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Climate variability: multiple temporal scales

® Climate system displays variability over broad range of space and

time scales, and involves different interacting components
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Climate variability: ‘‘signal vs. noise”’, ¢

fast vs. slow”

B Atmosphere and ocean flows generally unsteady; often turbulent

M Some aspects of variability predictable; others not

B Nifio3.4 time series (has both regular & irregular variability)
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W Irregular, unpredictable variability often well-modelled as random;

need to think about evolution of random variable through time
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Climate variability: multiple spatial scales
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Climate variability: multiple spatial scales
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Where might “randomness’ come from?

Common strategy in atmosphere/ocean dynamics is to split
variability across scales, e.g.

mean vs. eddy (Reynolds averaging)
climate vs. weather

ocean vs. atmosphere

resolved vs. subgrid-scale

One scale is modelled explicitly, the other isn’t

A classical example: Reynolds averaging

_ t+7/2 _
F(t) = / fde () = £t - T

—7/2
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Climate variability: multiple systems
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Changes in the Ocean: Changes infon the Land Surface:
Ci ion, Sea Level, Bi Orography, Land Use, Vegetation, Ecosystems
From IPCC Third Assessment Report
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Where might “randomness’ come from?

Reynolds averaged 2d horizontal momentum budget:

du; 1. _ _ —_
dtl =—0p + fesitiy + vVu; — Ojulul;

Evolution of “slow” variable depends on statistics of “fast” variable:
classic closure problem

Can try to represent Reynolds stress in terms of mean state, but in
absence of very large scale separation between “mean” and “eddy”
flows, why should a configuration of resolved flow be associated with
a (statistically) unique configuration of unresolved flow?

Turbulence is dissipative & bursty; perhaps a better model is

Iy, 2—' 113 fan?? A
djuju’, = —KV™u; + “noise” ~ P(uju[;)
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Where might “randomness’ come from?

A statistical mechanical analogy: consider a box of NV identical
molecules of temperature 7'

Each individual molecule will have random kinetic energy E;, with
pdf from Maxwell-Boltzmann distribution; total energy of molecules
sum of individual energies £ = Zf\; 1 E

std(E) ~ N~1/2

as N becomes large, F — mean(FE) with very small fluctuations
(“thermodynamic limit”), and can talk about “large scale” without

worrying about fluctuations on “small scale”

However, if N is not small (if there is not a “scale separation”), then

these fluctuations may not be negligible
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Markov processes

A very important class are Markov processes for which
p(xtl|xtk,xtj,xti, ) =p(xy|xy, ) for ty >t > t),t, ...

For these processes, knowledge of the state of the system at time ¢,
provides all possible information about the state at future time;
information about state at times before ¢, is irrelevant
A deterministic analogue:
future evolution of ODE % = f(x) for x € R fully specified if
full state x = xy known at ¢ = t; state at earlier times irrelevant
If only some subspace of x known at ¢t = ¢(, information about
state at earlier times needed to specify trajectory
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Stochastic processes

A sequence of random variables x; (where ¢ may be a discrete or

continuous index) is called a stochastic process
Describes the evolution of a random variable in time (or space)

Stochastic processes will generally have memory; that is, the pdf of
x; will generally depend on the values taken by the process at an

earlier time (or times)

Important quantities are the joint and conditional pdfs across time,
c.g. p(l‘tl ) xtz) ’ p(xtg |xt1 )’ p(xt2a Tty ‘:Btl)a

Joint pdfs of stationary processes are time translation invariant, e.g.

p(z(t1), x(t2)) = p(z(ty +7), 2(t2 + 7))
so joint pdfs depend only on time differences t1 — to
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An example: discrete random walk

Motion with position x,, on a lattice such that each time there is a

50% chance of moving one step either right or left

) 0.5 ifk=j+1lorj—1
p(xy = klzn_1 =j) = .
0 otherwise

mean(x,) = 0 (by symmetry)

std(zn,) = v/

variability of z,, grows without

bound; size of fluctuations grows
as square root of time -2 \VooN

Nw/\/ww”lf \M\“
By central limit theorem, p(z,,) Y

. 0 100 200 300 400 500
becomes Gaussian as n — 00 n
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