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Throughout this lecture, G denotes a group and k an
algebraically closed field.

H denotes a Hopf algebra over k,
e.g., H = kG, the group algebra.

Tensor products are over k.
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H has the Chevalley property, if V ® W is semisimple for any
two simple H-modules V, W.

Notion introduced by Andruskievitsch, Etingof, and Gelaki ('01).

THEOREM (CHEVALLEY, < 1968)
If char(k) = O, then kG has the Chevalley property.
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THE CHEVALLEY PROPERTY

H has the Chevalley property, if V ® W is semisimple for any
two simple H-modules V, W.

Notion introduced by Andruskievitsch, Etingof, and Gelaki ('01).

THEOREM (CHEVALLEY, < 1968)
If char(k) = 0, then kG has the Chevalley property.

THEOREM (MOLNAR, 1981)

Suppose that dim(H) < oco. Then H has the Chevalley property
if and only if J(H) is a Hopf ideal.
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GROUP ALGEBRAS WITH THE CHEVALLEY PROPERTY

THEOREM (VARIOUS AUTHORS)

Let G be finite and char(k) = p > 0. Then the following
Statements are equivalent:

(1) kG has the Chevalley property.

GERHARD HISS ON THE CHEVALLEY PROPERTY



GROUP ALGEBRAS WITH THE CHEVALLEY PROPERTY

THEOREM (VARIOUS AUTHORS)

Let G be finite and char(k) = p > 0. Then the following
Statements are equivalent:

(1) kG has the Chevalley property.

(2) V& V* is semisimple for each simple V € kG-mod.
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GROUP ALGEBRAS WITH THE CHEVALLEY PROPERTY

THEOREM (VARIOUS AUTHORS)

Let G be finite and char(k) = p > 0. Then the following
Statements are equivalent:

(1) kG has the Chevalley property.
(2) V& V* is semisimple for each simple V € kG-mod.
(3) P(k) ® V = P(V) for each simple V € kG-mod.
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GROUP ALGEBRAS WITH THE CHEVALLEY PROPERTY

THEOREM (VARIOUS AUTHORS)
Let G be finite and char(k) = p > 0. Then the following

statements are equivalent:

(1) kG has the Chevalley property.

(2) V& V* is semisimple for each simple V € kG-mod.
(8) P(k) @ V = P(V) for each simple V € kG-mod.

(4) The trivial module is a direct summand of V @ V* for each
simple V € kG-mod.
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GROUP ALGEBRAS WITH THE CHEVALLEY PROPERTY

THEOREM (VARIOUS AUTHORS)
Let G be finite and char(k) = p > 0. Then the following

statements are equivalent:

(1) kG has the Chevalley property.

(2) V& V* is semisimple for each simple V € kG-mod.
(8) P(k) @ V = P(V) for each simple V € kG-mod.
(

4) The trivial module is a direct summand of V @ V* for each
simple V € kG-mod.

(5) p1dim(V) for each simple V € kG-mod.
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GROUP ALGEBRAS WITH THE CHEVALLEY PROPERTY

THEOREM (VARIOUS AUTHORS)

Let G be finite and char(k) = p > 0. Then the following
Statements are equivalent:

(1) kG has the Chevalley property.
(2) V& V* is semisimple for each simple V € kG-mod.

(8) P(k) @ V = P(V) for each simple V € kG-mod.

)
)
(4) The trivial module is a direct summand of V @ V* for each
simple V € kG-mod.

(5) p1dim(V) for each simple V € kG-mod.
(6) G has a normal Sylow p-subgroup.
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Let C, denote a cyclic group of order n.
Let G = C7 x C3 (nonabelian), char(k) = 3.
kG has three simple modules: k, S, S*.
k: trivial module, dim(S) = dim(S*) = 3.

SesS=2SeS S andS @S =S aSaS.



AN EXAMPLE

Let C, denote a cyclic group of order n.

Let G = C7 x C3 (nonabelian), char(k) = 3.

kG has three simple modules: k, S, S*.

k: trivial module, dim(S) = dim(S*) = 3.
SS=2SeS S andS* S 2S5 e Sa S.

Thus: V ® V is semisimple for each simple V € kG-mod.
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AN EXAMPLE

Let C, denote a cyclic group of order n.

Let G = C7 x C3 (nonabelian), char(k) = 3.

kG has three simple modules: k, S, S*.

k: trivial module, dim(S) = dim(S*) = 3.
SS=2SeS S andS* S 2S5 e Sa S.

Thus: V ® V is semisimple for each simple V € kG-mod.

But: kG does not have the Chevalley property since G does not
have a normal Sylow 3-subgroup.
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the Drinfeld double of H.
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THE DRINFELD DOUBLE OF A GROUP ALGEBRA

Let G and dim(H) be finite. Put

D(H) :=H* ® H,
the Drinfeld double of H.
Let g1,...,9n be rep’s for the conjugacy classes of G.

