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Recall: History and Definition of PTF

∙ Traveling fronts in the homogenous case:
The equation is

ut(t, x) = Δu + f (u) t ∈ ℝ, x ∈ ℝN . (1)

Diffusion= Id Matrix and Reaction is f = f (u) and no advection term
(q ⋅ ∇u).
∙ In 1937 Kolmogorov, Petrovsky and Piskunov defined a Traveling front
propagating in the direction of −e (prefixed unitary direction in ℝN) with
a speed c as:
a solution of (1) in the form u(t, x) = �(x ⋅ e + ct) = �(s) satisfying the
limiting conditions �(−∞) = 0 and �(+∞) = 1.

Figure: Traveling front, One dimensional case
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TFs in the case of KPP nonlinearity

We say f = f (u) is a homogenous KPP nonlinearity when

f (0) = f (1) = 0, f ≡ 0 in ℝ ∖ [0, 1], ∀s ∈]0, 1[, 0 < f (s) ≤ f
′
(0)s.

For example f (u) = u(1− u) on [0, 1].

Figure: “KPP” homogenous nonlinearity

∙ Notice that (1) can be rewritten in this case as

�′′ − c�′ + f (�) = 0 for all s ∈ ℝ! (2)
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Theorem

Having a KPP nonlinearity, a TF exists with a speed c iff
c ≥ 2

√
f ′(0)=KPP speed. Moreover, this TF u(t, x) is increasing in t.

∙ Main ideas of the proof:
1. Solving (1) is equivalent to solve (2).
2. Over any interval (−a, a) ⊂ ℝ, the nondecreasing function

�
a,r

(s) := min(e�(s+r), 1)

is a super-solution over (−a, a) of (2) whenever c ≥ 2
√

f ′(0) and
�1(c) ≤ � ≤ �2(c).
3. The function �a,r := �

a,r
(−a) is a subsolution.

4. Hence we get a solution �a,r . For each a we take an ra that ensures the
non triviality of the limit function � = lima→+∞ �

a,r . For example we take
�a,ra = 1/2.
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∙ This idea can be adapted to prove existence in the more complicated
heterogenous settings. Together with the KPP condition (sub-linearity)
this will produce the Berestycki, Hamel and Nadirashvili variational
formula for the minimal speed c∗.
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In a More complicated setting, Pulsating traveling fronts...

Now suppose that our equation is no more homogenous:{
ut = Δu + q(z) ⋅ ∇u + f (z , u), t ∈ ℝ, z ∈ Ω,

� ⋅ ∇u = 0 on ℝ× ∂Ω,
(3)

where � stands for the unit outward normal on ∂Ω whenever it is
nonempty.
∙ Berestycki, Hamel (CPAM 2000) and J. Xin 2003 introduced after
Shegisada, Teramoto and Kenzaki 1986 a rigorous mathematical definition
of Pulsation traveling fronts in a Periodic framework:
∙ For instance, suppose that Ω = ℝN . Let ẽ ∈ ℝN be a unitary direction.
Suppose that q and f are (L1, ⋅ ⋅ ⋅ , LN)−periodic with respect to z .
∙ A pulsating traveling front in the direction of −ẽ with a speed c is a
solution u(t, z) = �(s, z) = �(z ⋅ e + ct, z) of (3) with the limiting
conditions �(−∞, z) = 0 and �(+∞, z) = 1 uniformly in z and � is
L−periodic in z .
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ut = div(A(x)∇u) + f (x , u)

Ω = ℝ2, d = N = 2, e ∥ (1, 1).
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A precise description of the general periodic setting

The previous definition can be extended to unbounded domains
Ω ⊂ ℝd × ℝN−d where 1 ≤ d ≤ N such that:

∙ Each z ∈ Ω can be written as z = (x , y) ∈ ℝd × ℝN−d .

