# Optimal transportation and optimal control in a finite horizon framework

Guillaume Carlier and Aimé Lachapelle

Université Paris-Dauphine, CEREMADE

July 2008





# MOTIVATIONS - A commitment problem (1)

- Micro labor market (e.g firm, university, hospital...), employees and tasks.
- Time period: [0,T]
- Employees and positions are described by a fixed number *d* of characteristics that evolve during the time period.
- The pair employee-position that results from the initial commitment  $(x, y) \in \mathbb{R}^{2d}$  is then denoted by  $(X_t^{x,y}, Y_t^{x,y}) \in \mathbb{R}^{2d}$  (stochastic OR deterministic evolutions)

# MOTIVATIONS - A commitment problem (2)

- Assume that the initial densities  $\mu_0(dx)$  and  $\nu_0(dy)$  are data of the model (the company can evaluate the employees personnality and the jobs requirement)
- Define a transportation cost between a target employee and position (for instance: the more similar are the characteristics of the job and the worker, the smaller is the cost for the firm)
- Optimal commitment = optimal initial coupling of a job to an employee (for a specific cost), not negociable during [0, T].

## MOTIVATIONS - A commitment problem (3)

• Given the two initial densities, the minimization problem consists in finding today an optimal commitment, it takes the general form:

$$\inf_{\pi_0 \in \Pi(\mu_0,\nu_0)} \inf_{u} \int_0^T \int_{\mathbb{R}^d \times \mathbb{R}^d} \mathbb{E} \left\{ c \left( X_t^{x,y,u}, Y_t^{x,y,u}, u \right) \right\} d\pi_0(x,y) dt$$
  
s.t.  $d(X_t, Y_t) = b(X_t, Y_t, u_t) dt + \sigma(X_t, Y_t, u_t) dW_t$   
We will study two cases:

- The case of pure diffusion:  $b \equiv 0, \sigma \equiv \text{constant} > 0$
- The case where the firm has the possibility to educate its employees:  $b = (u, 0), \sigma \equiv 0$

## Brownian case - The minimization problem (1)

- For the sake of simplicity, we look at the one dimensional case d = 1.
- Assume that the diffusion of the characteristics of the employees and positions have zero drift:

$$\begin{pmatrix} d \begin{pmatrix} X_t \\ Y_t \end{pmatrix} = \sigma d \begin{pmatrix} W_t^1 \\ W_t^2 \end{pmatrix} \\ \begin{pmatrix} X_0 \\ Y_0 \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$$
(1)

## Brownian case - The minimization problem (2)

• Where  $\sigma$  is the matrix of variance-covariance. We will focus on the uncorrelated case  $\begin{pmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \end{pmatrix}$  (it can be generalized).

• Define 
$$\nu := \frac{1}{2}(\sigma_1^2 + \sigma_2^2).$$

- $W_t^1$  and  $W_t^2$  are two independent brownian motions.
- $X_0$  and  $Y_0$  are respectively distributed according to  $\mu_0$  and  $\nu_0$ , and assume that they have finite moment of order two.

## Brownian case - The minimization problem (3)

• Define  $(\pi_t)$   $(\pi_0$  evolution) as a solution of the heat equation:

$$\begin{cases} \partial_t \pi - \nu \Delta \pi = 0 \text{ in } (0, T] \times \mathbb{R}^2 \\ \pi(0, .) = \pi_0 \in \Pi(\mu_0, \nu_0) \end{cases}$$

Let us call  $\Pi(\mu_0, \nu_0, T)$  the set of solutions of this problem.

• By using Ito's lemma we obtain two equivalent formulations of the problem:

$$\inf_{\substack{\pi_0 \in \Pi(\mu_0,\nu_0)}} \int_0^T \int_{\mathbb{R} \times \mathbb{R}} \mathbb{E}\left\{c\left(X_t^{x,y}, Y_t^{x,y}\right)\right\} d\pi_0(x,y) dt$$
$$\Leftrightarrow \inf_{(\pi_t) \in \Pi(\mu_0,\nu_0,T)} \int_0^T \int_{\mathbb{R} \times \mathbb{R}} c(x,y) d\pi_t(x,y) dt$$

