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Abstract
This is a survey of some recent results in the mathematics of diffraction, concentrating on the use of
dynamical systems and stochastic point processes.



1 Introduction

The characterizing feature of physical cyrstals and qua-
sicrystals is often taken as the prominent appearance of
Bragg peaks in their diffraction diagrams. Thus arises
the fascinating question of what this suggestive, but
rather vague, characterization really implies, both in
physical and mathematical terms. In this short paper
we outline some recent mathematical advances in the
study of diffraction.

Our approach here is to use a setting familiar from
statistical mechanics and from the theory of tilings and
long-range aperiodic order, augmented with ideas from
the theory of point processes. A good deal of the paper
is involved in setting this up. Rather than deal with
a single quasicrystal A, we work instead with transla-
tion invariant families of them. The intuition is that
such a family X will consist of all those quasicrystals
which are in some sense locally indistinguishable from
one another, or which cannot be isolated from one an-
other by the physical considerations at hand. As for the
individual quasicrystals, initially we model these simply
as point sets in space, representing the positions of the
atoms, and assume them to satisfy a minimal separation
requirement (uniform discreteness). Later on the situa-
tion naturally generalizes to more general distributions
of density in space.

The main points that we wish to discuss can be
summed up as:

1. X may be construed in the context of dynamical
systems and spatial point processes.

2. All relevant information about a system like X is
contained in its collection of n-point correlations,
the diffraction being the Fourier transform of the
2-point correlation.

3. Extinctions play an important role in the complex-
ity of the diffraction.

4. Pure pointed-ness is directly and precisely related
to almost periodicity.

5. Model sets (cut and project sets) are completely
determined by their 2- and 3-point correlations.

2 Point sets and local hulls

We work in general d-dimensional space R?, since the di-
mension does not play any special role here'. Through-
out the paper Cgr, R > 0, denotes the open cube
(-R/2,R/2)Y c R? The translates of Cr shall be
called R-cubes. A subset A of d-dimensional space R? is
uniformly discrete (or more specifically r-uniformly dis-
crete) if there is an 7 > 0 so that no r-cube can contain
more than one point of A. This is often called a hard
core condition. The collection of all such r-uniformly
discrete subsets is denoted by D, = D, (R%).

Given two elements A and A’ in D, we decree that
A and A’ are ‘close’ if on some ‘large’ region K around
the origin in R? and for some ‘small’ € > 0, the points
of A that are within K also lie in the e-cubical neigh-
bourhoods of points of A’, and vice-versa. This is a very
natural physical definition and provides a topology on
D,., which we call the local topology. The easiest way
to think of this is that A and A’ are close if and only if
they make essentially the same pattern IT on large grids
G with fine mesh, around the origin, see Fig. 1. The set
of all A with pattern II form a cylinder set B(II) of X.
From an experimenter’s point of view, a finite sample of
a material, supposedly representative of some class X,
and a level of positional tolerance ¢ > 0, specify a cylin-
der set of possible infinite structures in X from which it
could have come.

Translating points sets around in R?, T,(A) :=
z+ A € D,, for x € R? is continuous in the local
topology.

An important property of D,. is that it is compact, a
consequence of the finiteness of the number of patterns
that can occur in a grid of fixed size and mesh.

The basic objects of interest in this paper are pairs
(X, u) with the properties that X is a closed translation
invariant subset of D, (R?) and y is a translation invari-
ant ergodic probability Borel measure (TIEPM) on X.

1Virtually everything we say can be transported to the setting of arbitrary locally compact Abelian groups, but this extra generality
adds nothing essentially new to the understanding and is of lesser physical value.

2Dynamical systems usually refer to systems with an action of R, acting as time. In this paper the action is translation. Nothing other
than what is stated here is implied by the term. The pictorial representation of X as a torus in Fig. 2 is more measure theoretic than
topological. The torus mapping, of § 5 shows that there is a significant singular topological structure that the measure does not “see”.