∙ There exist L1, ⋅ ⋅ ⋅ , Ld > 0 such that Ω = Ω + k whenever

k = (k1, ⋅ ⋅ ⋅ , kd ,0, ⋅ ⋅ ⋅ , 0) ∈
∏d

i=1 Liℤ× {0}N−d .

∙ Ω is bounded in the y direction. That is, ∃R > 0 s.t ∣y ∣ ≤ R for all
(x , y) ∈ Ω.

∙ In this case, we assume that q = q(x , y) and f = f (x , y , u) are
L−periodic in x!

q(x + L, y) = q(x , y), f (x + L, y , u) = f (x , y , u)

s.t L = (L1, ⋅ ⋅ ⋅ , Ld).
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The domain Ω may be for example:
1- The whole space ℝN (d = N).

2- ℝN except a periodic array of holes

3- For d = 1, Ω can be an infinite cylinder with a uniform boundary or
with an oscillating boundary etc...
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Definition of PTFs, Existence, Minimal speed...

Equation{
ut = Δu + q(x , y) ⋅ ∇u + f (x , y , u), t ∈ ℝ, (x , y) ∈ Ω,

� ⋅ ∇u = 0 on ℝ× ∂Ω,
(4)

∙ Let e = (e1, ⋅ ⋅ ⋅ , ed) ∈ ℝd be a unitary direction and denote by
ẽ = (e, 0, ⋅ ⋅ ⋅ , 0) ∈ ℝN .

Definition

A PTF propagating in the direction of −e with a speed c is a solution

u(t, x , y) = �(s, x , y) = �(x ⋅ e + ct, x , y)

of (4) which is L−periodic in x and satisfies:

�(−∞, ⋅, ⋅) = 0, �(+∞, ⋅, ⋅) = 1 uniformly in (x , y) ∈ Ω.
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Theorem of Berestycki & Hamel 2002

∙ The advection q(x , y) = (q1(x , y), ⋅ ⋅ ⋅ , qN(x , y)) is a C 1,�(Ω) (with
� > 0) vector field satisfying

q is L- periodic with respect to x , ∇ ⋅ q = 0 in Ω,

q ⋅ � = 0 on ∂Ω (when ∂Ω ∕= ∅), and

∫
C

q dx dy = 0.

∙ Generalized KPP nonlinearity f = f (x , y , u)

f ≥ 0, f is L-periodic with respect to x , and of class C 1,�(Ω× [0, 1]),

∀ (x , y) ∈ Ω, f (x , y , 0) = f (x , y , 1) = 0,

f is decreasing in u on Ω× [1− �, 1] for some � > 0

∙ With the additional “KPP” assumption

∀ (x , y , s) ∈ Ω× (0, 1), 0 < f (x , y , s) ≤ f ′u(x , y , 0)× s.

∙ Simple example: (x , y , u) 7→ u(1− u)h(x , y) defined on Ω× [0, 1] where
h is a positive C 1,�( Ω ) L-periodic function.
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Theorem

∙ For any prefixed e ∈ ℝd , there exists a minimal speed c∗ := c∗Ω,q,f (e) > 0
such that a PTF with a speed c exists if and only if c ≥ c∗.
∙ Any PTF is increasing in time.
∙ Moreover, for any c ≥ c∗, Hamel and Roques proved that the fronts
u(t, x , y) with a speed c are unique up to a translation in t.

∙ A variational formula of this minimal speed was given in 2005.
∙ This formula shows that this minimal speed depends strongly on the
coefficients of the equation (Reaction, diffusion and advection) and on the
geometry of the domain.
∙ Many asymptotic behaviors of c∗ and many homogenization results have
been studied by El Smaily, J. Xin, Shigesada, Naderashvili, Hamel,
Berestycki, S. Hienze, etc.
∙ In this talk, I will show many results about the asymptotic behavior of
the minimal speed within large drift “M ′′q (M → +∞) and I will give
some details about the limit in the case N=2.
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Variational formula of the minimal speed involving
Eigenvalue problems

c∗(M, e) = min
�>0

k(�,M)

�
;

∙ k(�,M) is the principal eigenvalue of the elliptic operator L� defined by

L� := Δ + 2�ẽ ⋅ ∇ + M q ⋅ ∇ + [�2 + �M q ⋅ ẽ + �] in Ω,

E� =
{
 (x , y) ∈ C 2(Ω),  is L-periodic in x , � ⋅ ∇ = −�(� ⋅ ẽ) on ∂Ω

}
.

