KPP Pulsating Traveling Fronts within Large Drift

Mohammad El Smaily Joint work with Stéphane Kirsch

University of British Columbia &

Pacific Institute for the Mathematical Sciences

September 17, 2009

PIMS Colloquium

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Recall: History and Definition of PTF

• Traveling fronts in the homogenous case: The equation is

$$u_t(t,x) = \Delta u + f(u) \quad t \in \mathbb{R}, \ x \in \mathbb{R}^N.$$
 (1)

Diffusion= Id Matrix and Reaction is f = f(u) and no advection term $(q \cdot \nabla u)$.

• In 1937 Kolmogorov, Petrovsky and Piskunov defined a Traveling front propagating in the direction of -e (prefixed unitary direction in \mathbb{R}^N) with a speed c as:

a solution of (1) in the form $u(t,x) = \phi(x \cdot e + ct) = \phi(s)$ satisfying the limiting conditions $\phi(-\infty) = 0$ and $\phi(+\infty) = 1$.

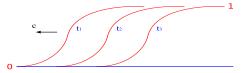


Figure: Traveling front, One dimensional case

TFs in the case of KPP nonlinearity

We say f = f(u) is a homogenous KPP nonlinearity when $f(0) = f(1) = 0, f \equiv 0$ in $\mathbb{R} \setminus [0, 1], \forall s \in]0, 1[, 0 < f(s) \le f'(0)s.$

For example f(u) = u(1 - u) on [0, 1].

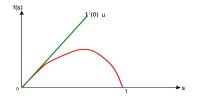


Figure: "KPP" homogenous nonlinearity

• Notice that (1) can be rewritten in this case as

$$\phi'' - oldsymbol{c} \phi' + f(\phi) = 0$$
 for all $oldsymbol{s} \in \mathbb{R}!$

M. El Smaily (UBC & PIMS)

(2)

Theorem

Having a KPP nonlinearity, a TF exists with a speed c iff $c \ge 2\sqrt{f'(0)} = KPP$ speed. Moreover, this TF u(t, x) is increasing in t.

- Main ideas of the proof:
- 1. Solving (1) is equivalent to solve (2).
- 2. Over any interval $(-a, a) \subset \mathbb{R}$, the nondecreasing function

 $\overline{\phi}^{a,r}(s) := \min(e^{\lambda(s+r)}, 1)$

is a super-solution over (-a, a) of (2) whenever $c \ge 2\sqrt{f'(0)}$ and $\lambda_1(c) \le \lambda \le \lambda_2(c)$. 3. The function $\phi^{a,r} := \overline{\phi}^{a,r}(-a)$ is a subsolution. 4. Hence we get a solution $\phi^{a,r}$. For each *a* we take an r_a that ensures the non triviality of the limit function $\phi = \lim_{a \to +\infty} \phi^{a,r}$. For example we take $\phi^{a,r_a} = 1/2$.

イロト イポト イヨト イヨト 二日

• This idea can be adapted to prove existence in the more complicated heterogenous settings. Together with the KPP condition (sub-linearity) this will produce the Berestycki, Hamel and Nadirashvili variational formula for the minimal speed c^* .

In a More complicated setting, Pulsating traveling fronts...

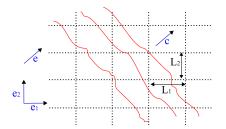
Now suppose that our equation is no more homogenous:

$$\begin{cases} u_t = \Delta u + q(z) \cdot \nabla u + f(z, u), \ t \in \mathbb{R}, \ z \in \Omega, \\ \nu \cdot \nabla u = 0 \ \text{ on } \mathbb{R} \times \partial \Omega, \end{cases}$$
(3)

where ν stands for the unit outward normal on $\partial \Omega$ whenever it is nonempty.

• Berestycki, Hamel (CPAM 2000) and J. Xin 2003 introduced after Shegisada, Teramoto and Kenzaki 1986 a rigorous mathematical definition of Pulsation traveling fronts in a Periodic framework:

- For instance, suppose that $\Omega = \mathbb{R}^N$. Let $\tilde{e} \in \mathbb{R}^N$ be a unitary direction. Suppose that q and f are (L_1, \dots, L_N) -periodic with respect to z.
- A pulsating traveling front in the direction of $-\tilde{e}$ with a speed c is a solution $u(t,z) = \phi(s,z) = \phi(z \cdot e + ct, z)$ of (3) with the limiting conditions $\phi(-\infty, z) = 0$ and $\phi(+\infty, z) = 1$ uniformly in z and ϕ is L-periodic in z.



u_t = div(A(x)∇u) + f(x, u)
Ω = ℝ², d = N = 2, e || (1, 1).