#### Brownian case - Optimal transportation cost

- Let us define the heat kernel  $G_t(x,y) = \frac{1}{2\sqrt{\pi t\nu}}e^{-\frac{x^2+y^2}{4t\nu}}$ .
- Then it is easy to state the main result:  $\inf_{\substack{\pi_0 \in \Pi(\mu_0,\nu_0)}} \int_0^T \int_{\mathbb{R} \times \mathbb{R}} \mathbb{E}\left\{c\left(X_t^{x,y}, Y_t^{x,y}\right)\right\} d\pi_0(x,y) dt$   $= \inf_{\substack{\pi_0 \in \Pi(\mu_0,\nu_0)}} \int_{\mathbb{R} \times \mathbb{R}} \tilde{c}(x,y) d\pi_0(x,y)$
- This is a standard Monge-Kantorovich problem with a new transportation cost:  $\tilde{c}(x,y) \equiv \int_0^T (G_t * c) (x,y) dt$

#### Brownian case - Quadratic cost

- We now consider the particular case  $c(x,y) = \frac{|x-y|^2}{2}$ .
- A Gaussian-moment computation leads to:  $\tilde{c}(x,y) = T \times \left(\frac{|x-y|^2}{2} + \nu\right)$
- And finally, we can write:

$$\inf_{\pi_0\in\Pi(\mu_0,\nu_0)} \int_0^T \int_{\mathbb{R}\times\mathbb{R}} \mathbb{E}\left\{c\left(X_t^{x,y}, Y_t^{x,y}\right)\right\} d\pi_0(x,y) dt$$
$$= T\left(d_{MK}^2(\mu_0,\nu_0) + \nu\right)$$

• Where  $d_{MK}^2(\mu_0, \nu_0)$  denotes the standard Monge-Kantorovitch distance.

# Concluding remarks for the first case

- We turned the problem to a standard Monge-Kantorovich problem.
- If the drift is not null, then by using Girsanov theorem we can solve the problem in the same way
- In the next part, we change the evolution of employees and job requirements.

# Optimal Transportation & Optimal Control (OT&OC)

- We now look at a situation in which, in one hand, the job requirements stay the same during all the time period.
- In the other hand, we consider that the firm has the possibility to educate its workers.
- We assume that  $(X_t, Y_t)$  evolve in  $\mathbb{R}^d \times \mathbb{R}^d$ , their dynamic is:

$$\begin{cases} \begin{pmatrix} \dot{X} \\ \dot{Y} \end{pmatrix} = \begin{pmatrix} u \\ 0 \end{pmatrix} \\ \begin{pmatrix} X_0 \\ Y_0 \end{pmatrix} \sim \begin{pmatrix} \mu_0(dx) \\ \nu_0(dy) \end{pmatrix} \end{cases}$$

## **OT&OC** - The minimization problem

- We add a trainning cost (education effort, quadratic cost) and in the following, we will use the quadratic transportation cost (denoted by *c*, again...).
- Then the principal minimization problem  $(P^*)$  reads:

$$\inf_{\pi_0\in\Pi(\mu_0,\nu_0)}\inf_{u=\dot{X}}\int_0^T\int_{\mathbb{R}^d\times\mathbb{R}^d}c(X(t,x),y)d\pi_0(x,y)$$
$$+\int_{\mathbb{R}^d}\frac{\left|\dot{X}(t,x)\right|^2}{2}d\mu_0(x)dt$$

#### OT&OC - Calculus of variations (1)

- Let us take an element  $\pi_0 \in \Pi(\mu_0, \nu_0)$ , and define  $\pi_0^x$  by the desintegration formula:  $d\pi_0(x, y) := d\pi_0^x(y)d\mu_0(x)$ .
- Define also  $\Lambda^*$ :  $\pi \in M(\mathbb{R}^d \times \mathbb{R}^d) \mapsto (x \mapsto \int y d\pi^x(y)) \in L^2_{d\mu_0}(\mathbb{R}^d)$
- One can write the Euler equation related to the problem:

$$\inf_{u=\dot{X}} \int_{0}^{T} \int_{\mathbb{R}^{d}} \left( \int_{\mathbb{R}^{d}} \frac{|X(t,x) - y|^{2}}{2} d\pi_{0}^{x}(y) + \frac{\left|\dot{X}(t,x)^{2}\right|}{2} \right) d\mu_{0}(x) dt$$