∙ Roughly u(t, x , y) ∼ e�(x ⋅e+ct)+r (x , y) = e�s+r (x , y).

∙ The principal eigenfunction  �,M is positive in Ω. It is unique up to
multiplication by a nonzero real number.

∙k(�,M) > 0 for all (�,M) ∈ (0,+∞)× (0,+∞).
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Main Results about the Minimal Speed within

Large Advection

{
ut = Δu + Mq(x , y) ⋅ ∇u + f (x , y , u), t ∈ ℝ, (x , y) ∈ Ω,

� ⋅ ∇u = 0 on ℝ× ∂Ω.

c∗(M, e) as M → +∞.

C := periodicity cell of Ω = {(x , y) ∈ Ω; x1 ∈ (0, L1), ⋅ ⋅ ⋅ , xd ∈ (0, Ld)}
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First integrals

Definition (First integrals)

The family of first integrals of q is defined by

ℐ :=
{

w ∈ H1
loc(Ω), w ∕= 0, w is L− periodic in x , and

q ⋅ ∇w = 0 almost everywhere in Ω} .

We also define the two subsets ℐ1 and ℐ2 :

ℐ1 :=

{
w ∈ ℐ, such that

∫
C
�w 2 ≥

∫
C
∣∇w ∣2

}
, (5)

ℐ2 :=

{
w ∈ ℐ, such that

∫
C
�w 2 ≤

∫
C
∣∇w ∣2

}
.

�(x , y) := f ′u(x , y , 0). � = f ′(0) when f = f (u).
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1. About “first integrals” of a vector field q

∙ The set ℐ is a closed subspace of H1
loc(Ω).

Notice

One can see that if w ∈ ℐ is a first integral of q and � : ℝ→ ℝ is a
Lipschitz function, then � ∘ w ∈ ℐ.
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2. Asymptotics within large advection in any space
dimension

Theorem

We fix a unit direction e ∈ ℝd . Let q be an advection field which satisfies
the previous assumptions. Then,

lim
M→+∞

c∗(Mq, e)

M
= max

w ∈ ℐ1

∫
C

(q ⋅ ẽ) w 2∫
C

w 2
. (6)

1 Berestycki, Hamel and Nadirashvili (2005) gave estimates showing
that the limit exists, but they did not give the exact limit.

2 A. Zlatos considered similar problems. He did not give a detailed NSC
for which the limit is null.

3 We did this study in the case N = 2. The NSC that we gave is easy
to verify!
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Large advection mixed with small reaction or large diffusion

Theorem

∙ If we have Mq as advection and �f as reaction then

lim
�→0+

lim
M→+∞

c∗Ω,M q,�f (e)

M
√
�

=

⎛⎝ 2

√∫
C �

∣C ∣

⎞⎠ max
w ∈ ℐ

∫
C

(q ⋅ ẽ) w√∫
C
∣∇w ∣2

, (7)

and

lim
B→+∞

lim
M→+∞

c∗Ω,B,M q,f (e)

M
√

B
=

⎛⎝ 2

√∫
C �

∣C ∣

⎞⎠ max
w ∈ ℐ

∫
C

(q ⋅ ẽ) w√∫
C
∣∇w ∣2

. (8)
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Sketch of the proof of Theorem 1

c∗(M) = min
�>0

k(�,M)

�
,

L� := Δ + 2�ẽ ⋅ ∇ + M q ⋅ ∇ + [�2 + �M q ⋅ ẽ + �] in Ω,

We call

�′ = �×M, and �(�′,M) = k(�,M) and  �
′,M =  �,M .