A precise description of the general periodic setting

The previous definition can be extended to unbounded domains $\Omega \subset \mathbb{R}^d \times \mathbb{R}^{N-d}$ where $1 \leq d \leq N$ such that:

- Each $z \in \Omega$ can be written as $z = (x, y) \in \mathbb{R}^d \times \mathbb{R}^{N-d}$.
- There exist $L_1, \dots, L_d > 0$ such that $\Omega = \Omega + k$ whenever $k = (k_1, \dots, k_d, 0, \dots, 0) \in \prod_{i=1}^d L_i \mathbb{Z} \times \{0\}^{N-d}$.
- Ω is bounded in the y direction. That is, $\exists R > 0$ s.t $|y| \le R$ for all $(x, y) \in \Omega$.
- In this case, we assume that q = q(x, y) and f = f(x, y, u) are *L*-periodic in x!

$$q(x + L, y) = q(x, y), f(x + L, y, u) = f(x, y, u)$$

s.t $L = (L_1, \cdots, L_d)$.

The domain Ω may be for example:

1- The whole space \mathbb{R}^N (d = N).

2- \mathbb{R}^N except a periodic array of holes

3- For d = 1, Ω can be an infinite cylinder with a uniform boundary or with an oscillating boundary etc...

Definition of PTFs, Existence, Minimal speed...

Equation

$$egin{aligned} u_t &= \Delta u \;+\; q(x,y) \cdot
abla u + f(x,y,u), \; t \in \; \mathbb{R}, \; (x,y) \in \; \Omega, \
u \cdot
abla u = 0 \;\; ext{ on } \; \mathbb{R} imes \partial \Omega, \end{aligned}$$

• Let $e = (e^1, \dots, e^d) \in \mathbb{R}^d$ be a unitary direction and denote by $\tilde{e} = (e, 0, \dots, 0) \in \mathbb{R}^N$.

Definition

A PTF propagating in the direction of -e with a speed c is a solution

$$u(t, x, y) = \phi(s, x, y) = \phi(x \cdot e + ct, x, y)$$

of (4) which is L-periodic in x and satisfies:

$$\phi(-\infty,\cdot,\cdot) = 0, \ \ \phi(+\infty,\cdot,\cdot) = 1 \text{ uniformly in } (x,y) \in \Omega.$$

3

イロト イヨト イヨト イヨト

(4)

Theorem of Berestycki & Hamel 2002

• The advection $q(x, y) = (q_1(x, y), \dots, q_N(x, y))$ is a $C^{1,\delta}(\overline{\Omega})$ (with $\delta > 0$) vector field satisfying

 $\begin{array}{l} q \quad \text{is L- periodic with respect to x, $\nabla \cdot q = 0$ in $\overline{\Omega}$,} \\ q \cdot \nu = 0 \quad \text{on } \partial \Omega \text{ (when } \partial \Omega \neq \emptyset \text{), } \quad \text{and } \int_C q \ dx \ dy = 0. \end{array}$

• Generalized KPP nonlinearity f = f(x, y, u)

 $f \ge 0, f$ is *L*-periodic with respect to x, and of class $C^{1,\delta}(\overline{\Omega} \times [0,1])$, $\forall (x,y) \in \overline{\Omega}, \quad f(x,y,0) = f(x,y,1) = 0$, f is decreasing in u on $\Omega \times [1 - \rho, 1]$ for some $\rho > 0$

• With the additional "KPP" assumption

 $\forall (x,y,s) \in \overline{\Omega} \times (0,1), \ 0 < f(x,y,s) \leq f'_u(x,y,0) \times s.$

• Simple example: $(x, y, u) \mapsto u(1-u)h(x, y)$ defined on $\overline{\Omega} \times [0, 1]$ where h is a positive $C^{1,\delta}(\overline{\Omega})$ *L*-periodic function.

M. El Smaily (UBC & PIMS)

Theorem

• For any prefixed $e \in \mathbb{R}^d$, there exists a minimal speed $c^* := c^*_{\Omega,q,f}(e) > 0$ such that a PTF with a speed c exists if and only if $c \ge c^*$.

• Any PTF is increasing in time.

• Moreover, for any $c \ge c^*$, Hamel and Roques proved that the fronts u(t, x, y) with a speed c are unique up to a translation in t.

- A variational formula of this minimal speed was given in 2005.
- This formula shows that this minimal speed depends strongly on the coefficients of the equation (Reaction, diffusion and advection) and on the geometry of the domain.

• Many asymptotic behaviors of c^* and many homogenization results have been studied by El Smaily, J. Xin, Shigesada, Naderashvili, Hamel, Berestycki, S. Hienze, etc.

• In this talk, I will show many results about the asymptotic behavior of the minimal speed within large drift "M''q ($M \to +\infty$) and I will give some details about the limit in the case N=2.