Since D, is compact, so is X. Thus already we have
a topological dynamical system? (X,R%). Fig. 2 gives
a schematic idea of the appearance of X and an orbit
on it for the case d = 1. The existence of TIEPMs
is guaranteed by general theory. We think of such a
measure p as the giving pattern frequencies for the el-
ements of X; for any pattern IT of cells from any grid
w(B(II)) is the frequency of this pattern in the sense
that it measures the relative proportion of A € X which
have points around 0 in precisely the pattern II. Thus
(X, ) is both a probability space and an ergodic dy-
namical system. The importance of creating dynamical
systems in this kind of way derives from [22, 5].
Examples:

1. The set X of all Penrose tilings with the same
basic tiles and the same underlying orientations
are locally indistinguishable from one another and
form what is called an LI (local indistinguishabil-
ity) class of point sets. Penrose tilings have natu-
ral pattern frequencies which determine the mea-
sure. In this case it is the only TTEPM that X has
(the system is uniquely ergodic).

2. Begin with a particular point set A € D, of inter-
est. Along with A consider all its translates ¢ + A,
t € R The closure X (A) of the entire set of trans-
lates in D, is called the local hull of A. As long as
A is regular enough to have well-defined pattern
frequencies, we will obtain an invariant measure p
which gives the pattern frequences, and (X (A), u)
will satisfy the two axioms above. For instance,
if A were a Penrose tiling (X (A), u) would be its
LI class. Other well-known examples come from
regular model sets, see §5.

3. The bi-infinite Bernoulli system. Fix a number
0 < p < 1 and then start at an arbitrary point
on the real line and move in unit steps along the
line, in both directions, at each step laying down
(resp. not laying down) a point with probability
p (resp. 1 —p). The set of all bi-infinite point
sets arising this way constitutes X. The probabil-
ity of any finite pattern of points appearing is the
obvious one and this determines a TIEPM p,, on

X. Notice that X is the same, no matter what p
is! It is the choice of the p which determines the
measure [, and assigns the pattern frequencies.

4. Randomize any of the above, subject only to the
hard core condition. See [16, 1] for more on this
type of process.

The measure p gives the information about what
patterns are possible and what their probabilities of oc-
currence are. The assumption of ergodicity coincides
with the original concept of ergodicity in statistical me-
chanics: the set of all translates of a ‘typical’3element
A of X seen from a fixed point in space, say the origin,
faithfully reproduces the statistics of local patterns of
the entire ensemble X.

Along with (X, 1) we associate the space L?(X, ) of
all square integrable C-valued functions F' on X. The
translation action of R% on X produces a corresponding
action on functions: T3F is the function (T3F)(A) :=
F(T_4+A) = F(—t+ A). Since p is shift invariant, this
action is unitary: the translation action on functions
preserves the inner product (F|G) := [, FGdu on
L?(X, ). The importance of this sort of idea, dating
back to Koopmann in the 1930s, is that it relates the
spectral analysis of this action to the properties of u
and ultimately to the typical members of X, see §4.

Although the connection between the ambient space
R? and (X, u) is apparent from our discussion, there
is a formal and crucial way of expressing this: for
f:RY — C define

Ny: X —C by NyA):=> f(z). (1)
zEA

This produces a function Ny on X (sometimes called a
counting function) for each function f on RY, as long
as the sum involved in Ny makes sense. This happens,
for instance, for all continuous and compactly supported
functions on R?, since then only finitely many points of
A can contribute to the sum. As long as the function
is reasonable the resulting function on X is square in-
tegrable with respect to p. Furthermore, the mapping
f — Ny intertwines the R?-actions on functions on R¢
and on functions on X.

3‘Typical’ means that this is true except possibly on some subset of X of p-measure 0: synonyms are ‘almost surely true’, or that it

happens ‘almost everywhere’.



Let us summarize what we have achieved: we have
a probability space (X, ), consisting of discrete point
sets of R? and a measure indicating pattern frequencies.
R? acts on X in a measure preserving way and there is
a continuous R%invariant mapping

N :C.(RY) — L*(X,p). (2)

This is what is called a stationary ergodic spatial
point process (SEPP). As such it fits into the well-
developed theory of point processes [8], albeit the sit-
uation is atypical since we have the hard core assump-
tion and are interested in highly ordered situations, even
ones that are deterministic. The interpretation of ran-
domness in something like the LI class of a Penrose tiling
is that u(II) is the probability that a randomly chosen
Penrose tiling has the pattern II around the origin.