Then,

∀M > 0,
c∗(M)

M
= min

�′>0

�(�′,M)

�′
.

(E )

⎧⎨⎩

�(�′,M) �
′,M = Δ �

′,M + 2
�′

M
ẽ ⋅ ∇ + M q ⋅ ∇ �,M

+

[(
�′

M

)2

+ �′ q ⋅ ẽ + �

]
 �
′,M in Ω,

� ⋅ ∇ �′,M = −�
′

M
(� ⋅ ẽ) �

′,M on ∂Ω (whenever ∂Ω ∕= ∅).
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We multiply (E) by
w 2

 �′,M
and integrate by parts over the periodicity

cell C . (Any w ∈ ℐ)

�(�′,M)

�′

∫
C

w 2 =
1

�′

∫
C

∣∣∣∣∣∇ �
′,M

 �′,M
w −∇w +

�′

M
ẽ w

∣∣∣∣∣
2

︸ ︷︷ ︸
≥0

+

∫
C

(q ⋅ ẽ) w 2 +
1

�′

∫
C

[
�w 2 − ∣∇w ∣2

]
,

(9)

for all �′ > 0 and M > 0, and for any w ∈ ℐ.

∀�′,M > 0, �(�′,M)
�′ ≥ h(�′) ≥ inf�′>0 h(�′), where

h(�) :=
g(�)

�
= sup

w∈ℐ

∫
C

(
�w 2 − ∣∇w ∣2

)
�
∫
C w 2

+

∫
C

(q ⋅ ẽ)w 2. (10)
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ẽ w

∣∣∣∣∣
2

︸ ︷︷ ︸
≥0

+

∫
C
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for any w ∈ ℐ with ∣∣w ∣∣L2(C) = 1,

inf
�′>0

h(�′) ≤ c∗(M)

M
≤ 1

�′

∫
C

∣∣∣∣∣∇ �
′,M

 �′,M
w −∇w +

�′

M
ẽ w

∣∣∣∣∣
2

︸ ︷︷ ︸
D(�′,w ,M)

+h(�′). (11)

Remark: Eigenfunctions converge to first integrals

For a fixed �′, we take a sequence
{
 �
′,Mn

}
n∈ℕ

such that∫
C

(
 �
′,Mn

)2
= 1.

We get
{
 �
′,Mn

}
n∈ℕ

is bounded in H1(C ).

Hence  �
′,+∞ ∈ H1

loc(Ω)  �
′,Mn →  �

′,+∞ in H1
loc(Ω) weak, in L2

loc(Ω)
strong, and almost everywhere in Ω as n→ +∞.
Elliptic eigenvalue problem implies that  �

′,+∞ is a first integral.
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Proposition: More about the function h

The functions g and h satisfy the following properties:
(i) The function g is convex on [0,+∞), and moreover, g and h are
continuous on their domains and take values in (0,+∞).

(ii) h(�) −−−−→
�→+∞

sup
w∈ℐ

∫
C (q ⋅ ẽ)w 2∫

C w 2
.

(iii) Either h is convex and decreasing on (0,+∞) or h attains a global
minimum at some point �0 > 0.
(iv) If h is convex decreasing on (0,+∞), then we have

h(�) −−−−→
�→+∞

max
w∈ℐ1

∫
C (q ⋅ ẽ)w 2∫

C w 2
= sup

w∈ℐ

∫
C (q ⋅ ẽ)w 2∫

C w 2
.

(v) If h attains its minimum at �0 > 0, then we have

h(�0) = max
w∈ℐ1

∫
C (q ⋅ ẽ)w 2∫

C w 2
. (12)
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End of the proof

Lemma

For a fixed �′ > 0,
D(�′,  �

′,+∞,Mn)→ 0

as Mn → +∞.