Variational formula of the minimal speed involving Eigenvalue problems

$$c^*(M,e) = \min_{\lambda>0} rac{k(\lambda,M)}{\lambda};$$

• $k(\lambda, M)$ is the principal eigenvalue of the elliptic operator L_{λ} defined by

$$L_{\lambda}\psi := \Delta\psi + 2\lambda\tilde{\mathbf{e}}\cdot\nabla\psi + \boldsymbol{M}\,\boldsymbol{q}\cdot\nabla\psi + [\lambda^2 + \lambda\boldsymbol{M}\,\boldsymbol{q}\cdot\tilde{\mathbf{e}} + \zeta]\psi \text{ in }\Omega,$$

 $E_{\lambda} = \left\{ \psi(x, y) \in C^{2}(\overline{\Omega}), \psi \text{ is } L \text{-periodic in } x, \ \nu \cdot \nabla \psi = -\lambda(\nu \cdot \tilde{e})\psi \text{ on } \partial \Omega \right\}.$

- Roughly $u(t, x, y) \sim e^{\lambda(x \cdot e + ct) + r} \psi(x, y) = e^{\lambda s + r} \psi(x, y)$.
- The principal eigenfunction $\psi^{\lambda,M}$ is positive in $\overline{\Omega}$. It is unique up to multiplication by a nonzero real number.
- $ullet k(\lambda, M) > 0$ for all $(\lambda, M) \in (0, +\infty) imes (0, +\infty)$.

Main Results about the Minimal Speed within Large Advection

$$u_t = \Delta u + Mq(x, y) \cdot \nabla u + f(x, y, u), \ t \in \mathbb{R}, \ (x, y) \in \Omega,$$
$$\nu \cdot \nabla u = 0 \ \text{ on } \mathbb{R} \times \partial \Omega.$$

 $c^*(M,e)$ as $M \to +\infty$.

C := periodicity cell of $\Omega = \{(x, y) \in \Omega; x_1 \in (0, L_1), \cdots, x_d \in (0, L_d)\}$

Definition (First integrals)

The family of first integrals of q is defined by

$$\mathcal{I} := \{ w \in H^1_{loc}(\Omega), w \neq 0, w \text{ is } L - \text{periodic in } x, \text{ and} \\ q \cdot \nabla w = 0 \text{ almost everywhere in } \Omega \}.$$

We also define the two subsets \mathcal{I}_1 and \mathcal{I}_2 :

$$\mathcal{I}_{1} := \left\{ w \in \mathcal{I}, \text{ such that } \int_{C} \zeta w^{2} \ge \int_{C} |\nabla w|^{2} \right\},$$

$$\mathcal{I}_{2} := \left\{ w \in \mathcal{I}, \text{ such that } \int_{C} \zeta w^{2} \le \int_{C} |\nabla w|^{2} \right\}.$$

$$\zeta(x, y) := f'_{u}(x, y, 0). \ \zeta = f'(0) \text{ when } f = f(u).$$
(5)

3

< □ > < ---->

• The set \mathcal{I} is a closed subspace of $H^1_{loc}(\Omega)$.

Notice

One can see that if $w \in \mathcal{I}$ is a first integral of q and $\eta : \mathbb{R} \to \mathbb{R}$ is a Lipschitz function, then $\eta \circ w \in \mathcal{I}$.

2. Asymptotics within large advection in any space dimension

Theorem

We fix a unit direction $e \in \mathbb{R}^d$. Let q be an advection field which satisfies the previous assumptions. Then,

$$\lim_{M \to +\infty} \frac{c^*(Mq, e)}{M} = \max_{w \in \mathcal{I}_1} \frac{\int_C (q \cdot \tilde{e}) w^2}{\int_C w^2}.$$
 (6)

 Berestycki, Hamel and Nadirashvili (2005) gave estimates showing that the limit exists, but they did not give the exact limit.

2. Asymptotics within large advection in any space dimension

Theorem

We fix a unit direction $e \in \mathbb{R}^d$. Let q be an advection field which satisfies the previous assumptions. Then,

$$\lim_{M \to +\infty} \frac{c^*(Mq, e)}{M} = \max_{w \in \mathcal{I}_1} \frac{\int_C (q \cdot \tilde{e}) w^2}{\int_C w^2}.$$
 (6)

Berestycki, Hamel and Nadirashvili (2005) gave estimates showing that the limit exists, but they did not give the exact limit.

A. Zlatos considered similar problems. He did not give a detailed NSC for which the limit is null.

2. Asymptotics within large advection in any space dimension

Theorem

We fix a unit direction $e \in \mathbb{R}^d$. Let q be an advection field which satisfies the previous assumptions. Then,

$$\lim_{M \to +\infty} \frac{c^*(Mq, e)}{M} = \max_{w \in \mathcal{I}_1} \frac{\int_C (q \cdot \tilde{e}) w^2}{\int_C w^2}.$$
 (6)

- Berestycki, Hamel and Nadirashvili (2005) gave estimates showing that the limit exists, but they did not give the exact limit.
- A. Zlatos considered similar problems. He did not give a detailed NSC for which the limit is null.
- We did this study in the case N = 2. The NSC that we gave is easy to verify!

