Case Study: Sea Surface Winds

- Air/Sea Exchange
 - ocean and atmosphere interact through respective boundary layers, exchanging momentum, energy, freshwater, and gases
 - fluxes depend on surface winds, in general nonlinearly
 - ocean currents largely driven by surface winds
- Sea State
 - sea state important for shipping, recreation
 - determined by both local and remote winds
- Power Generation
 - wind power potentially significant source of energy
 - generation rate scales as cube of wind speed; extreme events important

An Introduction to Probability and Stochastic Processes for Ocean, Atmosphere, and Climate Dynamics2: Stochastic Processes - p. 49/64

Mean and Skewness of Vector Wind

■ Joint pdfs of mean and skew for zonal and meridional winds

(note logarithmic contour scale)

Vector Wind Moments

An Introduction to Probability and Stochastic Processes for Ocean, Atmosphere, and Climate Dynamics2: Stochastic Processes - p. 50/64

Wind Speed Moments

Wind Speed pdf: Weibull distribution

 \blacksquare The pdf of wind speed w has traditionally (and empirically) been represented by 2-parameter Weibull distribution:

$$p(w) = \frac{b}{a} \left(\frac{w}{a}\right)^{b-1} \exp\left[-\left(\frac{w}{a}\right)^{b}\right]$$

- \blacksquare a is the <u>scale</u> parameter (pdf centre)
- b is the shape parameter (pdf tilt)
- $p_w(w)$ is unimodal

An Introduction to Probability and Stochastic Processes on Ocean, Atmosphere, and Climate Dynamics2: Stochastic Processes on 53/64

Boundary Layer Dynamics

■ Horizontal momentum equations:

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\frac{1}{\rho} \nabla p - f \hat{\mathbf{k}} \times \mathbf{u} - \frac{1}{\rho} \frac{\partial (\rho \overline{\mathbf{u}' u_3'})}{\partial z}$$

- Momentum tendency due to:
 - advection (transport by flow; secondary importance on daily timescales)
 - pressure gradient force
 - Coriolis force
 - turbulent momentum flux (in vertical)
- Integrated momentum budget over boundary layer *h*:

$$\frac{d\mathbf{u}}{dt} = -\frac{1}{\rho}\nabla p - f\hat{\mathbf{k}} \times \mathbf{u} + \frac{1}{h}\left(\overline{\mathbf{u}'u_3'}(0) - \overline{\mathbf{u}'u_3'}(h)\right)$$

Wind Speed pdfs: Observed

■ Observed speed moments fall around Weibull curve

An Introduction to Probability and Stochastic Processes for Ocean, Atmosphere, and Climate Dynamics2: Stochastic Processes – p. 54/64

Surface Wind Stress

■ Surface wind stress is turbulent momentum flux across air/sea interface:

$$\tau_s = \rho_a \overline{\mathbf{u}' u_3'}(0)$$

along-mean wind component

cross-mean wind component

where (u,v)

= vertical wind component

Flux parameterised in terms of **u** by bulk drag formula:

$$\tau_s = \rho_a c_d w \mathbf{u}$$

where $w = ||\mathbf{u}||$ is the wind speed.

Surface Momentum Budget

- To close momentum budget, need parameterisation of turbulent momentum flux at z = h
- Use specified "entrainment velocity" W_e

$$\overline{\mathbf{u}'u_3'}(h) = W_e(\mathbf{U} - \mathbf{u})$$

⇒ Surface layer momentum budget

$$\frac{d\mathbf{u}}{dt} = -\frac{1}{\rho} \nabla p - f \hat{\mathbf{k}} \times \mathbf{u} - \frac{c_d}{h} w \mathbf{u} + \frac{W_e}{h} (\mathbf{U} - \mathbf{u})$$

$$= \mathbf{\Pi} - \frac{c_d}{h} w \mathbf{u} - \frac{W_e}{h} \mathbf{u}$$

where

$$\mathbf{\Pi} = -\frac{1}{\rho} \nabla p - f \hat{\mathbf{k}} \times \mathbf{u} + \frac{W_e}{h} \mathbf{U}$$

An Introduction to Probability and Stochastic Processes for Ocean, Atmosphere, and Climate Dynamics2: Stochastic Processes - p. 57/64

Mechanistic Model: pdf

■ Solution of associated Fokker-Planck equation for stationary pdf:

$$p_{uv}(u,v) = \mathcal{N}_1 \exp\left(\frac{2}{\sigma^2} \left\{ \langle \Pi_u \rangle u - \frac{W_e}{2h} (u^2 + v^2) - \frac{1}{h} \int_0^{\sqrt{u^2 + v^2}} c_d(w') w'^2 dw' \right\} \right)$$

Changing to polar coordinates and integrating over angle gives wind speed pdf:

$$p_w(w) = \mathcal{N}wI_0\left(\frac{2\langle \Pi_u\rangle w}{\sigma^2}\right) \exp\left(-\frac{2}{\sigma^2}\left\{\frac{W_e}{2h}w^2 + \frac{1}{h}\int_0^w c_d(w')w'^2 dw'\right\}\right)$$

Mechanistic Model: SDE

■ Decomposing Π into mean and fluctuations:

$$\Pi_u(t) = \langle \Pi_u \rangle + \sigma \dot{W}_1(t)$$

$$\Pi_v(t) = \sigma \dot{W}_2(t)$$

where \dot{W}_i is Gaussian white noise

$$\left\langle \dot{W}_i(t_1)\dot{W}_j(t_2)\right\rangle = \delta_{ij}\delta(t_1 - t_2)$$

we obtain stochastic differential equation

$$\frac{du}{dt} = \langle \Pi_u \rangle - \frac{c_d}{h} wu - \frac{W_e}{h} u + \sigma \dot{W}_1$$

$$\frac{dv}{dt} = -\frac{c_d}{h} wv - \frac{W_e}{h} v + \sigma \dot{W}_2$$

An Introduction to Probability and Stochastic Processes for Ocean, Atmosphere, and Climate Dynamics2: Stochastic Processes – p. 58/64

Mechanistic Model: Predictions