(11) + Proposition+ Remark + Lemma finish the proof of the Theorem.
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3. More details about the limit when N = 2

Proposition

Let d = 1 or 2 where d is defined before. Let q ∈ C 1,�(Ω), L-periodic with
respect to x and verifying the conditions⎧⎨⎩

∫
C

q = 0,

∇ ⋅ q = 0 in Ω,

q ⋅ � = 0 on ∂Ω.

(13)

Then, there exists � ∈ C 2,�(Ω), L-periodic with respect to x, such that

q = ∇⊥� in Ω. (14)

Moreover, � is constant on every connected component of ∂Ω.
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Remark

∙ The representation q = ∇⊥� is well-known in the case where the
domain Ω is bounded and simply connected or equal to whole space ℝ2.
∙ However, thanks to the condition q ⋅ � = 0 on ∂Ω, the above proposition
applies in more cases.

Examples

It applies when:
∙ Ω is the whole space ℝ2 with a periodic array of holes
∙∙ Ω is an infinite cylinder which may have an oscillating boundary and/or
a periodic array of holes.
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∙ ∇⊥� ⋅ � = q ⋅ � = 0 on ∂Ω⇒ � is constant on every connected
component of ∂Ω.
∙ In the proof of existence of �, (d = 2 let’s say)

Ω̂ := Ω/(L1ℤ× L2ℤ) and T := ℝ2/(L1ℤ× L2ℤ).

If x ∈ ℝ2, we denote by x̂ its class of equivalence in T , and if � : ℝ2 → ℝ
is L- periodic, we denote �̂ the function T → ℝ2 verifying �(x) = �̂(x̂).
we first get �̃ solution of

Δ�̃ = ∇ ⋅ Rq̃ in T

in the weak sense, where

q̃ : T −→ ℝ2,

x̂ ∈ Ω̂ 7−→ q(x),

x̂ /∈ Ω̂ 7−→ 0.
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∙ q̃ is a divergence free vector field on T in the sense of distributions:

∀ ∈ C∞(T ),

< div(q̃),  > := − < q̃,∇ > = −
∫
T

q̃ ⋅ ∇ 

= −
∫

Ω̂
q ⋅ ∇ = −

∫
∂Ω̂
 q ⋅ � +

∫
Ω̂
 ∇ ⋅ q

= 0 + 0 = 0,

∙ Then we define �̂ = �̃∣Ω̂ and we take � the corresponding L− periodic
function on Ω.

∙ Also we get ∇⊥�̃ = q̃ = 0 on T ∖ Ω̂.

∙ Hence �̃ =Constant on T ∖ Ω̂.
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Corollary (Now we know more about first integrals...)

Let
J := {� ∘ �, such that � : ℝ→ ℝ is Lipschitz} , (15)

where �, such that q = ∇⊥�, is given by Proposition 8. Then,

J ⊂ ℐ.
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The first integrals of the form w = � ∘ �, J

∀w ∈ J , we have

∫
C

(q ⋅ ẽ)w 2 = 0.

∙ Indeed, w = � ∘ � and q = ∇⊥�. This gives∫
C (q ⋅ ẽ)w 2 = ẽ ⋅

∫
C

(
∇⊥�

)
�2(�)

= ẽ ⋅ R
∫
C ∇ (F ∘ �) = ẽ ⋅ R

∫
Ω̂
∇(F ∘ �̃),

where R the matrix of a direct rotation of angle �/2, F ′ = �2,

and where

T := ℝ2/(L1ℤ× L2ℤ) and Ω̂ := Ω/(L1ℤ× L2ℤ) if d = 2,

T := ℝ2/ (L1ℤ× {0}) and Ω̂ := Ω/ (L1ℤ× {0}) if d = 1.
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∙ �̃ is constant on every connected component of T∖Ω̂, and so is F ∘ �̃.
We then have ∫

T∖Ω̂
∇
(

F ∘ �̃
)

= 0.

