
SDEs: A first example

We see in this example

i. a deep connection between diffusion of probability described by

FPE and pathwise evolution described by SDE

ii. a connection between the “drift” and the “deterministic” part of

the dynamics

iii. a connection between the “diffusion” and the “stochastic” part of

the dynamics

iv. the stationary pdf includes contributions from both deterministic

& stochastic terms. Fluctuations drive system away from

deterministic attractor, dynamics pushes it back: stationary pdf

balances these tendencies.

These ideas important enough to help get Albert Einstein his Nobel

Prize (for early work on the subject) ...
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Frankignoul & Hasselmann 1977

These ideas also at heart of first stochastic climate model

(Frankignoul & Hasselmann 1977) , used to explain why SST spectra

are generally red in character

Simple model: SST anomalies driven by “fast” atmospheric forcing

(assumed to be white in time) and “slow” relaxation to climatology

through ocean mixed layer physics

With T = SST anomaly, have model

dT

dt
= −λT + γẆ

which predicts red SST response to fast, rapidly-decorrelating

atmospheric forcing
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Frankignoul & Hasselmann 1977

Observationally, SST variability “red” and fluxes are “white”

From Frankignoul & Hasselmann Tellus 1977

Linear stochastic model ⇒ simple null hypothesis for observed

variability
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Multivariate Ornstein-Uhlenbeck processes

Have so far focused on scalar stochastic processes; can generalise

results so far for x ∈ R
N

Vector white noise Ẇ(t) is an array of independent white noise

processes

E{Ẇi(t)Ẇj(t
′)} = δijδ(t − t′)

For constant matrices A and B, SDE

d

dt
x = Ax + BẆ

has solution (with P (t) = eAt)

x(t) = P (t)x(0) +

∫ t

0
P (t − t′)BẆ(t′) dt′
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Multivariate Ornstein-Uhlenbeck processes

Solution is Gaussian with mean and stationary autocovariance

E{x(t)} = P (t)x(0)

Cxx(τ) = E{x(t + τ)xT (t)} = P (τ)Cxx(0)

where stationary covariance satisfies Lyapunov equation

ACxx(0) + Cxx(0)AT = −BBT

⇒ balance between deterministic dynamics (A), stochastic forcing (B)

and statistics of response (Cxx(0)); an example of a

fluctuation-dissipation relationship

pdf p(x) satisfies Fokker-Planck equation

∂tp = −
∑

i

Ai∂ip +
∑

ij

(BBT )ij∂
2
ijp
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Optimal Perturbations

If dynamical matrix A is non-normal, i.e.

AAT 6= AT A

so eigenvectors of A are not orthogonal, then:

EOFs (eigenvectors of covariance Cxx(0)) do not coincide with

eigenvectors of A (dynamical modes)

perturbation norm

N(t) = x(t)T Mx(t) = x(0)T P (t)T MP (t)x(0)

may grow (by potentially large amount) over finite times even

though asymptotically stable:

lim
t→∞

N(t) = 0
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Optimal Perturbations

Defining amplification factor

n(t) =
x(0)T P (t)T MP (t)x(0)

x(0)T Mx(0)

optimal perturbation e maximises n(t) subject to constraint

x(0)T Mx(0) = 1 ⇒ generalised eigenvalue problem:

P (t)T MP (t)e = λMe

Response to fluctuating forcing:

var(xT (t)Mx(t)) = BT

(
∫ t

0
P (s)T MP (s)ds

)

B

⇒ importance of projection of noise structure on “average” optimals for

maintaining variance; “stochastic optimals”
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Linear inverse modelling

How are A and B determined in practice?

1. Empirical: Linear Inverse Modelling

estimate covariances from observations and compute

A =
1

τ
ln

(

Cxx(τ)Cxx(0)−1
)

Compute B from Lyapunov equation

ACxx(0) + Cxx(0)AT = −BBT

Issues:

i. if x(t) not truly Markov, estimates will depend on lag τ

ii. must enforce positive-definiteness of BBT
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LIM: ENSO SST Optimal Perturbations

Optimal perturbation e

Perturbation P (t)e at t = 7 months

From Penland and Sardeshmukh (1995)
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Stochastic ENSO Models

2. Mechanistic: Stochastic Reduction of Tangent Linear Model

Partition dynamics into “slow” and “fast” variables x and y:

dx

dt
= f(x,y)

dy

dt
=

1

ε
g(x,y)

Reduce coupled system to effective stochastic dynamics for x:

dx

dt
= Lx + N(x,x) + S(x) ◦ Ẇ

(many ways of doing this; some formal, some ad hoc)

Linearise model around appropriate state (e.g. climatological

mean)
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Mechanistic Model: 6-Month Stochastic Optimals

From Kleeman and Moore, J. Atmos. Sci., 1997.
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SDEs: Multiplicative vs. additive noise

General 1d SDE
dx

dt
= a(x, t) + b(x, t)Ẇ

Have so far focused on case of constant noise strength b(x, t) (that is,

noise independent of state of system)

In such a case, noise said to be additive

In general, however, b(x, t) depends on x and noise is multiplicative

Things become much more complicated ...

We can formally integrate the SDE:

x(t) = x(0) +

∫ t

0
a(x, t)dt +

∫ t

0
b(x, t)dW (t)

but we need to make clear what is meant by stochastic integral
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