We take the attitude that the knowledge of u and
N are all that we can hope to know about our physical
system. The function N describes the outcomes of ob-
servations of X. QOur objective is to determine pu from
other, physically observable, data gleaned from N.

In our case this other data will be the various corre-
lations of the system (X, p).

If A C R?is a bounded region then we have the
corresponding function N4 := Nj,, and it is simply a
counting function; N4 (A) is the number of points of A
in A, whence the name.

If A is small enough that it is covered by a a single
r-cube (A is r-small), then N4 is nothing but an indi-
cator function that indicates whether or not a point set
A € X does or does not have a point in A, giving the
values 1 or 0 accordingly.

3 Correlations and diffraction

Let (X, u, N) be a SEPP. The (n + 1)-moment of the
measure y is the measure (™1 on R4 x - - - x R¢ (n+1
factors) defined (on functions) by

B (for s £) = [ Ny (A) Ny, () du(a)
X

[8]. The intuitive meaning of these moments becomes
clear if the functions f; are taken to be of the form

4For a finite sample or set of points A the diffraction can be defined as |p|? (suitably normalized), where p(k) = 3

14; where the A; are r-small measurable subsets of R4,
Then for a fixed A in X we have from the assumption
of ergodicity that, almost surely,

M(n+1)(AO;--'aAn) = lu(nJrl)(le,...,lAn)

= /NAO...NAndp,

1
i
Rgnoo vol OR

/ NAO(—t-i-A)...NA"<—ﬁ+A)dt,
Cr

which gives the average frequency in which elements
of X have points simultaneously in each of the sets
Ag,...,A,. In other words, it is picking up pattern
frequencies. Notice that the moment measure belongs
to the pair (X, p), but it is also expressible on the indi-
vidual elements of X, at least almost surely.

The first moment, p™(A4) = [ N4(A)du(A) is the
average number of points in AN A as A runs over X.
Since this average is independent of the position of A,
pM) s an invariant measure on R% and so is just a
multiple Iy of ordinary Lebesgue measure: p(t)(A) =
Iy vol(A) for all measurable A. This number Ij is called
the intensity of the process and represents the average
number of points per unit volume of the point sets mak-
ing up X and also, almost surely, the average number
of points per unit volume of any A in X.

The way in which translation is factored out of the
first moment is also applicable to all the higher mo-
ments, and leads to the correlation measures (") for
which v(")(Ay,..., A,) is the frequency of the sets of
points of the form t + {0,z1,...,2z,} with z; € Aj,
j =1,...,n in a typical element A of X. This mea-
sure looks more familiar when acting on functions (of n
variables):

1
(=1 —t ot
1D = i, ey 2 St ).
X1, Ty,
where the sum runs over all ¢, z1,...,x, € ANCg. This

ostensibly belongs to A, but the theory shows that this
limit exists and is the same for almost all A in X, so
we can ignore its apparent dependence on a particular
element of X, see [5, 13] for n = 2, [9] in general.

The 2-point correlation, which we write simply as -,
is called the autocorrelation. The diffraction is by defi-
nition the Fourier transform 7 of the autocorrelation®.

—27ik.x
zen © .



The diffraction is a measure and may have a point-like
part and a continuous part. The diffraction is pure point
(and X is pure point diffractive) if this measure is en-
tirely a point measure. In this case the point-sets com-
prising X are almost surely pure point diffractive.

Theorem 3.1 [9] Given a SEPP (2), the n-point cor-
relations Y, n = 1,2,..., exist and collectively they
determine the measure (.

The proof of this depends on proving that p is deter-
mined by its moments. This is not necessarily the case
for arbitrary point processes, but the uniform discrete-
ness makes our point processes special. Of course know-
ing the diffraction is equivalent to knowing the 2-point
correlation (they are Fourier transforms of one another).
The fundamental question is how much does the 2-point
correlation tell us about (X, ).

