Kinetic Models in Econophysics Joint work with G. Toscani and B. Düring

Daniel Matthes Vienna University of Technology, Austria

"Topics in Kinetic Theory" at PIMS Victoria, June 29 – July 3, 2009 **General Idea:** In an extremely simple market model ¹ trading agents behave like colliding molecules in a homogeneous gas, according to the following dictionary:

econophysics	particle dynamics
agents	molecules
wealth	momentum
mean wealth	total momentum
trade event	binary collision

Here the mean wealth (1st momentum) plays the same pivotal role as the total energy (2nd momentum) for Maxwell molecules.

¹B. Mandelbrot Int.Econom.Rev.1 (1960)

General Idea: In an extremely simple market model ¹ trading agents behave like colliding molecules in a homogeneous gas, according to the following dictionary:

econophysics	particle dynamics
agents	molecules
wealth	momentum
mean wealth	total momentum
trade event	binary collision

Here the mean wealth (1st momentum) plays the same pivotal role as the total energy (2nd momentum) for Maxwell molecules.

What makes these models special is an intrinsic randomness: The risky assets that is exchanged in trades have a stochastic value.

¹B. Mandelbrot Int.Econom.Rev.1 (1960)

Modelling Trades with the Boltzmann Equation

f(t;w) is the density of agents with wealth $w \in \mathbb{R}$ at time t > 0.

Paradigm (around 1985)

f satisfies a homogeneous one-dim. Boltzmann equation,

$$\partial_t f = Q_+(f, f) - f,$$

with collisional gain operator Q_+ ,

$$\int_{\mathbb{R}} \phi(w) Q_+(f,f) \, dw = \frac{1}{2} \iint_{\mathbb{R} \times \mathbb{R}} \mathbb{E} \left[\phi(w') + \phi(w'_*) \right] f(w) dw \, f(w_*) dw_*,$$

realizing the "trade rules"

$$w' = Lw + Rw_*, \quad w'_* = L_*w_* + R_*w$$

with random variables $L, L_*, R, R_* \geq 0$.

Particle interpretation:

Pre-trade wealths w, w_* change into post-trade wealths w', w'_* .

Pareto Tails

Let $f_{\infty}(w)$ denote the stationary wealth density, and $F_{\infty}(w) = \int_{w}^{\infty} f_{\infty}(w') dw'$ the associated distribution function.

Pareto's Law (V. Pareto in "Cours d'Économie Politique" 1897)

 $F_{\infty}(w) \approx w^{-\nu}$ for $w \gg 1$ with a Pareto-index $\nu \in (1.5, 2.5)$.

• Exponential growth of wealth, $\mathbb{E}[w' + w'_*] \approx (1 + \epsilon)(w + w_*)$. Pareto tails appear in self-similar solutions.

Slanina, Phys.Rev.E 69 (2004), Pareschi, Toscani, J.Stat.Phys. 124 (2006), ...

- Exponential growth of wealth, $\mathbb{E}[w' + w'_*] \approx (1 + \epsilon)(w + w_*)$. Pareto tails appear in self-similar solutions. Slanina, Phys.Rev.E 69 (2004), Pareschi, Toscani, J.Stat.Phys. 124 (2006), ...
- Conservation in the mean, E[w' + w'_{*}] = w + w_{*}.
 Pareto tails appear for sufficiently "risky" trade rules.
 Cordier, Pareschi, Toscani, J.Stat.Phys. 120 (2005), Düring, Toscani, Physica A 384 (2007),
 D.M., Toscani, J.Stat.Phys. 130 (2008), Düring, D.M., Toscani, Phys.Rev.E 78 (2008), ...

- Exponential growth of wealth, $\mathbb{E}[w' + w'_*] \approx (1 + \epsilon)(w + w_*)$. Pareto tails appear in self-similar solutions. Slanina, Phys.Rev.E 69 (2004), Pareschi, Toscani, J.Stat.Phys. 124 (2006), ...
- Conservation in the mean, E[w' + w'_{*}] = w + w_{*}.
 Pareto tails appear for sufficiently "risky" trade rules.
 Cordier, Pareschi, Toscani, J.Stat.Phys. 120 (2005), Düring, Toscani, Physica A 384 (2007),
 D.M., Toscani, J.Stat.Phys. 130 (2008), Düring, D.M., Toscani, Phys.Rev.E 78 (2008), ...
- Strict conservation, $w' + w'_{*} = w + w_{*}$. For Pareto tails, mix species of different trading preferences. Angle, Social Forces 65 (1986), Dragulescu, Yakovenko, Eur.Phys.J.B 17 (2000), Bouchaud, Mezard, Physica A 282 (2000), Chatterjee, Chakrabarti, Stinchcombe, Phys.Rev.E 72 (2005), Reptowicz, Hutzler, Richmond, Physica A 356 (2005), Mohanty, Phys.Rev.E 74 (2006), D.M., Toscani, Kin.Rel.Models 1 (2008), ...