Then )
D(kG)-mod ~ [ | kCg(g;)-mod.

i=1
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THE DRINFELD DOUBLE OF A GROUP ALGEBRA

Let G and dim(H) be finite. Put

D(H) :=H* ® H,
the Drinfeld double of H.
Let g4,...,9n be rep’s for the conjugacy classes of G.

Then )
D(kG)-mod ~ [ | kCg(g;)-mod.

i=1

In particular, simple modules of D(kG) are labelled by
(V,gi), Vasimple kCg(g;)-module, i =1,...,n.
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THE DRINFELD DOUBLE OF A GROUP ALGEBRA

Let G and dim(H) be finite. Put

D(H) :=H* ® H,
the Drinfeld double of H.
Let g4,...,9n be rep’s for the conjugacy classes of G.

Then )
D(kG)-mod ~ [ | kCg(g;)-mod.

i=1

In particular, simple modules of D(kG) are labelled by
(V,gi), V asimple kCg(g;)-module, i =1,...,n.
If M € D(kG)-mod is labelled by (V, g;), then

dim(M) = |G: Cg(g;)|dim(V).
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THE CHEVALLEY PROPERTY FOR THE DRINFELD
DOUBLE A GROUP ALGEBRA

THEOREM

Let G be finite and char(k) = p > 0. Then the following
Statements are equivalent:

(1) D(kG) has the Chevalley property.
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THEOREM

Let G be finite and char(k) = p > 0. Then the following
Statements are equivalent:

(1) D(kG) has the Chevalley property.
(2) V& V* is semisimple for each simple V € D(kG)-mod.
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THEOREM
Let G be finite and char(k) = p > 0. Then the following

statements are equivalent:

(1) D(kG) has the Chevalley property.

(2) V& V* is semisimple for each simple V € D(kG)-mod.
(8) P(k) @ V = P(V) for each simple V € D(kG)-mod.
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THE CHEVALLEY PROPERTY FOR THE DRINFELD
DOUBLE A GROUP ALGEBRA

THEOREM
Let G be finite and char(k) = p > 0. Then the following

statements are equivalent:

1) D(kG) has the Chevalley property.

2) V ® V* is semisimple for each simple V € D(kG)-mod.
3) P(k) @ V = P(V) for each simple V € D(kG)-mod.

4) The trivial module is a direct summand of V @ V* for each
simple V € D(kG)-mod.

(5) p1dim(V) for each simple V € D(kG)-mod.

(
(
(
(
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THE CHEVALLEY PROPERTY FOR THE DRINFELD
DOUBLE A GROUP ALGEBRA

THEOREM
Let G be finite and char(k) = p > 0. Then the following

statements are equivalent:

(1) D(kG) has the Chevalley property.

(2) V& V* is semisimple for each simple V € D(kG)-mod.
(8) P(k) @ V = P(V) for each simple V € D(kG)-mod.

(4) The trivial module is a direct summand of V @ V* for each

simple V € D(kG)-mod.
5) p t dim(V) for each simple V € D(kG)-mod.

©)
(6) G= S x K with S an abelian Sylow p-subgroup of G.
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REMARKS ON THE THEOREM FOR GROUP ALGEBRAS

Most of the implications in the two theorems are long known:
(1) < (6) for H = kG is due to Molnar (1981).

(1) = (3) for dim(H) < oo is due to Lorenz (1997).
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REMARKS ON THE THEOREM FOR GROUP ALGEBRAS

Most of the implications in the two theorems are long known:
(1) < (6) for H = kG is due to Molnar (1981).
(1) = (3) for dim(H) < oo is due to Lorenz (1997).

(3) = (1) for H = kG is due to Brockhaus (1982), using the
classification of the finite simple groups.
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REMARKS ON THE THEOREM FOR GROUP ALGEBRAS

Most of the implications in the two theorems are long known:
(1) < (6) for H = kG is due to Molnar (1981).
(1) = (3) for dim(H) < oo is due to Lorenz (1997).

(3) = (1) for H = kG is due to Brockhaus (1982), using the
classification of the finite simple groups.

(2) = (4): Use Homy(V ® V* k) = Homgy(V, V).
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REMARKS ON THE THEOREM FOR GROUP ALGEBRAS

Most of the implications in the two theorems are long known:
(1) < (6) for H = kG is due to Molnar (1981).
(1) = (3) for dim(H) < oo is due to Lorenz (1997).

(3) = (1) for H = kG is due to Brockhaus (1982), using the
classification of the finite simple groups.

(2) = (4): Use Homy(V ® V* k) = Homgy(V, V).