4 Dynamics and diffraction

The unitary action of R? on L?(X, 11) leads one to look
at spectral features. For instance, f, € L?(X,p) is
an eigenfunction for the frequency vector k € R if
Tifr = exp(2mik.t)fy, for all t € R% These k lie in
the Fourier dual of R?, which is another copy of R?,
and form a subgroup E of it. Ergodicity guarantees the
non-degeneracy of the corresponding eigenspaces. We
say that L?(X, p) has pure point dynamical spectrum if
it has a Hilbert basis of eigenfunctions. Surprisingly,
there is a direct connection between the notions of pure
pointedness in dynamics and diffraction:

Theorem 4.1 [18, 13, 3] X is pure point diffractive if
and only if (X, u) has pure point dynamical spectrum.

In order to understand this result we need a way to
relate the diffraction to the dynamics. This comes via
(2). We consider the diffraction measure ¥ on R¢ and
the corresponding space L?(R?,7) of functions f on R?
that are J-square integrable, that is, [ |f|>dy < co. De-

fine an action U of R? on L?(R%,7) by

(Uef)(@) = e f(x)

for all t,x € RY, f € L?(R%,7). This effects only phase
factors in the values of f.

Theorem 4.2 Let (X, p, N) be a SEPP. Then:

(i) There is a unique isometric embedding

NY: L*(R%,7) — L*(X, p)

with NY(f) = Ny for all rapidly decreasing func-
tions® f on R, It intertwines U and T.

(ii) The algebra of  functions generated by
NY(L*(R%,7)) is dense in L*(X, ).

(iii) k € RY is an eigenvalue for U if and only if
Y{k}) > 0, i.e. there is a Bragg peak at k.
The corresponding eigenfunction in L*(R%,7) is
the function 1y, and NV (1;) is a k-eigenfunction
for L?>(X, ). The equation

1 .
N\/ 1 A) = li 2mik.x
(Le)(A) = Jim G;C ¢
x R

holds, where the limit is taken in the L? sense ©.

The NV is not in general surjective. If it is then the the-
orem says that the diffraction really determines u. But
this does not usually happen, even in the case that both
sides are pure point. However, the eigenfunctions for U
are exactly the strange looking functions 1y, 7({k}) > 0,
which take the value 1 at k and zero everywhere else.

Unfortunately, outside the context of point sets supported on a lattice, sums like this cannot be construed as measures once A be-
comes infinite, and it is the infinite case that we are primarily interested in. One option would be to try and average out these sums

as one goes along: p(k) := limp_,co ﬁ ZZEAMCR e2mik.x

These are the sums that show up in a series of results known as the

Bombieri-Taylor conjecture [7, 14], §4, but they are not the correct objects for the diffraction. The mathematical way out, formulated by

A. Hof, is to define the autocorrelation (i.e. the two point correlation) first and then Fourier transform this measure, and this results in

limp oo == 3 e2mik-(=t+@) " \which is just the Fourier transform of the 2-point correlation above. The individual summands
volCRr t,x€ANCR

are just normalized versions of the usual diffraction for finite sets. However, the limit has to be taken with care. The diffraction is not
usually a function, but only a measure. The summands here are taken as (continuous) measures and the limit is taken in the vague

topology.

5Infinitely differentiable functions which, along with their derivatives, decay rapidly at infinity.

6For a point-wise version of this see [17].



The direct definition of NV given by the formula (1)
is not applicable for 1. Part (iii) comes through the
process of the L2?-completion. This is a form of the
Bombieri-Taylor conjecture [7, 14], and is derived by
a limit process using rapidly decreasing functions. The
content of (i) is an elaboration of an idea that was first
formulated in this context by S. Dworkin [11]. Thms.
4.1 and 3.1 are consequences of Thm. 4.2. Thm. 4.2 as
stated here appears in [9].

Theorem 4.3 [15] With (X, u) as above, u is a pure
point measure (and hence A € X is almost surely pure
point diffractive) if and only if every measurable subset
B of X satisfies the condition that for all e > 0 the set

{teR?: W(BA(~t+B)) <e}
is relatively dense”.

