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» In the paper The Future of Atomic Physics (Int. J. Theor.
Phys. 23 (1984) 677), Dirac call matrices of the form

A L
(4 z)
pathological representations.
» A and B are representation of the Lorentz group
~ S0O(3,1).
» The Lorentz group is the group of transformations that

leave the inner product —(ct)? + 22 4 32 + 22 invariant.
» This is the basic invariant of the theory of special relativity
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Indecomposable representations in physics

Quoting Dirac:

“We have a theory in which infinite factors appear when we try
to solve the equations. These infinite factors are swept into a
renormalization procedure. The result is a theory which is not
based on strict mathematics, but is rather a set of working rules.

Many people are happy with this situation because it has a
limited amount of success. But this is not good enough.
Physics must be based on strict mathematics. One can
conclude that the fundamental ideas of the existing theory are
wrong. A new mathematical basis is needed.”
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Indecomposable representations

(A L _( Ya .
»T(O B)actsonthevectorw<wB>W|th
TY =o' Py = ApPa+ Lyp
vy = Bip

» Models the disintegration of an atom represented by 4
into a new state of this atom A4 plus another emitted
particle represented by 5.

In this talk:

» Eventually discuss (finite dimensional) indecomposable
representations of Poincaré.
» it contains Lorentz ~ SO(3,1) as a subgroup
» it also contains 4 space-time translation
» representations are “naturally” of the indecomposable type
» Start by discussing E(2): group of Euclidean motion in 2d
» it contains rotations in the plane ~ SO(2) as a subgroup
» it also contains translations in the plane
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Why pathological?

According to Wigner's theorem:

» Transformations of quantum mechanical states should be
unitary or antiunitary transformations.
» This is required to preserve probabilities:

» The probability of finding a system in a state |x) given it is
in a state |¢) is [( x| €)%

» If we transform the system - translate or rotate the axes etc.
- by some operation 7', then

)= I =1Tx), 1§ —=¢)=1T¢)

» This should not change the probabilities:
(TxITEN = (x| €)1
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E(2)
The group E(2) is the group of Euclidean motion in the plane.

» One rotation in the plane.

(z,y) = (xcos® — ysinb,ycosf + zsin f)
» Two commuting translations
(x,y) = (x+a,y +b)
» “Natural” representation
cosf) —sinf | a

m:T(0;a,b) — | sinf cosf |b
0 0 |1

» This is an example of an indecomposable representation:
» non-unitary
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Basic examples

» Go to complex coordinates z = = + iy

e’ 2
W.T(G,x,y)w( 0 1)

- 1 0 _ .
W:T(Q;x,y)»—><z e_i9> Z=x—1y
» Composition rule

T(@l; Zl) . T(92; 22) = T(@l + 92; 21 + dew)
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m(T(0,z)) arep. of E(2) on V (finite dim.) (z implicit).

» Decompose V = &Wj into a finite sum of “weight’
subspaces Wi.

Wiy, is an SO(2) subspace: if v € W, then

v

7(T(0,0)) v = e~ *0%

v

Since T'(0 + 2m;0) =T(6;0) = k € Z
Generators realized as

v
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Basic setup

m(T(0,z)) arep. of E(2) on V (finite dim.) (z implicit).
» Decompose V = &Wj, into a finite sum of “weight”
subspaces W.
» Wy is an SO(2) subspace: if v € W, then

7(T(0,0)) v = e~ *0%

» Since T'(0 + 2m;0) =T(0;0) = k€ Z
» Generators realized as

o= iom(T(0,2)) pi = Sw(T0,2) b= Sr(T(0,2)).

» Commutators: [p4+,p_] =0, [lo,ps] = p+.
» Ladder action: oWy, C Wy;  peWi C Wiaq

» Finite dimensional: 3M s.t. p. Wy, = 0 and 9N s.t.
p_Wx =0.
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String representations

Assume all W, are of dim=1.
» Every 1drep of E(2)is: xx : T(0;2) — e 0 k€ Z.

» pyp-=0
» Choose ¢, € Wy, arbitrary # 0 vector

D4P— Pk = Pk Wy is 1-dim.
(p+p-)"0r = apepy
= (p)"(p-)"wx P4, p— commute.
=0 forn > N s.t. pVNoy = 0.