M. El Smaily (UBC & PIMS)

17 / 42

Large advection mixed with small reaction or large diffusion

Theorem

• If we have Mq as advection and ϵf as reaction then

$$\lim_{\epsilon \to 0^+ M \to +\infty} \lim_{w \in \mathcal{I}} \frac{c_{\Omega, M q, \epsilon f}^*(e)}{M \sqrt{\epsilon}} = \left(2 \frac{\sqrt{\int_C \zeta}}{|C|} \right) \max_{w \in \mathcal{I}} \frac{\int_C (q \cdot \tilde{e}) w}{\sqrt{\int_C |\nabla w|^2}}, \quad (7)$$

and

$$\lim_{B \to +\infty} \lim_{M \to +\infty} \frac{c_{\Omega,B,M\,q,f}^*(e)}{M\sqrt{B}} = \left(2\,\frac{\sqrt{\int_C \zeta}}{|C|}\right) \max_{w \in \mathcal{I}} \frac{\int_C (q \cdot \tilde{e})\,w}{\sqrt{\int_C |\nabla w|^2}}.$$
 (8)

•
$$c^*(M) = \min_{\lambda>0} \frac{k(\lambda, M)}{\lambda}$$
,

3

•
$$c^*(M) = \min_{\lambda>0} \frac{k(\lambda, M)}{\lambda}$$

• $L_{\lambda}\psi := \Delta\psi + 2\lambda \tilde{e} \cdot \nabla\psi + M q \cdot \nabla\psi + [\lambda^2 + \lambda M q \cdot \tilde{e} + \zeta]\psi$ in Ω ,

•
$$c^*(M) = \min_{\lambda>0} \frac{k(\lambda, M)}{\lambda}$$
,
• $L_\lambda \psi := \Delta \psi + 2\lambda \tilde{e} \cdot \nabla \psi + M q \cdot \nabla \psi + [\lambda^2 + \lambda M q \cdot \tilde{e} + \zeta] \psi$ in Ω ,
• We call

 $\lambda' = \lambda \times M$, and $\mu(\lambda', M) = k(\lambda, M)$ and $\psi^{\lambda', M} = \psi^{\lambda, M}$.

•
$$c^*(M) = \min_{\lambda>0} \frac{k(\lambda, M)}{\lambda}$$
,
• $L_\lambda \psi := \Delta \psi + 2\lambda \tilde{e} \cdot \nabla \psi + M q \cdot \nabla \psi + [\lambda^2 + \lambda M q \cdot \tilde{e} + \zeta] \psi$ in Ω ,
• We call

$$\lambda' = \lambda \times M, \text{ and } \mu(\lambda', M) = k(\lambda, M) \text{ and } \psi^{\lambda', M} = \psi^{\lambda, M}.$$

• Then,

$$\forall M > 0, \quad \frac{c^*(M)}{M} = \min_{\lambda' > 0} \frac{\mu(\lambda', M)}{\lambda'}.$$

3

•
$$c^*(M) = \min_{\lambda>0} \frac{k(\lambda, M)}{\lambda}$$
,
• $L_\lambda \psi := \Delta \psi + 2\lambda \tilde{e} \cdot \nabla \psi + M q \cdot \nabla \psi + [\lambda^2 + \lambda M q \cdot \tilde{e} + \zeta] \psi$ in Ω ,
• We call

$$\lambda' = \lambda imes M, ext{ and } \mu(\lambda', M) = k(\lambda, M) ext{ and } \psi^{\lambda', M} = \psi^{\lambda, M}.$$

• Then,

$$\forall M > 0, \quad \frac{c^*(M)}{M} = \min_{\lambda' > 0} \frac{\mu(\lambda', M)}{\lambda'}.$$

•

$$(E) \begin{cases} \mu(\lambda', M)\psi^{\lambda', M} = \Delta \psi^{\lambda', M} + 2\frac{\lambda'}{M}\tilde{\mathbf{e}} \cdot \nabla \psi + M \mathbf{q} \cdot \nabla \psi^{\lambda, M} \\ + \left[\left(\frac{\lambda'}{M}\right)^2 + \lambda' \mathbf{q} \cdot \tilde{\mathbf{e}} + \zeta\right]\psi^{\lambda', M} \text{ in } \Omega, \\ \nu \cdot \nabla \psi^{\lambda', M} = -\frac{\lambda'}{M}(\nu \cdot \tilde{\mathbf{e}})\psi^{\lambda', M} \text{ on } \partial\Omega \text{ (whenever } \partial\Omega \neq \emptyset) \end{cases}$$

3

• We multiply (E) by $\frac{w^2}{\psi^{\lambda',M}}$ and integrate by parts over the periodicity cell *C*. (Any $w \in \mathcal{I}$)

• We multiply (E) by $\frac{w^2}{\psi^{\lambda',M}}$ and integrate by parts over the periodicity cell *C*. (Any $w \in \mathcal{I}$)

$$\frac{\mu(\lambda', M)}{\lambda'} \int_{C} w^{2} = \frac{1}{\lambda'} \int_{C} \left| \frac{\nabla \psi^{\lambda', M}}{\psi^{\lambda', M}} w - \nabla w + \frac{\lambda'}{M} \tilde{e} w \right|^{2} + \frac{1}{\lambda'} \int_{C} [\zeta w^{2} - |\nabla w|^{2}], \qquad (9)$$

for all $\lambda' > 0$ and M > 0, and for any $w \in \mathcal{I}$.