Here A is the symmetric difference. What does this
actually say? If we think of B as designating all the A
of X which have a certain pattern, then B A (-t + B)
denotes those A for which exactly one of A and —t + A
has the pattern. With e small it means that with high
probability either both or neither has the pattern. So,
in this sense, t is an e-almost period of X. Pure pointed-
ness is always related to relative denseness of e-almost
periods, see also [4].

Suppose that (X, p, N) is a pure point SEPP. The
diffraction consists of Bragg peaks in Fourier space,
which is R?. Let S denote the set of positions of the
Bragg peaks. Via the mapping NV the eigenfunctions
of U, namely the functions 1x, k& € S, are mapped to
eigenfunctions of T in L?(X, ). The eigenvalue group
FE introduced in §4 is generated by .S, but in general
S # E. The points of E\S are often called extinc-
tions, places where potentially there could be a Bragg
peak but where, in fact, there are none. We know that
S = —S and S generates E. Thus E = U2 n .S, where
nS := S+ ---+ S (n summands). The complexity of

the diffraction seems to be related deeply to the nature
of the extinctions. One indication of this is:

Proposition 4.4 [19] Let (X, p, N) be a pure point sta-
tionary ergodic point process. If nS = E then u is en-
tirely determined by the 2,3, ...,2n + 1-correlations. In
particular, if S = E then the process is determined by

the 2 and 3-point correlations®.

5 Model sets

Model sets, or cut and project sets, are very familiar to
the quasicrystal community and afford natural examples
of SEPPs. One extends physical space R? by an internal
space H for which there is a lattice £ C R? x H with
the properties that the projection mappings of the cut
and project scheme (cps)

R L RIxH
U 3)
L & c

satisfy 71|z of 7 is injective and 7o (L) is dense in H.

Let L := m(£) and (-)*: L — H be the mapping
ma o (m|z)™t. A regular model set is a set of the form
AW) :={xz € L : z* € W}, or some translate of this,
where W is a compact subset of H which is the closure
of its interior and the boundary of W has measure 0.
Model sets are uniformly discrete.

Often people use a Euclidean space as internal space
H, but mathematically H needs only to be a locally
compact Abelian group. As L is a discrete and co-
compact subgroup of R? x H, the quotient T :=
(RY x H)/L is a compact Abelian group®. In the stan-
dard cut and project setting with Euclidean spaces only,
this group is a torus. There is an obvious action of R? on
T given by z + ((t,h) + L) = (z+t,h)+L, z€R?
through which (T, R?) is a minimal and uniquely ergodic
dynamical system with respect to the Haar measure O
of T. The hull X (A) of A is the closure in D, of the set of

7A subset P of R? is relatively dense if there is an R so that every R-cube contains at least one point of P.
8The importance of moments in the study of crystallography (and quasicrystallography) was emphasized in a paper of N. D. Mermin
[21]. Although the formalism there cannot be applied to infinite discrete point sets, nonetheless forerunners of Prop. 4.4 and Prop. 5.1 are

stated there.

9 Although H is not uniquely determined by A, it is possible to arrange things so that W generates H as a group and there are no
non-zero t € H with t + W = W. With these conditions H is unique up to isomorphism (e.g. for the Penrose tilings it is R? x Z/57Z). In
this form H has a description which shows that it has a direct physical meaning which relates to the way L looks from the point of view

of almost periodicity, see [4].



translations of A. It is uniquely ergodic and, using the
counting function N of (1), we obtain a SEPP (X, i, N).
We shall assume that X is mininal'®. It reasonable to
think of X (A) as looking like T: there is a continuous
Re-invariant surjective mapping 3 : X (A) — T which
is 1 — 1 almost everywhere [23]. However, the points at
which 1 — 1-ness fails are dense in T, so this is a pri-
marily a measure theoretical similarity. It is, however,
enough to obtain L?(X, ) ~ L?(T, 1), from which the
pure pointedness of model sets follows pretty much im-
mediately.