(3) = (4): Use k = Homy(P(V), V) = Homy(P(k), V@ V*).
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REMARKS ON THE THEOREM FOR GROUP ALGEBRAS

Most of the implications in the two theorems are long known:
(1) < (6) for H = kG is due to Molnar (1981).
(1) = (3) for dim(H) < oo is due to Lorenz (1997).

(3) = (1) for H = kG is due to Brockhaus (1982), using the
classification of the finite simple groups.

(2) = (4): Use Homy(V ® V* k) = Homgy(V, V).
(3) = (4): Use k = Homy(P(V), V) = Homy(P(k), V@ V*).

(4) < (5) for dim(H) < oo is due to Benson and Carlson
(1986).
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THE OTHER IMPLICATIONS

LEMMA

Assume

(2) V& V* is semisimple for each simple V € kG-mod, or
(5) p1dim(V) for each simple V € kG-mod.

Then G has a normal Sylow p-subgroup. (6)

Proof. Assume that G does not have a normal Sylow
p-subgroup.
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THE OTHER IMPLICATIONS

LEMMA

Assume

(2) V& V* is semisimple for each simple V € kG-mod, or
(5) p1dim(V) for each simple V € kG-mod.

Then G has a normal Sylow p-subgroup. (6)

Proof. Assume that G does not have a normal Sylow
p-subgroup.
Then there is a simple V € kG-mod with p | dim(V).
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THE OTHER IMPLICATIONS

LEMMA

Assume

(2) V& V* is semisimple for each simple V € kG-mod, or
(5) p1dim(V) for each simple V € kG-mod.

Then G has a normal Sylow p-subgroup. (6)

Proof. Assume that G does not have a normal Sylow
p-subgroup.
Then there is a simple V € kG-mod with p | dim(V).

This is due to Michler (1986), using the classification of the
finite simple groups.

GERHARD HISS ON THE CHEVALLEY PROPERTY



THE OTHER IMPLICATIONS

LEMMA

Assume

(2) V& V* is semisimple for each simple V € kG-mod, or
(5) p1dim(V) for each simple V € kG-mod.

Then G has a normal Sylow p-subgroup. (6)

Proof. Assume that G does not have a normal Sylow
p-subgroup.

Then there is a simple V € kG-mod with p | dim(V).

This is due to Michler (1986), using the classification of the
finite simple groups.

For p = 2, the classification can be replaced by a beautiful
argument of Okuyama.
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THE OTHER IMPLICATIONS

LEMMA

Assume

(2) V& V* is semisimple for each simple V € kG-mod, or
(5) p1dim(V) for each simple V € kG-mod.

Then G has a normal Sylow p-subgroup. (6)

Proof. Assume that G does not have a normal Sylow
p-subgroup.
Then there is a simple V € kG-mod with p | dim(V).

This is due to Michler (1986), using the classification of the
finite simple groups.

For p = 2, the classification can be replaced by a beautiful
argument of Okuyama.

If p | dim(V), then V @ V* is not semisimple (Exercise).
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Suppose that char(k) = 2 and that dim(V) is odd for every
simple V € kG-mod. Then G has a normal Sylow 2-subgroup.



Suppose that char(k) = 2 and that dim(V) is odd for every
simple V € kG-mod. Then G has a normal Sylow 2-subgroup.

Proof. If not, may assume O,(G) = 1 and |G| even.



OKUYAMA’S ARGUMENT

PROPOSITION (OKUYAMA)

Suppose that char(k) = 2 and that dim(V) is odd for every
simple V € kG-mod. Then G has a normal Sylow 2-subgroup.

Proof. If not, may assume O,(G) = 1 and |G| even.

By Fong’s lemma, V 2 V* for each non-trivial simple
V € kG-mod.
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OKUYAMA’S ARGUMENT

PROPOSITION (OKUYAMA)
Suppose that char(k) = 2 and that dim(V) is odd for every

simple V € kG-mod. Then G has a normal Sylow 2-subgroup.
Proof. If not, may assume O>(G) = 1 and |G| even.

By Fong’s lemma, V 2 V* for each non-trivial simple
V € kG-mod.

By Brauer’s permutation lemma, G has no non-trivial real
2'-conjugacy class.
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OKUYAMA’S ARGUMENT

PROPOSITION (OKUYAMA)
Suppose that char(k) = 2 and that dim(V) is odd for every

simple V € kG-mod. Then G has a normal Sylow 2-subgroup.
Proof. If not, may assume O>(G) = 1 and |G| even.

By Fong’s lemma, V 2 V* for each non-trivial simple
V € kG-mod.

By Brauer’s permutation lemma, G has no non-trivial real
2'-conjugacy class.

Let t € G be an involution. By Baer’s theorem, thereis g € G
such that (¢, t9) is not a 2-group.
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OKUYAMA’S ARGUMENT

PROPOSITION (OKUYAMA)

Suppose that char(k) = 2 and that dim(V) is odd for every
simple V € kG-mod. Then G has a normal Sylow 2-subgroup.

