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NOTATION

Throughout this lecture, G denotes a group and k an
algebraically closed field.

H denotes a Hopf algebra over k ,

e.g., H = kG, the group algebra.

Tensor products are over k .
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THE CHEVALLEY PROPERTY

H has the Chevalley property, if V ⊗W is semisimple for any
two simple H-modules V , W .

Notion introduced by Andruskievitsch, Etingof, and Gelaki (’01).

THEOREM (CHEVALLEY, ≤ 1968)

If char(k) = 0, then kG has the Chevalley property.

THEOREM (MOLNAR, 1981)

Suppose that dim(H) <∞. Then H has the Chevalley property
if and only if J(H) is a Hopf ideal.
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GROUP ALGEBRAS WITH THE CHEVALLEY PROPERTY

THEOREM (VARIOUS AUTHORS)

Let G be finite and char(k) = p > 0. Then the following
statements are equivalent:

(1) kG has the Chevalley property.

(2) V ⊗ V ∗ is semisimple for each simple V ∈ kG-mod.

(3) P(k)⊗ V ∼= P(V ) for each simple V ∈ kG-mod.

(4) The trivial module is a direct summand of V ⊗ V ∗ for each
simple V ∈ kG-mod.

(5) p - dim(V ) for each simple V ∈ kG-mod.

(6) G has a normal Sylow p-subgroup.

GERHARD HISS ON THE CHEVALLEY PROPERTY



GROUP ALGEBRAS WITH THE CHEVALLEY PROPERTY

THEOREM (VARIOUS AUTHORS)

Let G be finite and char(k) = p > 0. Then the following
statements are equivalent:

(1) kG has the Chevalley property.

(2) V ⊗ V ∗ is semisimple for each simple V ∈ kG-mod.

(3) P(k)⊗ V ∼= P(V ) for each simple V ∈ kG-mod.

(4) The trivial module is a direct summand of V ⊗ V ∗ for each
simple V ∈ kG-mod.

(5) p - dim(V ) for each simple V ∈ kG-mod.

(6) G has a normal Sylow p-subgroup.

GERHARD HISS ON THE CHEVALLEY PROPERTY



GROUP ALGEBRAS WITH THE CHEVALLEY PROPERTY

THEOREM (VARIOUS AUTHORS)

Let G be finite and char(k) = p > 0. Then the following
statements are equivalent:

(1) kG has the Chevalley property.

(2) V ⊗ V ∗ is semisimple for each simple V ∈ kG-mod.

(3) P(k)⊗ V ∼= P(V ) for each simple V ∈ kG-mod.

(4) The trivial module is a direct summand of V ⊗ V ∗ for each
simple V ∈ kG-mod.

(5) p - dim(V ) for each simple V ∈ kG-mod.

(6) G has a normal Sylow p-subgroup.

GERHARD HISS ON THE CHEVALLEY PROPERTY



GROUP ALGEBRAS WITH THE CHEVALLEY PROPERTY

THEOREM (VARIOUS AUTHORS)

Let G be finite and char(k) = p > 0. Then the following
statements are equivalent:

(1) kG has the Chevalley property.

(2) V ⊗ V ∗ is semisimple for each simple V ∈ kG-mod.

(3) P(k)⊗ V ∼= P(V ) for each simple V ∈ kG-mod.

(4) The trivial module is a direct summand of V ⊗ V ∗ for each
simple V ∈ kG-mod.

(5) p - dim(V ) for each simple V ∈ kG-mod.

(6) G has a normal Sylow p-subgroup.

GERHARD HISS ON THE CHEVALLEY PROPERTY



GROUP ALGEBRAS WITH THE CHEVALLEY PROPERTY

THEOREM (VARIOUS AUTHORS)

Let G be finite and char(k) = p > 0. Then the following
statements are equivalent:

(1) kG has the Chevalley property.

(2) V ⊗ V ∗ is semisimple for each simple V ∈ kG-mod.

(3) P(k)⊗ V ∼= P(V ) for each simple V ∈ kG-mod.

(4) The trivial module is a direct summand of V ⊗ V ∗ for each
simple V ∈ kG-mod.

(5) p - dim(V ) for each simple V ∈ kG-mod.

(6) G has a normal Sylow p-subgroup.

GERHARD HISS ON THE CHEVALLEY PROPERTY



GROUP ALGEBRAS WITH THE CHEVALLEY PROPERTY

THEOREM (VARIOUS AUTHORS)

Let G be finite and char(k) = p > 0. Then the following
statements are equivalent:

(1) kG has the Chevalley property.

(2) V ⊗ V ∗ is semisimple for each simple V ∈ kG-mod.

(3) P(k)⊗ V ∼= P(V ) for each simple V ∈ kG-mod.

(4) The trivial module is a direct summand of V ⊗ V ∗ for each
simple V ∈ kG-mod.

(5) p - dim(V ) for each simple V ∈ kG-mod.

(6) G has a normal Sylow p-subgroup.

GERHARD HISS ON THE CHEVALLEY PROPERTY



AN EXAMPLE

Let Cn denote a cyclic group of order n.

