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Frobenius-Schur Indicators

Let G be a finite group, and (π,V) an irreducible complex
representation of G with character χ.

The Frobenius-Schur indicator of π, or of χ, is
ε(χ) = 1

|G|
∑

g∈G χ(g2).

Then ε(χ) = 1,−1, or 0 when π is an R-representation, χ is
real-valued but π is not an R-representation, or χ is not
real-valued, respectively.

If ε(χ) = −1, χ is symplectic. If ε(χ) = 1, χ is orthogonal.
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Basic Goal

Given a finite group of Lie type G, determine the
Frobenius-Schur indicator ε(χ) for each complex irreducible
character χ of G. This determines the classification of the
irreducible representations of G over R.

Much work has been done on this question (along with the
related questions regarding rationality) by Geck, Gow, Janusz,
Lusztig, Malle, Marberg, Ohmori, Prasad, Przygocki, Tiep,
Turull, Zalesski,...
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However, this goal is not yet completely accomplished for the finite
unitary group, G = U(n,Fq).
Here, U(n,Fq) is defined as GF, where G = GL(n, F̄q) and

F((aij)) = T(aq
ij)
−1.

Note that on GL(1, F̄q), which we may identify with F̄×q , F acts as
F(α) = α−q.
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Semisimple characters

Let G be a connected reductive group with connected center, defined
over Fq by Frobenius F, and let G = GF. Suppose p = char(Fq) is a
good prime for G. Then χ ∈ Irr(G) is a semisimple character of G
when χ(1) is prime to p.
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Main Result

Theorem (Srinivasan-V)

Let G = U(2m,Fq), with q odd. Then the number of semisimple
symplectic characters of G is qm−1, and these are in one-to-one
correspondence with self-dual polynomials in Fq[t] of degree 2m with
constant term −1.

A polynomial f (t) ∈ Fq[t] is self-dual when it is monic, and α ∈ F̄q is
a root of f (t) with multiplicity k if and only if α−1 is.
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Proposition (Ohmori, V)

Let G = U(n,Fq), and χ ∈ Irr(G) a semisimple real-valued
character. Then:

1 If n is odd or q is even, then ε(χ) = 1.
2 If n is even and q is odd, then ε(χ) = ωχ(z), where ωχ is the

central character of the representation affording χ, and z is a
generator for Z(G).

That is, G can only have semisimple symplectic characters if n = 2m
and q is odd.
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Remark. Ohmori calculated ε(χ) when χ is a unipotent character of
G = U(n,Fq), q odd. The result implies there can be no t ∈ Z(G)
such that ε(χ) = ωχ(t) for all χ ∈ Irr(G).
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Real-valued semisimple characters

If G is a connected reductive group with connected center,
defined over Fq by Frobenius F, let G∗ be a group dual to G,
with dual Frobenius F∗. Let G = GF and G∗ = G∗F∗

.

The Deligne-Lusztig theory of characters for GF gives a
bijection (s)↔ χ(s) between semisimple classes of G∗ and
semisimple characters of G.

The conjugacy class (s) is real if s is conjugate to s−1.
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Real-valued semisimple characters

Lemma
In the bijection (s)↔ χ(s), (s) is a real semisimple class if and only if
χ(s) is a real-valued character.

Navarro-Tiep: One may replace "real" with "rational" in the above,
for a more general result.
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Take G in duality to G∗ as before, with respect to the F-stable
maximal torus T of G, in an F-stable Borel, and an F∗-stable maximal
torus T∗ of G∗ in an F∗-stable Borel of G∗. There is an isomorphism

(T∗)F∗ ∼= Irr(TF),

which gives rise to a homomorphism z 7→ ẑ from Z(G∗)F∗
to linear

characters of GF.
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This map, in turn, allows us to define a map s 7→ ŝ from semisimple
elements of G∗ (an F∗-stable element of the center of CG∗(s)) to
linear characters of CG(s)F.

Lemma (Fong-Srinivasan)

Let GF = U(n,Fq), χ(s) be a semisimple character of GF, and
z ∈ Z(GF). Then ωχ(s)(z) = ŝ(z).
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Lemma
ŝ(z) = ẑ(s).

So, for G = U(2m,Fq), q odd, we have ε(χ(s)) = ωχ(s)(z) = ẑ(s) for
real-valued χ(s), where z is a generator for Z(G).
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Lemma
When G = U(n,Fq), q is odd, and z is a generator of Z(G), then for
any semisimple s of G, ẑ(s) = (−1)k, where k is the multiplicity of −1
as an eigenvalue of s.

To obtain the main result, we now analyze the real semisimple classes
of U(n,Fq).
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When GF = U(n,Fq), F(α) = α−q for α ∈ F̄×q .

A semisimple class of GF consists of a choice of F-orbits [α]F
with multiplicity, with total size n.

The semisimple class is real whenever the orbit [α]F always has
the same multiplicity as [α−1]F.

If F̃(α) = αq, then [α]F̃ ∪ [α−1]F̃ = [α]F ∪ [α−1]F.
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It follows that real semisimple classes of U(n,Fq) correspond to
self-dual polynomials in Fq[t] of degree n.
When n = 2m, q odd, the constant term of the polynomial
corresponding to real (s) is exactly (−1)k, where k is the multiplicity
of −1 as an eigenvalue of (s).
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The main result follows, since, for (s) a real semisimple class, χ(s) is
real-valued, and

ε(χ(s)) = ẑ(s) = (−1)k,

while (−1)k is precisely the constant term of the self-dual polynomial
of degree 2m in Fq[t] corresponding to (s).
One can quickly enumerate the number of such self-dual polynomials
with k odd to be qm−1, corresponding to semisimple symplectic
characters, and those with k even to be qm, corresponding to
semisimple orthogonal characters.
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As mentioned, when G = U(n,Fq), q odd, Ohmori determined
ε(ψ) for ψ unipotent. We also know ε(χ(s)) when χ(s) is
semisimple.

If one can understand the behavior of the F-S indicator under
Deligne-Lusztig induction RG

L , we could take advantage of the
Jordan decomposition of characters, and then the basic goal of
computing ε(χ) would be reduced to that of unipotent characters.
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More generally, if G = GF is a finite reductive group, and χ is a
complex irreducible character of G with Jordan decomposition
(s, ψ), so s is a semisimple element of G∗, and ψ is a unipotent
character of CG∗(s), precisely what conditions of (s, ψ) are
equivalent to χ being real-valued? It seems we need s is a real
element of G∗, and if wsw−1 = s−1, then we also need wψ = ψ̄.

Thank you!
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