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Climate variability: “signal vs. noise”, “fast vs. slow”

Atmosphere and ocean flows generally unsteady; often turbulent

Some aspects of variability predictable; others not

Niño3.4 time series (has both regular & irregular variability)
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Irregular, unpredictable variability often well-modelled as random;

need to think about evolution of random variable through time
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Climate variability: multiple temporal scales

Climate system displays variability over broad range of space and

time scales, and involves different interacting components

From Saltzman, 2002
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Climate variability: multiple spatial scales

From von Storch and Zwiers, 1999
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Climate variability: multiple spatial scales

From von Storch and Zwiers, 1999
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Climate variability: multiple systems

From IPCC Third Assessment Report
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Where might “randomness” come from?

Common strategy in atmosphere/ocean dynamics is to split

variability across scales, e.g.

mean vs. eddy (Reynolds averaging)

climate vs. weather

ocean vs. atmosphere

resolved vs. subgrid-scale

One scale is modelled explicitly, the other isn’t

A classical example: Reynolds averaging

f(t) =

∫ t+τ/2

t−τ/2
f(t′)dt′ , f ′(t) = f(t) − f(t)
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Where might “randomness” come from?

Reynolds averaged 2d horizontal momentum budget:

dui

dt
= −1

ρ
∂ip + fε3ikuk + ν∇2ui − ∂ju′

iu
′
j

Evolution of “slow” variable depends on statistics of “fast” variable:

classic closure problem

Can try to represent Reynolds stress in terms of mean state, but in

absence of very large scale separation between “mean” and “eddy”

flows, why should a configuration of resolved flow be associated with

a (statistically) unique configuration of unresolved flow?

Turbulence is dissipative & bursty; perhaps a better model is

∂ju′
iu

′
j = −K∇2ui + “noise” ∼ P (u′

iu
′
j |ui)
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Where might “randomness” come from?

A statistical mechanical analogy: consider a box of N identical

molecules of temperature T

Each individual molecule will have random kinetic energy Ei, with

pdf from Maxwell-Boltzmann distribution; total energy of molecules

sum of individual energies E =
∑N

i=1 Ei

std(E) ∼ N−1/2

⇒ as N becomes large, E → mean(E) with very small fluctuations

(“thermodynamic limit”), and can talk about “large scale” without

worrying about fluctuations on “small scale”

However, if N is not small (if there is not a “scale separation”), then

these fluctuations may not be negligible
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Stochastic processes

A sequence of random variables xt (where t may be a discrete or

continuous index) is called a stochastic process

Describes the evolution of a random variable in time (or space)

Stochastic processes will generally have memory; that is, the pdf of

xt will generally depend on the values taken by the process at an

earlier time (or times)

Important quantities are the joint and conditional pdfs across time,

e.g. p(xt1 , xt2) , p(xt2 |xt1), p(xt2 , xt3 |xt1), ...

Joint pdfs of stationary processes are time translation invariant, e.g.

p(x(t1), x(t2)) = p(x(t1 + τ), x(t2 + τ))

so joint pdfs depend only on time differences t1 − t2
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Markov processes

A very important class are Markov processes for which

p(xtl |xtk , xtj , xti , ...) = p(xtl |xtk) for tl > tk > tj , ti, ...

For these processes, knowledge of the state of the system at time tk

provides all possible information about the state at future time;

information about state at times before tk is irrelevant

A deterministic analogue:

future evolution of ODE ẋ = f(x) for x ∈ R
N fully specified if

full state x = x0 known at t = t0; state at earlier times irrelevant

If only some subspace of x known at t = t0, information about

state at earlier times needed to specify trajectory
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An example: discrete random walk

Motion with position xn on a lattice such that each time there is a

50% chance of moving one step either right or left

p(xn = k|xn−1 = j) =







0.5 if k = j + 1 or j − 1

0 otherwise

mean(xn) = 0 (by symmetry)

std(xn) =
√

n

⇒ variability of xn grows without

bound; size of fluctuations grows

as square root of time

By central limit theorem, p(xn)

becomes Gaussian as n → ∞ 0 100 200 300 400 500
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