» Thus o =0 = a4 =0.
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p+p— =10

This means:

» Some graphs are allowed:

(o] )
P—Pm+1 =0 T P—Pmt+1 # 0 l P—Pmy1 =0
(o]

P+Pm # 0 P+m =0 P+@m =0

0]

» Graphs cannot contain

P—Pm+1 7é 0
P+Pm # 0 °
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Example: a reducible representation
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Example: the “natural” representation
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Tensoring strings

PP v,@w, =v,®w #0

» There are weight multiplicities
» pop_ nilpotent.
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Parallelograms

v, ®w,

v W / ° \
/ ® \ B v, ® ‘ﬁ'\ oV ®W,
. oMo /

v, Qw

0 -1

Yo

Claim: it is indecomposable.
Proof: Assume it does: V =V & Va.

» Pick v =avg @ wo+bvy @w_q1 € Vi with a # 0.
> pyp-v=avi Qw1 EVi=>101Quw_1 €V
» Thus v — by Q@ w_1 =avg@wy € V1 = vg @ wy € V5.



Parallelograms

Likewise, this parallelogram is indecomposable:



Subrepresentations and Quotients
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Combinations and general strings
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are also indecomposable. Note this last is a string.



Extension to Poincaré

Can this be adapted to Poincaré ?

e(2) ~ [R?s0(2)

p31 ~ [R4]so(3,1)

Rotations so(2)

irreps are 1d

spacetime rotations so(3, 1)

irreps are finite and oo dim.

translations R?
{pzpy}
p+ transform by 1d irreps
invariant:

P-P=pyp_=0

spacetime translations R*
{Paspy, p2, B/}
P; transform by 4-dim irrep
invariant: P - P = —(mc)?

=p2+pi+p2—(E/c)
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so(3,1)c — sl(2,C) & sl(2,C)

Finite dimensional reps of so(3,1) are reps of
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denoted by two integers (A, )
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The action of P, on ¢ € V(A, u):
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so(3,1)c — sl(2,C) & si(2,C)

» In general, for ¢, € V(A, pu):

PP,y = ¢ +piecesinother V(X i)
P-Pyp = ap

V(2+2.0)0 oV (A+2,u+2)
V(2+Lu-1
( +’#o) o r(asius)
\& .
AN’ V(Au+2)
2OV (.u) ©
V(a-Lu-l) 7 "

o o V(A-Lu+1)



String representations in p(3,1)

» Naive generalization of
(raising) string representations:
» Suppose rep has a lowest weight ¢ € V(A p).
» P, maps states in V(XN,p/) = VN + 1,1/ +1).  vou3,p+3)
» V is indecomposable

V(A+2,u+2)
V(Ou+1,u+1)
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String representations in p(3,1)

» Naive generalization of
(raising) string representations:
» Suppose rep has a lowest weight ¢ € V(A p).
» P;maps statesin V(X, ') = V(N + 1,4/ +1).  vo+3,u+3)
» V is indecomposable
» Slightly less naive generalization:

V(A+2,u+2
» P; maps vectors € V(\, ') to one of h+2)

VN 41,4 —1) or V(A+1,u+1)
VN W)= VN =1, +1) or
VOV =1, —1)

VQhp)
Pi Pj
» V(A1 m1) — V(A pn2) — V (A3, pg) with

V(A37 MS) 7é V(Ah Ml)
» Still indecomposable.
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String representations in p(3,1)

Even less naive generalization:
oV(A+2,u+2)

P;
VI, — VN + L+ 1) /

£° V(A+Lu+1)

V(N — 1,4 +1) \
V(A,u+2)

The notion of “raising” or “lowering”

action is formally lost, although the

map still defines a direction. 4o V(A-Lu+1)
A string should not contains the

sequence of maps V(\, u) = V(N, 1) = V(A p).
Probably indecomposable.

Note that, for such strings, P - P = 0 i.e. they would
describe “decay” of 0-mass particles.
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Parallelograms in p(3,1)

» The tensor product of two (generalized) strings will yield a
(generalized) parallelogram.

» On such parallelograms we have P - P nilpotent.

» Properties?

» Indecomposable?
» Quotients and subrepresentations?

» Interpretation?
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Other work

Andrew Douglas & Joe Repka, on various aspects,

David Ridout (Australian National University) on
indecomposable representations of Virasoro, applications
in logarithmic conformal field theory (with St-Aubin, with
Kytdla)
Lots of early work on indecomposable of Poincaré (60s,
70s, 80s):
» Gruber, J.Phys. A 19 (1986) 1
» Raczka, Ann. Inst. Henri Poincaré XIX (1973) 341
(discusses a theory of relativistic unstable particles with 0
mass using induced representations)
» George and Lévy-Nahas, JMP 7 (1966) 980

Thank you.
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