∙ Hence,
∫
C (q ⋅ ẽ)w 2 = ẽ ⋅ R

∫
T ∇

(
F ∘ �̃

)
= 0, because T has no

boundary. □
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We need the following preliminary lemma in order to give details about the
limit when N = 2:

Lemma

Let Ω̂ be the set defined before, Û be an open subset of Ω̂, and �̂ given by
(14). Suppose that:

(i) q̂(x̂) ∕= 0 for all x̂ ∈ Û,

(ii) the level sets of �̂ in Û are all connected.

Then, for every w ∈ ℐ, there exists a continuous function � : �̂(Û)→ ℝ
such that

ŵ = � ∘ �̂ on Û. (16)
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Trajectories of an L−periodic vector field, Periodicity of
trajectories?

Definition (Trajectory of a vector field)

Assume that N = 2. Let x ∈ Ω such that q(x) ∕= 0. The trajectory of q at
x is the largest (in the sense of inclusion) connected differentiable curve
T (x) in Ω verifying:

(i) x ∈ T (x),

(ii) ∀y ∈ T (x), q(y) ∕= 0,

(iii) ∀y ∈ T (x), q(y) is tangent to T (x) at the point y .
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The decision about the limit (null or positive) will depend on the existence
of periodic unbounded trajs. for q!

Lemma (unbounded periodic trajectories)

Let T (x) be an unbounded periodic trajectory of q in Ω, that is:
∙ there exists a ∈ L1ℤ× L2ℤ ∖ {0} (resp. L1ℤ× {0} ∖ {0}) when d = 2
(resp. d = 1) such that T (x) = T (x) + a.
∙ In this case, we say that T (x) is a−periodic.

Then,

if T (y) is another unbounded periodic trajectory of q, T (y) is also
a−periodic.

Moreover,

in the case d = 1, a = L1e1. That is, all the unbounded periodic
trajectories of q in Ω are L1e1−periodic.
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∙ There may exist unbounded trajectories which are not periodic, even
though the vector field q is periodic.

A periodic vector field whose unbounded trajectories are not periodic!

Let

�(x , y) :=

⎧⎨⎩ e
− 1

sin2(�y) sin(2�(x + ln(y − [y ]))) if y ∕∈ ℤ,
0 otherwise.

∙ � is C∞ on ℝ2, and 1-periodic in x and y .
∙ Hence the vector field q = ∇⊥� is also C∞, 1-periodic in x and y , and∫

[0,1]×[0,1] q = 0 with ∇ ⋅ q ≡ 0.

∙ The part of the graph of x 7→ e−x lying between y = 0 and y = 1 is a
trajectory of q, and is obviously unbounded and not periodic.
∙ There exist no periodic unbounded trajectory for this vector field, so the
theorem asserts that for all w ∈ ℐ we have∫

C
qw 2 = 0.
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Theorem

Assume that N = 2 and that Ω and q satisfy the assumptions. The two
following statements are equivalent:

(i) There exists w ∈ ℐ, such that

∫
C

qw 2 ∕= 0.

(ii) There exists a periodic unbounded trajectory T (x) of q in Ω.
Moreover, if (ii) is verified and T (x) is a−periodic, then for any w ∈ ℐ we

have

∫
C

q w 2 ∈ ℝa.

Definition

We define here the set of “regular trajectories” in Ω̂. Let

Û :=
{

x̂ ∈ Ω̂ such that T (x̂) is well defined and closed in Ω̂
}
.

∙ We denote by Ûi the connected components of Û.

∙ Proposition: The set Û is exactly the union of the trajectories which

are simple closed curves in Ω̂.
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Proof of the Theorem

∙
∫
C qw 2 = R

∫
C (∇�)w 2 = R

∫
Ω̂(∇�̂)ŵ 2.

∙ Let W := {x̂ ∈ Ω̂ such that �̂(x̂) is a critical value of �̂}.

∙ Co-area ⇒
∣∣∣∫W ŵ 2∇�̂

∣∣∣ ≤ ∫W ŵ 2∣∇�̂∣ =
∫
�̂(W )

(∫
�̂−1(t) ŵ 2(x)

)
dt.