٠

• We multiply (E) by $\frac{w^2}{\psi^{\lambda',M}}$ and integrate by parts over the periodicity cell *C*. (Any $w \in \mathcal{I}$)

$$\frac{\mu(\lambda', M)}{\lambda'} \int_{C} w^{2} = \frac{1}{\lambda'} \int_{C} \left| \frac{\nabla \psi^{\lambda', M}}{\psi^{\lambda', M}} w - \nabla w + \frac{\lambda'}{M} \tilde{e} w \right|^{2} + \frac{1}{\int_{C} (q \cdot \tilde{e}) w^{2} + \frac{1}{\lambda'} \int_{C} [\zeta w^{2} - |\nabla w|^{2}],$$
(9)

$$h(\lambda) := \frac{g(\lambda)}{\lambda} = \sup_{w \in \mathcal{I}} \frac{\int_C \left(\zeta w^2 - |\nabla w|^2\right)}{\lambda \int_C w^2} + \int_C (q \cdot \tilde{e}) w^2.$$
(10)

M. El Smaily (UBC & PIMS)

۲

for any $w \in \mathcal{I}$ with $||w||_{L^2(\mathcal{C})} = 1$,

$$\inf_{\lambda'>0} h(\lambda') \le \frac{c^*(M)}{M} \le \frac{1}{\lambda'} \underbrace{\int_C \left| \frac{\nabla \psi^{\lambda',M}}{\psi^{\lambda',M}} w - \nabla w + \frac{\lambda'}{M} \tilde{e} w \right|^2}_{D(\lambda',w,M)} + h(\lambda').$$
(11)

Remark: Eigenfunctions converge to first integrals

For a fixed λ' , we take a sequence $\left\{\psi^{\lambda',M_n}\right\}_{n\in\mathbb{N}}$ such that $\int_C \left(\psi^{\lambda',M_n}\right)^2 = 1.$ We get $\left\{\psi^{\lambda',M_n}\right\}_{n\in\mathbb{N}}$ is bounded in $H^1(C)$. Hence $\psi^{\lambda',+\infty} \in H^1_{loc}(\Omega) \ \psi^{\lambda',M_n} \to \psi^{\lambda',+\infty}$ in $H^1_{loc}(\Omega)$ weak, in $L^2_{loc}(\Omega)$ strong, and almost everywhere in Ω as $n \to +\infty$. Elliptic eigenvalue problem implies that $\psi^{\lambda',+\infty}$ is a first integral.

Proposition: More about the function h

The functions g and h satisfy the following properties: (i) The function g is convex on $[0, +\infty)$, and moreover, g and h are continuous on their domains and take values in $(0, +\infty)$.

(ii)
$$h(\lambda) \xrightarrow[\lambda \to +\infty]{} \sup_{w \in \mathcal{I}} \frac{\int_{\mathcal{C}} (q \cdot \tilde{e}) w^2}{\int_{\mathcal{C}} w^2}$$

(iii) Either *h* is convex and decreasing on $(0, +\infty)$ or *h* attains a global minimum at some point $\lambda_0 > 0$.

(iv) If *h* is convex decreasing on $(0, +\infty)$, then we have

$$h(\lambda) \xrightarrow[\lambda \to +\infty]{} \max_{w \in \mathcal{I}_1} \frac{\int_C (q \cdot \tilde{e}) w^2}{\int_C w^2} = \sup_{w \in \mathcal{I}} \frac{\int_C (q \cdot \tilde{e}) w^2}{\int_C w^2}.$$

(v) If *h* attains its minimum at $\lambda_0 > 0$, then we have

$$h(\lambda_0) = \max_{w \in \mathcal{I}_1} \frac{\int_C (q \cdot \tilde{e}) w^2}{\int_C w^2}.$$
 (12)

Lemma

For a fixed $\lambda' > 0$,

$$D(\lambda', \psi^{\lambda', +\infty}, M_n) \to 0$$

as $M_n \to +\infty$.

(11) + Proposition + Remark + Lemma finish the proof of the Theorem.

э

3. More details about the limit when N = 2

Proposition

Let d = 1 or 2 where d is defined before. Let $q \in C^{1,\delta}(\overline{\Omega})$, L-periodic with respect to x and verifying the conditions

$$\begin{cases} \int_{C} q = 0, \\ \nabla \cdot q = 0 \text{ in } \Omega, \\ q \cdot \nu = 0 \text{ on } \partial \Omega. \end{cases}$$
(13)

Then, there exists $\phi \in C^{2,\delta}(\overline{\Omega})$, L-periodic with respect to x, such that

$$q =
abla^{\perp} \phi$$
 in Ω . (14)

Moreover, ϕ is constant on every connected component of $\partial \Omega$.

M. El Smaily (UBC & PIMS)

Remark

The representation q = ∇[⊥]φ is well-known in the case where the domain Ω is bounded and simply connected or equal to whole space ℝ².
However, thanks to the condition q · ν = 0 on ∂Ω, the above proposition applies in more cases.

Examples

It applies when:

• Ω is the whole space \mathbb{R}^2 with a periodic array of holes

•• Ω is an infinite cylinder which may have an oscillating boundary and/or a periodic array of holes.