## **OT&OC** - Calculus of variations (2)

• So for a fixed  $\pi_0$ , we find:

$$X_{\pi_0}(t,x) = \alpha(t)x + (\alpha(t) - 1)\Lambda^* \pi_0(x)$$
  
With  $\alpha(t) = \frac{e^{t-2T} + e^{-t}}{1 + e^{-2T}}$ 

• And finally we can **rewrite problem** (P\*), up to a constant depending on  $T, \mu_0$  and  $\nu_0$ :

$$\inf_{\pi_0\in\Pi(\mu_0,\nu_0)}\int_{\mathbb{R}^d}a(T)x\Big(\Lambda^*\pi_0(x)\Big)+b(T)\Big(\Lambda^*\pi_0(x)\Big)^2d\mu_0(x)$$

## OT&OC - Duality (1)

• Define  $\Lambda : f \in L^2_{d\mu_0}(\mathbb{R}^d) \mapsto ((x,y) \mapsto yf(x)) \in C^0(\mathbb{R}^d \times \mathbb{R}^d)$ 

• and 
$$\Phi(\Lambda f) = \inf_{\pi_0 \in \Pi(\mu_0,\nu_0)} \int_{\mathbb{R}^d \times \mathbb{R}^d} \Lambda f(x,y) d\pi_0(x,y)$$

• We intoduce the primal problem (P):

$$\sup_{f \in L^2(\mathbb{R}^d, d\mu_0)} \frac{-1}{4b(T)} \|f\|_{L^2_{d\mu_0}}^2 + < \frac{Id}{2b(T)}, f > +K(T, \mu_0) + \Phi(\Lambda f)$$

# OT&OC - Duality (2)

- Of course  $(P^*)$  is the dual of (P)
- Then by using convex duality, we have:  $inf(P^*) = max(P)$
- Before giving some optimality conditions let us denote:

$$F(\Lambda^*\pi_0) := \int_{\mathbb{R}^d} a(T) x \left(\Lambda^*\pi_0(x)\right) + b(T) \left(\Lambda^*\pi_0(x)\right)^2 d\mu_0(x)$$
$$-F^*(f) := \frac{-1}{4b(T)} \|f\|_{L^2_{d\mu_0}}^2 + \left\langle \frac{Id}{2b(T)}, f \rangle + K(T,\mu_0) \right\rangle$$

# OT&OC - Duality (3)

In brief, we have the following equality:

$$\inf_{\pi_0\in\Pi(\mu_0,\nu_0)} F(\Lambda^*\pi_0) = \max_{f\in L^2(\mathbb{R}^d,d\mu_0)} -F^*(f) + \Phi(\Lambda f)$$
  
where  
$$\Phi(\Lambda f) = \inf_{\pi_0\in\Pi(\mu_0,\nu_0)} \int_{\mathbb{R}^d\times\mathbb{R}^d} yf(x)d\pi_0(x,y)$$

## **OT&OC** - Some optimality conditions

#### **Proposition:**

- $\bar{\pi_0}$  solution of (P\*) and  $\bar{f}$  solution of (P)  $\Leftrightarrow F(\Lambda^* \bar{\pi_0}) + F^*(\bar{f}) = \Phi(\Lambda \bar{f})$
- If  $\overline{f}$  solution of (P) and  $\overline{\pi_0}$  solution of (P\*), then  $\overline{\pi_0}$  is a minimizer for  $\Phi(\Lambda \overline{f})$
- If  $\overline{f}$  solution of (P) and  $\overline{\pi_0}$  minimize  $\Phi(\Lambda \overline{f})$ , then  $\overline{\pi_0}$  is a solution of (P\*)

**OT&OC - A subgradient method to solve (P)** 1. initialization:  $f_0$ 

- 2. Define a step  $\rho_k$  s.t.  $\sum \rho_k = \infty$  and  $\sum \rho_k^2 < \infty$
- 3. compute  $(\Lambda^* \overline{\pi_0})_k$  by solving  $\Phi(\Lambda f_k)$  (e.g. simplex)

4. 
$$f_{k+1} = f_k - \rho_k d_k$$
 where  $d_k = \frac{-1}{2b(T)} f_k + \frac{x}{2b(T)} + (\Lambda^* \bar{\pi_0})_k$ 

5. if: 
$$\left\| f_{k+1} - f_k \right\| < \text{TOL stop}$$
  
else:  $\rightarrow 2$ .

# **OT&OC** - Simulation with d=2 - $\mu_0$ and $\nu_0$



# OT&OC - Simulation with d=2 - Transportation for T=1



# **OT&OC** - Concluding remarks

- We have studied optimal transportation problems applied to the economics with dynamical framework (time finite period).
- We gave closed formula for two cases: brownian diffusion optimal control

The main extensions are:

- to do a general existence proof
- to obtain interesting simulations for the model

