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Introduction

We have seen that Empirical Orthogonal Functions (EOFs) are

defined statistically, as the eigenvectors of the covariance matrix of a

system

These eigenvectors provide a convenient basis for describing

variability. In particular, projection on subspace of leading EOFs

provides useful dimensionally-reduced description

EOFs are often interpreted physically as independent, dynamical

structures (despite being statistical by construction)

EOFs follow from dynamics, but are not necessarily themselves of

individual dynamical significance

That is, EOFs efficiently characterise variance, but generally don’t

tell you anything about how the distribution of variance is

produced by the dynamics
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Notation

Consider vector process x(t)

Can assume without loss of generality that mean(x) = 0

EOFs are eigenvectors of covariance matrix Cxx = E{xx
T }:

CxxEj = µjEj

Principal component (PC) time series are projection coefficients of

x(t) on EOFs:

αj(t) = x(t) · Ej

When Ej are normalised so Ej · Ej = 1,

µj = var(αj)
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EOFs: Basic Important Facts

1. Cxx symmetric matrix so EOFs Ej are mutually orthogonal:

Ej · Ek = δjk

2. Principal component time series αj(t) are uncorrelated:

E{αjαk} = µjδjk

3. EOFs can be obtained variationally as basis vectors providing

optimal low-dimensional approximations to full dataset: e.g. E1

defined as vector minimising

J = E
{

||x − (x · E1)E1||2
}

subject to the constraint that ||E1|| = 1. EOFs maximise global

variance; do not generally key into local features.
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PC time series: uncorrelated vs. independent

PC time series uncorrelated, but not necessarily independent
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(should vanish for independent

PCs)

Thick solid line: optimal 1D

nonlinear approximation
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PC time series: uncorrelated vs. independent

PC time series uncorrelated, but not necessarily independent

EOFs of tropical Pacific SST
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Mixing localised structures (Ambaum et al. 2001)

EOFs maximise global variance over analysis domain, so will mix

localised but unrelated structures

An example: variables x, y, z such that x, z are independent with unit

variance and y = −x − z have covariance matrix:

C =











1 −1 0

−1 2 −1

0 −1 1











and EOFs E1 = (1,−2, 1) (75% variance)

E2 = (−1, 0, 1) (25% variance)

Unrelated variables x, z mixed together in E1
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EOFs of Multivariate O-U Processes (North 1984)

Consider linear SDE

d

dt
x = Ax + BẆ

Stationary covariance Cxx satisfies

ACxx + CxxAT = −BBT

Suppose A is normal (i.e. AAT −AT A = 0), so it has a complete set

of orthogonal eigenvectors

Orthogonal matrix S diagonalises A: λiδij = (SAST )ij

Can solve Lyapunov equation for covariance: Cxx = ST GS where

Gij = −(BBT )ij

λi + λj
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EOFs of multivariate O-U processes (North 1984)

If noise forcing is spatially unstructured so BBT = β2I ,

Gij = −β2δij

2λi

so Cxx and A have same eigenvectors (both diagonalised by S)

Thus, for a linear, normal system forced by spatially uncorrelated

noise, the EOFs and the dynamical modes will coincide

If the noise is spatially correlated, EOFs and dynamical modes will

differ

If the linear dynamics are non-normal, dynamical modes will be

non-orthogonal ⇒ cannot coincide with EOFs

Even in the simplest physical systems, EOFs do not generally

correspond to dynamical modes
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EOFs of highly nonlinear systems (Mo&Ghil 1987)
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EOFs and kinematics of a zonal jet

EOFs not dynamical modes, but are they at least related in a simple

way to “natural kinematic degrees of freedom”?

Address this question in terms of EOFs of extratropical zonal-mean

zonal-wind

Leading EOF of zonal-mean

zonal wind is a dipole

Model winds as Gaussian jet

fluctuating in strength, position,

and width

u(x, t) = U0(t) exp

(

−1

2

(x − xc(t))
2

σ(t)2

)
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EOFs and kinematics of a zonal jet

Observed fact: h = std(xc)/mean(σ) << 1 (i.e. position

fluctuations generally smaller than mean jet width)

⇒ can solve for EOFs analytically in terms of basis functions fi(x)
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Zonal Wind: Fluctuations in Single Variables

Strength Alone: only one nontrivial PCA mode

E(1)
u (x) = f0(x) monopole

Position Alone: if xc(t) unskewed

E(1)
u (x) = f1(x) dipole

E(2)
u (x) = f2(x) tripole

but skewness in xc(t) mixes dipole and tripole

Width Alone: leading EOF pattern

E(1)
u (x) = xf1(x) = f2(x) +

2√
3
f0(x)
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Zonal Wind: Strength & Position Fluctuations

For U(t), xc(t) independent leading EOF patterns mix monopole and

tripole:

E(1)
u

(x) = f1(x) dipole

E(2)
u

(x) = β
(+)
0 f0(x) + β

(+)
2 f2(x) mono/tripole hybrid

E(3)
u

(x) = β
(−)
0 f0(x) + β

(−)
2 f2(x) mono/tripole hybrid

Leading PC time series couple position & strength fluctuations:

α(1)
u

(t) ∼ U(t)xc(t) + h.o.t.

Even in this simple case, there is no generic relation between EOF modes

and kinematic degrees of freedom
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So now what?

We have seen that EOF modes in general:

are not independent

mix localised but unrelated structures

do not correspond to linear or nonlinear “dynamical modes”

are not simply related to kinematic degrees of freedom

So is EOF analysis rubbish? No - it’s useful for characterising

variance & reducing data dimensionality

Can try to get around limitations (e.g. with rotated EOFs or nonlinear

PCA); this has its uses (and its own abuses)

In general: it’s just best to not apply statistics blindly, and to select &

interpret analyses based on an understanding of the system (so the

medium doesn’t become the message)
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