- $\nabla^{\perp}\phi \cdot \nu = q \cdot \nu = 0$ on $\partial\Omega \Rightarrow \phi$ is constant on every connected component of $\partial\Omega$.
- In the proof of existence of ϕ , (d = 2 let's say)

$$\hat{\Omega}:=\Omega/(L_1\mathbb{Z} imes L_2\mathbb{Z}) \quad ext{and} \quad \mathcal{T}:=\mathbb{R}^2/(L_1\mathbb{Z} imes L_2\mathbb{Z}).$$

If $x \in \mathbb{R}^2$, we denote by \hat{x} its class of equivalence in T, and if $\phi : \mathbb{R}^2 \to \mathbb{R}$ is *L*- periodic, we denote $\hat{\phi}$ the function $T \to \mathbb{R}^2$ verifying $\phi(x) = \hat{\phi}(\hat{x})$. we first get $\tilde{\phi}$ solution of

$$\Delta \widetilde{\phi} =
abla \cdot R \widetilde{q}$$
 in T

in the weak sense, where

$$egin{array}{cccc} { ilde q}: { au} & \longrightarrow & \mathbb{R}^2, \ {\hat x} \in \overline{\hat \Omega} & \longmapsto & q(x), \ {\hat x}
otin \, \overline{\hat \Omega} & \longmapsto & 0. \end{array}$$

26 / 42

• \tilde{q} is a divergence free vector field on T in the sense of distributions:

 $\forall \psi \in C^{\infty}(T),$

$$egin{aligned} &< {\it div}(ilde{q}), \psi > \ := \ - < ilde{q},
abla \psi > = \ - \int_{\mathcal{T}} ilde{q} \cdot
abla \psi \ = \ - \int_{\hat{\Omega}} q \cdot
abla \psi = - \int_{\partial \hat{\Omega}} \psi \, q \cdot
u + \int_{\hat{\Omega}} \psi
abla \cdot q \ = \ 0 + 0 = 0, \end{aligned}$$

• Then we define $\hat{\phi} = \tilde{\phi}|_{\hat{\Omega}}$ and we take ϕ the corresponding L- periodic function on Ω .

- Also we get $abla^{\perp} \widetilde{\phi} = \widetilde{q} = 0$ on $T \setminus \hat{\Omega}$.
- Hence $\tilde{\phi} = \text{Constant on } T \setminus \hat{\Omega}$.

27 / 42

Corollary (Now we know more about first integrals...)

Let

$$\mathcal{J} := \{ \eta \circ \phi, \text{ such that } \eta : \mathbb{R} \to \mathbb{R} \text{ is Lipschitz} \},\$$

where ϕ , such that $q = \nabla^{\perp} \phi$, is given by Proposition 8. Then,

 $\mathcal{J} \subset \mathcal{I}.$

(15)

The first integrals of the form $w = \eta \circ \phi$, \mathcal{J}

$$orall \, w \in \mathcal{J}, \, ext{we have} \, \, \int_C (q \cdot ilde{e}) w^2 = 0.$$

• Indeed, $w = \eta \circ \phi$ and $q = \nabla^{\perp} \phi$. This gives

$$\begin{split} \int_{C} (\boldsymbol{q} \cdot \tilde{\boldsymbol{e}}) \boldsymbol{w}^{2} &= \tilde{\boldsymbol{e}} \cdot \int_{C} \left(\nabla^{\perp} \phi \right) \, \eta^{2}(\phi) \\ &= \tilde{\boldsymbol{e}} \cdot R \int_{C} \nabla \left(F \circ \phi \right) = \tilde{\boldsymbol{e}} \cdot R \int_{\widehat{\Omega}} \nabla (F \circ \tilde{\phi}), \end{split}$$

where R the matrix of a direct rotation of angle $\pi/2$, $F' = \eta^2$,

and where

M. El Smaily (UBC & PIMS)

• $\tilde{\phi}$ is constant on every connected component of $T \setminus \hat{\Omega}$, and so is $F \circ \tilde{\phi}$. We then have

$$\int_{\mathcal{T}\setminus\hat{\Omega}}\nabla\left(F\circ\tilde{\phi}\right)=0$$

• Hence, $\int_C (q \cdot \tilde{e}) w^2 = \tilde{e} \cdot R \int_T \nabla \left(F \circ \tilde{\phi}\right) = 0$, because T has no boundary.

We need the following preliminary lemma in order to give details about the limit when N = 2:

Lemma

Let $\hat{\Omega}$ be the set defined before, \hat{U} be an open subset of $\hat{\Omega}$, and $\hat{\phi}$ given by (14). Suppose that:

(i) $\hat{q}(\hat{x}) \neq 0$ for all $\hat{x} \in \hat{U}$,

(ii) the level sets of $\hat{\phi}$ in \hat{U} are all connected.

Then, for every $w \in \mathcal{I}$, there exists a continuous function $\eta : \hat{\phi}(\hat{U}) \to \mathbb{R}$ such that

$$\hat{w} = \eta \circ \hat{\phi} \text{ on } \hat{U}.$$
 (16)

Trajectories of an L-periodic vector field, Periodicity of trajectories?

