
Stochastic integration

Let’s go back to the definition of an integral:

∫ t

0
f(t) dt = lim

n→∞

n
∑

j=1

f(τj)(tj+1 − tj)

where τj is in the interval [tj , tj+1]

More generally have Riemann-Stieltjes integral

∫ t

0
f(t)dg(t) = lim

n→∞

n
∑

j=1

f(τj)(g(tj+1) − g(tj))

For a smooth measure g(t), limit converges to a unique value

regardless of where τj taken in interval [tj , tj+1]
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Stochastic integration

HOWEVER: W (t) is not smooth. In fact, Ẇ (t) is

delta-autocorrelated: in any interval of the real line, white noise

fluctuates an infinite number of times with infinite variance

The limit that defines the integral depends on where τj is taken to lie

in interval [tj , tj+1]

Different choices lead to different stochastic calculi:

τj = tj ⇒ Ito calculus

τj = (tj + tj+1)/2 ⇒ Stratonovich calculus

This may look arbitrary, but luckily we know when to use what

calculus (and how to translate between them)
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Ito & Stratonovich calculi

We start right off the bat with a strange result:

(I)

∫ t

0
W (t′)dW (t′) =

1

2
[W (t)2 − W (0)2 − t]

while

(S)

∫ t

0
W (t′)dW (t′) =

1

2
[W (t)2 − W (0)2]

“Normal rules of calculus” don’t apply to Ito integral, but do apply to

Stratonovich

Ultimately, weird behaviour comes from fact that (loosely)

(δW )2 ∼ δt; in Taylor series expansion terms in (δW )2 enter at same

order as δt. Formally, for Ito integral, dW 2 = dt in the sense that

∫ t2

t1

G(t′) [dW (t′)]2 =

∫ t2

t1

G(t′) dt
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Ito and Stratonovich SDEs

Will use different notation to distinguish between SDEs interpreted

in Ito and Stratonovich senses:

(I) :
dx

dt
= a(x, t) + b(x, t)Ẇ (t)

(S) :
dx

dt
= a(x, t) + b(x, t) ◦ Ẇ (t)

Ito’s formula gives us a “chain rule” for solution of Ito SDE:

df(x(t)) = f(x(t) + dx(t)) − f(x(t))

= f ′[x(t)]dx(t) +
1

2
f ′′[x(t)]dx(t)2 + ...

=

(

a(x, t)f ′(x) +
1

2
b(x, t)2f ′′(x)

)

dt + b(x, t)f ′(x)dW

to leading order in dt
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Ito and Stratonovich SDEs

We can use Ito’s formula to find a “translation” between Ito and

Stratonovich SDEs:

Ito SDE
dx

dt
= a(x, t) + b(x, t)Ẇ (t)

is the same as the Stratonovich SDE

dx

dt
=

(

a(x, t) − 1

2
b(x, t)∂xb(x, t)

)

+ b(x, t) ◦ Ẇ (t)

Can go between Ito and Stratonovich by appropriately modifying

drift; correction term often called “noise-induced drift”

Note dimensions of b(x, t): [b] = [x][t]−1/2 because [Ẇ ] = [t]−1/2.

b(x, t) is not standard deviation of white noise - it’s a scaling factor.
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Solving an Ito SDE: An example

To solve Ito SDE
dx

dt
= xẆ (t)

can transform to Stratonovich SDE

dx

dt
= −1

2
x + x ◦ Ẇ (t)

for which “normal rules of calculus” apply:

∫ t

0

1

x

dx

dt
dt =

∫ t

0

(

−1

2
+ Ẇ (t)

)

so

x(t) = x(0) exp

(

− t

2
+ W (t) − W (0)

)

An Introduction to Probability and Stochastic Processes for Ocean, Atmosphere, and Climate Dynamics2: Stochastic Processes – p. 42/64

SDEs and Fokker-Planck Equations

Can use Ito’s formula to show that pdf p(x(t)) of Ito SDE satisfies

FPE

∂tp = −∂x[a(x, t)p] +
1

2
∂2

xx[b2(x, t)p]

and pdf of Stratonovich SDE satisfies

∂tp = −∂x[a(x, t)p] +
1

2
∂x [b(x, t)∂x[b(x, t)p]]

= −∂x

([

a(x, t) +
1

2
b(x, t)∂xb(x, t)

]

p

)

+
1

2
∂2

xx[b2(x, t)p]

Again we see the connection between solutions of SDEs and

diffusion of probability

For every SDE there is a unique FPE, but every FPE has a set of

associated SDEs (because b2 appears in FPE)
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Ito vs. Stratonovich: How to choose?

White noise is an idealisation; real fluctuating forcing has finite

amplitude and timescale

If white noise is approximation to continuously fluctuating noise with

finite memory (much shorter than dynamical timescales), appropriate

representation is Stratonovich (Wong-Zakai Theorem)

If white noise approximates set of discrete pulses with finite

separation to which system responds, or SDE continuous

approximation to discrete system, then Ito representation appropriate

Because in an atmosphere/ocean/climate context “driving noise” a

representation of “fast” part of continuous fluid dynamical system,

Stratonovich SDEs usually most natural
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Ito vs. Stratonovich: How to choose?

For example, consider 2D SDE

dx

dt
= a(x, t) + b(x, t)η

dη

dt
= −1

τ
η +

σ

τ
Ẇ

As τ → 0, η → Ẇ and x satisfies the Stratonovich SDE

dx

dt
= a(x, t) + b(x, t) ◦ Ẇ

Operationally: Stratonovich SDEs easier to solve analytically, but Ito

SDEs more natural starting point for numerical schemes
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Nonlinearity or multiplicative noise?

The pdf of a linear SDE with additive noise is Gaussian

More general SDE

ẋ = a(x, t) + b(x, t) ◦ Ẇ (t)

has stationary pdf (from FPE)

p(x) = N exp

(
∫ x

0

[

a(x)

b(x)
− 1

2
∂xb(x)

]

dx

)

Non-Gaussianity can arise from

nonlinearity of a(x), or from

multiplicative noise:

b(x) 6= const.

05 S U R A E T A L .

Sura et al. JAS 2005
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Convergence

Have been cavalier up to this point about what is meant by

“convergence” in stochastic processes

Different levels of convergence of random sequence {xn} as n → ∞
a. almost sure

P (xn → x) = 1

b. mean square

E{(xn − x)2} → 0

c. in distribution

P (xn) → P (x)

a ⇒ c and b ⇒ c, but not vice-versa (convergence in distribution is

relatively weak)
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SDEs from chaotic dynamics: Rigorous results

Coupled slow/fast system with “chaotic” fast dynamics

dx

dt
= f(x, y) (slow climate mode)

dy

dt
=

1

ε
g(x, y) (fast weather mode)

As ε → 0, x → X in distribution, where X satisfies:

dX

dt
= f(X) + εD(X) +

√
εσ(X)

dW

dt

Have explicit formulae for f(X), D(X), σ(X) in terms of the

“stationary distribution” of the fast dynamics

Another related (but distinct) approach to “stochastic mode

reduction” is MTV (Majda, Timofeyev, & Vanden-Eijnden)

Theory
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