Case Study: Sea Surface Winds

Air/Sea Exchange
ocean and atmosphere interact through respective boundary

layers, exchanging momentum, energy, freshwater, and gases
fluxes depend on surface winds, in general nonlinearly
ocean currents largely driven by surface winds
Sea State
sea state important for shipping, recreation
determined by both local and remote winds
Power Generation
wind power potentially significant source of energy

generation rate scales as cube of wind speed; extreme events

important
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Mean and Skewness of Vector Wind

Joint pdfs of mean and skew for zonal and meridional winds
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Vector Wind Moments
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Wind Speed Moments
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Wind Speed pdf: Weibull distribution Wind Speed pdfs: Observed

B The pdf of wind speed w has traditionally (and empirically) been m Observed speed moments fall around Weibull curve
represented by 2-parameter Weibull distribution: 10.000
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M ¢ is the scale parameter (pdf centre) 10.048
W b is the shape parameter (pdf tilt) os || ooe
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Boundary Layer Dynamics Surface Wind Stress
B Horizontal momentum equations: ® Surface wind stress is turbulent momentum flux across air/sea
interface:
ou 1 - 1 9(pu’u = "yl
ot p p 0z
u = along-mean wind component
B Momentum tendency due to: & p
advection (transport by flow; secondary importance on daily where v = cross-mean wind component
timescales ) u = (u,v)
pressure gradient force ug = vertical wind component
Coriolis force ® Flux parameterised in terms of u by bulk drag formula:

turbulent momentum flux (in vertical)
Ts = PaCqwll
M Integrated momentum budget over boundary layer h:
where w =|| u || is the wind speed.
M g, fkxud s (W(O) —W(h))
at ~ p'? B\ 3
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Surface Momentum Budget

B To close momentum budget, need parameterisation of turbulent
momentum flux at z = h

m Use specified “entrainment velocity” W,

u,—ué’)(h) = We(U - u)

= Surface layer momentum budget
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Mechanistic Model: pdf

m Solution of associated Fokker-Planck equation for stationary pdf:

2
Puv(u,v) = N7 exp <; {(Hu> U= 5 —(
1 /\/W
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B Changing to polar coordinates and integrating over angle gives wind
speed pdf:

pw(w) = Nwly <2<13#> exp (—% {%wQ + %/Ow ca(w)w'™ dw’})
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Mechanistic Model: SDE

B Decomposing II into mean and fluctuations:

() = () +oWi(t)
(1) = oWa(t)

where Wi is Gaussian white noise
(Wit)Wj(t2) ) = 6350(t1 — t2)

we obtain stochastic differential equation

du Cd W, .
dv cq W,
E = —E’W’U — T'U + CTWQ
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Mechanistic Model: Predictions
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