Definition (Trajectory of a vector field)

Assume that N = 2. Let $x \in \Omega$ such that $q(x) \neq 0$. The trajectory of q at x is the largest (in the sense of inclusion) connected differentiable curve T(x) in Ω verifying:

(i) $x \in T(x)$,

(ii) $\forall y \in T(x), q(y) \neq 0$,

(iii) $\forall y \in T(x)$, q(y) is tangent to T(x) at the point y.

The decision about the limit (null or positive) will depend on the existence of periodic unbounded trajs. for q!

Lemma (unbounded periodic trajectories)

Let T(x) be an unbounded periodic trajectory of q in Ω , that is: • there exists $\mathbf{a} \in L_1\mathbb{Z} \times L_2\mathbb{Z} \setminus \{0\}$ (resp. $L_1\mathbb{Z} \times \{0\} \setminus \{0\}$) when d = 2(resp. d = 1) such that $T(x) = T(x) + \mathbf{a}$.

• In this case, we say that T(x) is **a**-periodic.

Then,

if T(y) is another unbounded periodic trajectory of q, T(y) is also \mathbf{a} -periodic.

Moreover,

in the case d = 1, $\mathbf{a} = L_1 e_1$. That is, all the unbounded periodic trajectories of q in Ω are $L_1 e_1$ -periodic.

(日) (同) (三) (三)

• There may exist **unbounded trajectories which are not periodic**, even though the vector field *q* **is periodic**.

A periodic vector field whose unbounded trajectories are not periodic!

Let

$$\phi(x,y) := \begin{cases} -\frac{1}{\sin^2(\pi y)} \sin(2\pi(x + \ln(y - [y]))) & \text{if } y \notin \mathbb{Z}, \\ 0 & \text{otherwise.} \end{cases}$$

• ϕ is C^{∞} on \mathbb{R}^2 , and 1-periodic in x and y.

- Hence the vector field $q = \nabla^{\perp} \phi$ is also C^{∞} , 1-periodic in x and y, and $\int_{[0,1]\times[0,1]} q = 0$ with $\nabla \cdot q \equiv 0$.
- The part of the graph of $x \mapsto e^{-x}$ lying between y = 0 and y = 1 is a trajectory of q, and is obviously unbounded and not periodic.
- There exist no periodic unbounded trajectory for this vector field, so the theorem asserts that for all $w \in \mathcal{I}$ we have

$$\int_C qw^2 = 0.$$

Theorem

Assume that N = 2 and that Ω and q satisfy the assumptions. The two following statements are equivalent: (i) There exists $w \in \mathcal{I}$, such that $\int_C qw^2 \neq 0$. (ii) There exists a periodic unbounded trajectory T(x) of q in Ω . Moreover, if (ii) is verified and T(x) is \mathbf{a} -periodic, then for any $w \in \mathcal{I}$ we have $\int_C q w^2 \in \mathbb{R}\mathbf{a}$.

Definition

We define here the set of "regular trajectories" in $\hat{\Omega}$. Let $\hat{U} := \left\{ \hat{x} \in \hat{\Omega} \text{ such that } \mathcal{T}(\hat{x}) \text{ is well defined and closed in } \widehat{\Omega} \right\}.$

• We denote by \hat{U}_i the connected components of \hat{U} .

• **Proposition**: The set \hat{U} is exactly the union of the trajectories which are simple closed curves in $\hat{\Omega}$.

M. El Smaily (UBC & PIMS)

35 / 42

$$\int_C qw^2 = R \int_C (\nabla \phi) w^2 = R \int_{\hat{\Omega}} (\nabla \hat{\phi}) \hat{w}^2.$$

• Let $W := \{ \hat{x} \in \hat{\Omega} \text{ such that } \hat{\phi}(\hat{x}) \text{ is a critical value of } \hat{\phi} \}.$

• Co-area
$$\Rightarrow \left| \int_{W} \hat{w}^2 \nabla \hat{\phi} \right| \leq \int_{W} \hat{w}^2 |\nabla \hat{\phi}| = \int_{\hat{\phi}(W)} \left(\int_{\hat{\phi}^{-1}(t)} \hat{w}^2(x) \right) dt.$$

• From Sard's theorem, since $\hat{\phi}$ is C^2 , $\mathcal{L}^1(\hat{\phi}(W)) = 0$, where \mathcal{L}^1 denotes the Lebesgue measure on \mathbb{R} , one gets

$$\int_W \hat{w}^2
abla \hat{\phi} = 0.$$

•
$$\hat{\Omega} \setminus W \subset \hat{U} \subset \hat{\Omega}$$
, we get

$$\int_C qw^2 = R \int_{\hat{U}} (\nabla \hat{\phi}) \hat{w}^2 = R \sum_i \int_{\hat{U}_i} (\nabla \hat{\phi}) \hat{w}^2.$$
(17)