Proof. If not, may assume O>(G) = 1 and |G| even.

By Fong’s lemma, V 2 V* for each non-trivial simple
V € kG-mod.

By Brauer’s permutation lemma, G has no non-trivial real
2'-conjugacy class.

Let t € G be an involution. By Baer’s theorem, thereis g € G
such that (¢, t9) is not a 2-group.

There is 1 # x € (t, t9) with |x| odd and t'xt = x~ ', a
contradiction.
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If ptdim(V) for each simple V € D(kG)-mod (5), then
G = S x K with S an abelian Sylow p-subgroup of G (6).

Proof. Indeed, (5) implies p 1 |C| for each conjugacy class C.



THE PROOF FOR THE DRINFELD DOUBLE, I

LEMMA

If p 1 dim(V) for each simple V € D(kG)-mod (5), then
G = S x K with S an abelian Sylow p-subgroup of G (6).

Proof. Indeed, (5) implies p 1 |C| for each conjugacy class C.

In turn, this implies S < Z(G) for a Sylow p-subgroup S < G.
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THE PROOF FOR THE DRINFELD DOUBLE, I

LEMMA

If p 1 dim(V) for each simple V € D(kG)-mod (5), then
G = S x K with S an abelian Sylow p-subgroup of G (6).

Proof. Indeed, (5) implies p 1 |C| for each conjugacy class C.
In turn, this implies S < Z(G) for a Sylow p-subgroup S < G.

By Schur-Zassenhaus, S has a complement K.
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THE PROOF FOR THE DRINFELD DOUBLE, I

LEMMA

If p 1 dim(V) for each simple V € D(kG)-mod (5), then
G = S x K with S an abelian Sylow p-subgroup of G (6).

Proof. Indeed, (5) implies p 1 |C| for each conjugacy class C.
In turn, this implies S < Z(G) for a Sylow p-subgroup S < G.
By Schur-Zassenhaus, S has a complement K.

Thus G= S x K since S < Z(G).
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IfG= S x K with S an abelian Sylow p-subgroup of G (6), then
D(kG) has the Chevalley property (1).



IfG= S x K with S an abelian Sylow p-subgroup of G (6), then
D(kG) has the Chevalley property (1).

Proof. We have D(kG) = D(kS) ® D(kK).



THE PROOF FOR THE DRINFELD DOUBLE, II

LEMMA

IfG=S x K with S an abelian Sylow p-subgroup of G (6), then
D(kG) has the Chevalley property (1).

Proof. We have D(kG) = D(kS) ® D(kK).

As Sis abelian, J(D(kS)) is a Hopf ideal of D(kS).
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THE PROOF FOR THE DRINFELD DOUBLE, II

LEMMA

IfG=S x K with S an abelian Sylow p-subgroup of G (6), then
D(kG) has the Chevalley property (1).

Proof. We have D(kG) = D(kS) ® D(kK).
As Sis abelian, J(D(kS)) is a Hopf ideal of D(kS).
Also, D(kS)/J(D(kS)) = klSI.
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THE PROOF FOR THE DRINFELD DOUBLE, II

LEMMA

IfG=S x K with S an abelian Sylow p-subgroup of G (6), then
D(kG) has the Chevalley property (1).

Proof. We have D(kG) = D(kS) ® D(kK).

As Sis abelian, J(D(kS)) is a Hopf ideal of D(kS).
Also, D(kS)/J(D(kS)) = k!SI.

As p1|K|, D(kK) is semisimple.
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THE PROOF FOR THE DRINFELD DOUBLE, II

LEMMA

IfG=S x K with S an abelian Sylow p-subgroup of G (6), then
D(kG) has the Chevalley property (1).

Proof. We have D(kG) = D(kS) ® D(kK).

As Sis abelian, J(D(kS)) is a Hopf ideal of D(kS).
Also, D(kS)/J(D(kS)) = k!SI.

As p1|K|, D(kK) is semisimple.

The above imply J(D(kG)) = J(D(kS)) ® D(kK).
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THE PROOF FOR THE DRINFELD DOUBLE, II

LEMMA

IfG=S x K with S an abelian Sylow p-subgroup of G (6), then
D(kG) has the Chevalley property (1).

Proof. We have D(kG) = D(kS) ® D(kK).

As Sis abelian, J(D(kS)) is a Hopf ideal of D(kS).
Also, D(kS)/J(D(kS)) = k!SI.

As p1|K|, D(kK) is semisimple.

The above imply J(D(kG)) = J(D(kS)) ® D(kK).

The latter is a Hopf ideal of D(kG).

GERHARD HISS ON THE CHEVALLEY PROPERTY



Thank you for your attention!