The correlations for model sets look particularly
nice in internal space: they are of the form Oy (W N
Nj—1(x} + W)), where 0y is a Haar measure on H.

=1
This leads to a strengthening of Prop. 4.4:

Proposition 5.1 [10] Let (X,u, N) be determined by
the local hull of a model set with internal space of the
form R™ x  (Finite Group). Then (X, p,N) is com-
pletely determined within the class of all model sets on
R? by the second and third correlations.

6 The limits of diffraction?

There is an extensive literature on the famous inverse
problem of diffraction: given the diffraction of some-
thing, what distribution of matter produced it? In ef-
fect one is asking for a convolution ‘square root’ of the
autocorrelation. The trouble is that with this bare infor-
mation the solution need not be unique. This is known
as the homometry problem. The article by Baake and
Grimm [2] in this issue gives some explicit examples of
how counter-intuitive this problem can be, even when
restricted to point sets.

The diffraction of a point set, or more generally any
distribution of matter in R?, is a measure w on R? with
the following properties: it is positive, centrally sym-
metric, and translation bounded (i.e. for each compact
set K C R the set w(t + K) as t runs over all of R? is
bounded). Here we pose the general problem of whether
an arbitrary pure point measure with just these three

properties is necessarily the diffraction of something.
What makes the problem particularly difficult is that
one is not sure at the outset what kinds of ‘distribu-
tions of matter’ one is supposed to be looking for: point
sets, continuous functions, measures, something more
general?!

Remarkably there is an affirmative answer to the
question, [20]. Given such a measure there is a way
to construct a compact probability space (X, u) with a
pure point ergodic R%action, and a continuous map-
ping N : C.(R%) — L?(X, u) which is R%equivariant,
so that for all f € C.(R9),

Adf*fdw=ANfﬁfdu=<f\f>.

The elements of X may be interpreted as ‘distributions
of density’ on R? and have, almost surely, a naturally de-
fined autocorrelation whose Fourier transform is w. The
construction is not unique but depends on the choice of
phase factors, whose freedom can be classified. In this
way one achieves what one may call an overview of all
solutions to the homometry problem.

There is a penalty for such generality. The stochas-
tic process (X, p, V) is no longer necessarily a point pro-
cess. Measure theoretical dynamical systems and mea-
sure theoretic point processes have been studied [3, 15],
but the situation here seems to be more general still:
the elements of X here may not be interpretable as mea-
sures on R%. Rather their structure is to be inferred by
testing them with functions f € C.(R%). The functions
Ny, their sums, products, etc. then test the elements of
X. From this such properties as uniform discreteness,
pattern frequencies, etc. may be inferred. This seems
to have a rather physical feel to it. Being a character-
ization of pure pointedness, it seems to point directly
at what really underlies pure point diffraction. There
remain, of course, the much deeper problems of classi-
fying those choices of phase factors that lead to point
sets, continuous distributions of matter, measures, etc.

Acknowledgements The brief bibliography below
is a small indication of the work that has gone into the

10There are numerous variations on the definition of models sets, none of which make much difference to what we are saying here.
Minimality is equivalent to repetitivity. This is easy to arrange: A(W) is repetitive if there are no points of L* on the boundary of W.

U There is an explicit class of solutions to the convolution root problem under the name of Boas-Kac theorems, see [6, 12] which hold
under conditions in which, among other things, all the objects in question have to be functions and to have compact support. In their
presently available forms it seems difficult to apply them to the problem that we are addressing.
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Figure 1: A grid pattern II: point-sets A, A’ € X are close if they make the same grid pattern for some large fine-
meshed grid around 0. The proportion of X taken up by the set B(II) of elements A € X sharing the same pattern IT
is given by w(B(II)).

Figure 2: A schematic view of a point-set dynamical system X over R. Each point of X represents an entire discrete
point set in R. Part of the orbit of a single point-set A is shown. Orbits close only if there is periodicity. Close returns
of the orbit to A indicate point sets ¢t + A that match A closely on a region around the origin. This type of picture
is accurate from the measure theoretical point of view, but omits much of the fine topological detail. It is the former
that is most important for the theory of diffraction.
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