We now use Lemma 12 to get η_i continuous such that

$$\int_{\hat{U}_i} (
abla \hat{\phi}) \hat{w}^2 = \int_{\hat{U}_i} (
abla \hat{\phi}) \eta_i^2 (\hat{\phi}).$$

We define the function F_i by $F'_i = \eta_i^2$ and $F_i(0) = 0$, and we obtain

$$\int_{\hat{U}_i} (\nabla \hat{\phi}) \hat{w}^2 = \int_{\hat{U}_i} \nabla F_i(\hat{\phi}).$$

Lemma

Let \hat{U}_i as in the previous definition. Then, (i) all the level sets of $\hat{\phi}$ in \hat{U}_i are connected, (ii) all the level sets of $\hat{\phi}$ in \hat{U}_i are homeomorphic, (iii) $\partial \hat{U}_i$ has exactly two connected components $\hat{\gamma}_1$ and $\hat{\gamma}_2$ such that $\hat{\phi}(\hat{\gamma}_1) = \sup_{\hat{x} \in \hat{U}_i} \hat{\phi}(\hat{x})$ and $\hat{\phi}(\hat{\gamma}_2) = \inf_{\hat{x} \in \hat{U}_i} \hat{\phi}(\hat{x})$.

42

Due to the condition $q \cdot \nu = 0$ on $\partial \Omega$, we have

Trajs of q follow the boundary, and this led us to: γ_1 (resp. γ_2) is either a connected component of $\partial \hat{\Omega}$ or contains a critical point of $\hat{\phi}$.

If we define

$$\hat{U}_i^arepsilon := \{ \hat{x} \in \hat{U}_i ext{ such that } \inf_{\hat{U}_i} \hat{\phi} + arepsilon < \hat{\phi}(x) < \sup_{\hat{U}_i} \hat{\phi} - arepsilon \},$$

then it follows from dominated convergence theorem that

$$\int_{\hat{U}_{i}^{\varepsilon}} (\nabla \hat{\phi}) \hat{w}^{2} \xrightarrow[\varepsilon \to 0]{} \int_{\hat{U}_{i}} (\nabla \hat{\phi}) \hat{w}^{2}.$$
(18)

• $\exists ii \end{pmatrix} \Longrightarrow \exists i$) We suppose that there exist no periodic unbounded trajectories of q. In \hat{U}_i , the trajectories of q are exactly the level sets of $\hat{\phi}$. We consider the following set

$$U_i^{\varepsilon} := \Pi^{-1}(\hat{U}_i^{\varepsilon}).$$

Let $x_0 \in U_i^{\varepsilon}$ and let $U_{i,0}^{\varepsilon}$ be the connected component of U_i^{ε} containing x_0 .

• We proved that Π is a measure preserving bijection from $U_{i,0}^{\varepsilon}$ to $\hat{U}_{i,-1}^{\varepsilon}$

• Thus $\int_{\hat{U}_i^{\varepsilon}} (\nabla \hat{\phi}) \hat{w}^2 = \int_{U_{i,0}^{\varepsilon}} (\nabla \phi) w^2 = \int_{U_{i,0}^{\varepsilon}} \nabla F_i(\phi) = \int_{\partial U_{i,0}^{\varepsilon}} F_i(\phi) \mathbf{n}$

• $\partial U_{i,0}^{\varepsilon}$ is the union of two level sets C_1 and C_2 of ϕ in Ω , which are both simple closed curves!

• So we can write

$$\int_{U_{i,0}^{\varepsilon}} (\nabla \phi) w^2 = F(\phi(C_1)) \int_{C_1} \mathbf{n} + F(\phi(C_2)) \int_{C_2} \mathbf{n},$$

with

$$\int_{C_1} \mathbf{n} = \int_{C_2} \mathbf{n} = 0,$$

because the integral of the unit normal on a C^1 closed curve in \mathbb{R}^2 is zero. \square $ii) \implies i)$ was proved using the same technics. As a direct consequence of the previous Theorems, we get the following about the asymptotic behavior of the minimal speed within large drift:

Assume that N = 2. Then,

(i) If there exists no periodic unbounded trajectory of q in Ω , then

$$\lim_{M\to+\infty}\frac{c^*_{\Omega,M\,\boldsymbol{q},f}(e)}{M}=0,$$

for any unit direction e.

(ii) If there exists a periodic unbounded trajectory T(x) of q in Ω (which will be **a**-periodic for some vector **a** $\in \mathbb{R}^2$) then

$$\lim_{M \to +\infty} \frac{c_{\Omega, M q, f}^{*}(e)}{M} > 0 \iff \tilde{e} \cdot \mathbf{a} \neq 0.$$
(19)

Notice that in the case where d = 1, we have $\tilde{e} = \pm e_1$. Lemma 14 yields that $\tilde{e} \cdot \mathbf{a} = \pm L_1 \neq 0$.

Thus, for d = 1, $c^*_{M,e}(e)$

 $\lim_{M \to +\infty} \frac{c^*_{M\,q}(e)}{M} > 0 \Longleftrightarrow \exists \text{ a periodic unbounded traj. } T(x) \text{ of } q \text{ in } \Omega.$

Thank you

3