Let G = C7 o C3 (nonabelian), char(k) = 3.

kG has three simple modules: k , S, S∗.

k : trivial module, dim(S) = dim(S∗) = 3.

S ⊗ S ∼= S ⊕ S∗ ⊕ S∗ and S∗ ⊗ S∗ ∼= S∗ ⊕ S ⊕ S.

Thus: V ⊗ V is semisimple for each simple V ∈ kG-mod.

But: kG does not have the Chevalley property since G does not
have a normal Sylow 3-subgroup.
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THE DRINFELD DOUBLE OF A GROUP ALGEBRA

Let G and dim(H) be finite. Put

D(H) := H∗ ⊗ H,

the Drinfeld double of H.

Let g1, . . . ,gn be rep’s for the conjugacy classes of G.
Then

D(kG)-mod ≈
n∏

i=1

kCG(gi)-mod.

In particular, simple modules of D(kG) are labelled by
(V ,gi), V a simple kCG(gi)-module, i = 1, . . . ,n.
If M ∈ D(kG)-mod is labelled by (V ,gi), then

dim(M) = |G :CG(gi)|dim(V ).
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THE CHEVALLEY PROPERTY FOR THE DRINFELD

DOUBLE A GROUP ALGEBRA

THEOREM

Let G be finite and char(k) = p > 0. Then the following
statements are equivalent:

(1) D(kG) has the Chevalley property.

(2) V ⊗ V ∗ is semisimple for each simple V ∈ D(kG)-mod.

(3) P(k)⊗ V ∼= P(V ) for each simple V ∈ D(kG)-mod.

(4) The trivial module is a direct summand of V ⊗ V ∗ for each
simple V ∈ D(kG)-mod.

(5) p - dim(V ) for each simple V ∈ D(kG)-mod.

(6) G = S × K with S an abelian Sylow p-subgroup of G.
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REMARKS ON THE THEOREM FOR GROUP ALGEBRAS

Most of the implications in the two theorems are long known:

(1)⇔ (6) for H = kG is due to Molnar (1981).

(1)⇒ (3) for dim(H) <∞ is due to Lorenz (1997).

(3)⇒ (1) for H = kG is due to Brockhaus (1982), using the
classification of the finite simple groups.

(2)⇒ (4): Use HomH(V ⊗ V ∗, k) ∼= HomH(V ,V ).

(3)⇒ (4): Use k ∼= HomH(P(V ),V ) ∼= HomH(P(k),V ⊗ V ∗).

(4)⇔ (5) for dim(H) <∞ is due to Benson and Carlson
(1986).
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THE OTHER IMPLICATIONS

LEMMA

Assume
(2) V ⊗ V ∗ is semisimple for each simple V ∈ kG-mod,

or
(5) p - dim(V ) for each simple V ∈ kG-mod.
Then G has a normal Sylow p-subgroup. (6)

Proof. Assume that G does not have a normal Sylow
p-subgroup.

Then there is a simple V ∈ kG-mod with p | dim(V ).

This is due to Michler (1986), using the classification of the
finite simple groups.

For p = 2, the classification can be replaced by a beautiful
argument of Okuyama.

If p | dim(V ), then V ⊗ V ∗ is not semisimple (Exercise).
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OKUYAMA’S ARGUMENT

PROPOSITION (OKUYAMA)

Suppose that char(k) = 2 and that dim(V ) is odd for every
simple V ∈ kG-mod. Then G has a normal Sylow 2-subgroup.

Proof. If not, may assume O2(G) = 1 and |G| even.

By Fong’s lemma, V 6∼= V ∗ for each non-trivial simple
V ∈ kG-mod.

By Brauer’s permutation lemma, G has no non-trivial real
2′-conjugacy class.

Let t ∈ G be an involution. By Baer’s theorem, there is g ∈ G
such that 〈t , tg〉 is not a 2-group.

There is 1 6= x ∈ 〈t , tg〉 with |x | odd and t−1xt = x−1, a
contradiction.
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THE PROOF FOR THE DRINFELD DOUBLE, I

LEMMA

If p - dim(V ) for each simple V ∈ D(kG)-mod (5), then
G = S × K with S an abelian Sylow p-subgroup of G (6).

Proof. Indeed, (5) implies p - |C| for each conjugacy class C.

In turn, this implies S ≤ Z (G) for a Sylow p-subgroup S ≤ G.

By Schur-Zassenhaus, S has a complement K .

Thus G = S × K since S ≤ Z (G).
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THE PROOF FOR THE DRINFELD DOUBLE, II

LEMMA

If G = S × K with S an abelian Sylow p-subgroup of G (6), then
D(kG) has the Chevalley property (1).

Proof. We have D(kG) ∼= D(kS)⊗ D(kK ).

As S is abelian, J(D(kS)) is a Hopf ideal of D(kS).

Also, D(kS)/J(D(kS)) ∼= k |S|.

As p - |K |, D(kK ) is semisimple.

The above imply J(D(kG)) ∼= J(D(kS))⊗ D(kK ).

The latter is a Hopf ideal of D(kG).
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Thank you for your attention!
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