = hifivy.

hfiv = __ @[3 +9 __ @ [2]].

fifyun = __ o [[2]] +4 __ inl

{ffivy, fifavy} is the global crystal basis.

Anna Stokke (University of Winnipeg) Global bases & g-Schur algebras June 2, 2012 16 / 20



Definition of Cy[x;i | 1 <i,j < n]
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Definition of Cg|

o Define Cq4[xjj | 1 < i,j < n] to be the associative C-algebra generated
by xj;, 1 < i,j < n subject to the relations:

XiXik = qXikXil 1<k<I<n
XjkXik = QXikXjk 1<i<j<n
XilXjk = XjkXil 1<i<j<n,
1<k<I<n
xixj — Xjxik = (@ — q)xxpe 1 <i<j<n,
1<k<I<n

June 2, 2012 17 / 20
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g-Schur algebras

@ Ag(n,r) is the subspace of C4[x;j] consisting of homogeneous
polynomials of degree r, r > 0.
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g-Schur algebras
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g-Schur algebras

@ Ag(n,r) is the subspace of C4[x;j] consisting of homogeneous
polynomials of degree r, r > 0.

Example. X121 + X20X13 € Aq(3, 2)
@ The dual of Aqg(n,r) is an algebra, called the g-Schur algebra.

Sq(n,r) = (Aq(n,r))" ={&: Ag(n,r) — C | & linear}.
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g-Schur algebras

@ Ag(n,r) is the subspace of C4[x;j] consisting of homogeneous
polynomials of degree r, r > 0.

Example. X121 + X20X13 € Aq(3, 2)

@ The dual of Aqg(n,r) is an algebra, called the g-Schur algebra.

Sq(n,r) = (Aq(n,r))" ={&: Ag(n,r) — C | & linear}.

o W(X)is an Sq(n, r)-module; V(X) = {&va | € € Sq(n, r)}.
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g-Schur algebras

@ Ag(n,r) is the subspace of C4[x;j] consisting of homogeneous
polynomials of degree r, r > 0.

Example. X121 + X20X13 € Aq(3, 2)

@ The dual of Aqg(n,r) is an algebra, called the g-Schur algebra.

Sq(n,r) = (Aq(n,r))" ={&: Ag(n,r) — C | & linear}.

o W(X)is an Sq(n, r)-module; V(X) = {&va | € € Sq(n, r)}.

o (Cliff, A.S., 2010) B1 = {€7wy | T semistandard} is a basis for V().
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Relationships between bases

o Let {A(U)vy | U semistandard} denote the LT-basis for V().
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Relationships between bases

o Let {A(U)vy | U semistandard} denote the LT-basis for V().

@ Theorem (A.S.) Let U be a semistandard A-tableau and suppose
that A(U)va = >t arFrvy. Then

Q ay= qk, keZ
@ if ay #0, then U < T in the lexicographic column ordering.
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Relationships between bases

o Let {A(U)vy | U semistandard} denote the LT-basis for V().

@ Theorem (A.S.) Let U be a semistandard A-tableau and suppose
that A(U)va = >t arFrvy. Then

Q ay= qk, keZ
@ if ay #0, then U < T in the lexicographic column ordering.

@ Corollary CL-basis is related to global basis by an upper triangular
invertible matrix.
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Relationships between bases

o Let {A(U)vy | U semistandard} denote the LT-basis for V().

@ Theorem (A.S.) Let U be a semistandard A-tableau and suppose
that A(U)va = >t arFrvy. Then

Q ay= qk, keZ
@ if ay #0, then U < T in the lexicographic column ordering.

@ Corollary CL-basis is related to global basis by an upper triangular
invertible matrix.

@ Also...algorithm for producing global basis elements in terms of the
g-Schur algebra.
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Thank you!
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