∙ From Sard’s theorem, since �̂ is C 2, ℒ1(�̂(W )) = 0, where ℒ1 denotes
the Lebesgue measure on ℝ, one gets∫

W
ŵ 2∇�̂ = 0.
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∙ Ω̂∖W ⊂ Û ⊂ Ω̂, we get∫
C

qw 2 = R

∫
Û

(∇�̂)ŵ 2 = R
∑
i

∫
Ûi

(∇�̂)ŵ 2. (17)

We now use Lemma 12 to get �i continuous such that∫
Ûi

(∇�̂)ŵ 2 =

∫
Ûi

(∇�̂)�2
i (�̂).

We define the function Fi by F ′i = �2
i and Fi (0) = 0, and we obtain∫

Ûi

(∇�̂)ŵ 2 =

∫
Ûi

∇Fi (�̂).

Lemma

Let Ûi as in the previous definition. Then,
(i) all the level sets of �̂ in Ûi are connected,
(ii) all the level sets of �̂ in Ûi are homeomorphic,
(iii) ∂Ûi has exactly two connected components ̂1 and ̂2 such that

�̂(̂1) = supx̂∈Ûi
�̂(x̂) and �̂(̂2) = inf x̂∈Ûi

�̂(x̂).
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Due to the condition q ⋅ � = 0 on ∂Ω, we have

Trajs of q follow the boundary, and this led us to: 1 (resp. 2) is either a
connected component of ∂Ω̂ or contains a critical point of �̂.

If we define

Û"
i := {x̂ ∈ Ûi such that inf

Ûi

�̂+ " < �̂(x) < sup
Ûi

�̂− "},

then it follows from dominated convergence theorem that∫
Û"
i

(∇�̂)ŵ 2 −−−→
"→0

∫
Ûi

(∇�̂)ŵ 2. (18)

∙ ℸii) =⇒ ℸi) We suppose that there exist no periodic unbounded
trajectories of q. In Ûi , the trajectories of q are exactly the level sets of �̂.
We consider the following set

U"
i := Π−1(Û"

i ).

Let x0 ∈ U"
i and let U"

i ,0 be the connected component of U"
i containing x0.

∙ We proved that Π is a measure preserving bijection from U"
i ,0 to Û"

i .
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∙ Thus
∫
Û"
i
(∇�̂)ŵ 2 =

∫
U"
i,0

(∇�)w 2 =
∫
U"
i,0
∇Fi (�) =

∫
∂U"

i,0
Fi (�)n,

∙ ∂U"
i ,0 is the union of two level sets C1 and C2 of � in Ω, which are both

simple closed curves!
∙ So we can write∫

U"
i,0

(∇�)w 2 = F (�(C1))

∫
C1

n + F (�(C2))

∫
C2

n,

with ∫
C1

n =

∫
C2

n = 0,

because the integral of the unit normal on a C 1 closed curve in ℝ2 is zero.
□
ii) =⇒ i) was proved using the same technics.
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Conclusions

As a direct consequence of the previous Theorems, we get the following
about the asymptotic behavior of the minimal speed within large drift:

Assume that N = 2. Then,

(i) If there exists no periodic unbounded trajectory of q in Ω, then

lim
M→+∞

c∗Ω,M q,f (e)

M
= 0,

for any unit direction e.
(ii) If there exists a periodic unbounded trajectory T (x) of q in Ω (which
will be a−periodic for some vector a ∈ ℝ2) then

lim
M→+∞

c∗Ω,M q,f (e)

M
> 0 ⇐⇒ ẽ ⋅ a ∕= 0. (19)
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Notice that in the case where d = 1, we have ẽ = ±e1. Lemma 14 yields
that ẽ ⋅ a = ±L1 ∕= 0.

Thus, for d = 1,

lim
M→+∞

c∗M q(e)

M
> 0⇐⇒ ∃ a periodic unbounded traj. T (x) of q in Ω.
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Thank you
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