- Exponential growth of wealth, $\mathbb{E}[w' + w'_*] \approx (1 + \epsilon)(w + w_*)$. Pareto tails appear in self-similar solutions. Slanina, Phys.Rev.E 69 (2004), Pareschi, Toscani, J.Stat.Phys. 124 (2006), ...
- Conservation in the mean, E[w' + w'_{*}] = w + w_{*}.
 Pareto tails appear for sufficiently "risky" trade rules.
 Cordier, Pareschi, Toscani, J.Stat.Phys. 120 (2005), Düring, Toscani, Physica A 384 (2007),
 D.M., Toscani, J.Stat.Phys. 130 (2008), Düring, D.M., Toscani, Phys.Rev.E 78 (2008), ...
- Strict conservation, w' + w'_{*} = w + w_{*}.
 For Pareto tails, mix species of different trading preferences.
 Angle, Social Forces 65 (1986), Dragulescu, Yakovenko, Eur.Phys.J.B 17 (2000), Bouchaud,
 Mezard, Physica A 282 (2000), Chatterjee, Chakrabarti, Stinchcombe, Phys.Rev.E 72 (2005), Reptowicz, Hutzler, Richmond, Physica A 356 (2005), Mohanty, Phys.Rev.E 74 (2006), D.M., Toscani, Kin.Rel.Models 1 (2008), ...

Lots of closely related work on inelastic Maxwell molecules exist, like *Carlen, Gabetta, Toscani*, Comm.Math.Phys. **199** (1999), *Carlen, Carvalho, Gabetta*, Comm.Pure Appl.Math. **53** (2000), *Bobylev, Carrillo, Gamba*, J.Stat.Phys. **98** (2000), *Bobylev, Cercignani*, J.Stat.Phys. **110** (2003), *Carrillo, Cordier, Toscani*, Disc.Cont.Dyn.Syst.A **24** (2009), ...

The CPT-Model — Trade Rules

Trade Rules (S.Cordier&L.Pareschi&G.Toscani, J.Stat.Phys. (2005))

$$w' = \underbrace{\lambda}_{L} w + \underbrace{(1-\lambda)}_{R} w_{*}, \quad w'_{*} = \underbrace{\lambda}_{L_{*}} w_{*} + \underbrace{(1-\lambda)}_{R_{*}} w,$$

 the number λ ∈ (0,1) is the saving propensity (i.e. the fraction of wealth not available for trading),

The CPT-Model — Trade Rules

Trade Rules (S.Cordier&L.Pareschi&G.Toscani, J.Stat.Phys. (2005))

$$w' = \underbrace{(\lambda + \eta)}_{L} w + \underbrace{(1 - \lambda)}_{R} w_*, \quad w'_* = \underbrace{(\lambda + \eta_*)}_{L_*} w_* + \underbrace{(1 - \lambda)}_{R_*} w_*$$

- the number λ ∈ (0,1) is the saving propensity (i.e. the fraction of wealth not available for trading),
- the centered i.i.d. random varibles η, η_{*} ∈ (-λ, +∞) define the risk (i.e. gains/losses due to stochastic value of the traded assets).

The CPT model conserves the mean wealth,

$$\mathbb{E}[w' + w'_*] = \mathbb{E}[1 + \eta]w + \mathbb{E}[1 + \eta_*]w_* = w + w_*,$$

but is not strictly conservative unless $\eta \equiv \eta_* \equiv 0$ a.s.

Existence of Pareto tails

More generally, one can consider rules of the form

$$w' = Lw + Rw_*, \quad w'_* = L_*w_* + R_*w,$$

with random variables $L, L_*, R, R_* \geq 0$ satisfying

 $\mathbb{E}[L+R_*] = \mathbb{E}[L_*+R] = 1 \implies \mathbb{E}[w'+w'_*] = w + w_*.$

Existence of Pareto tails

More generally, one can consider rules of the form

$$w' = Lw + Rw_*, \quad w'_* = L_*w_* + R_*w,$$

with random variables $L, L_*, R, R_* \ge 0$ satisfying

$$\mathbb{E}[L+R_*] = \mathbb{E}[L_*+R] = 1 \implies \mathbb{E}[w'+w'_*] = w + w_*.$$

Tail properties of the corresponding steady state f_∞ are read off from

$$\mathbf{S}(s) = \frac{1}{2}\mathbb{E}[L^s + L^s_* + R^s + R^s_*] - 1.$$

Convexity of S and S(0) = 1, S(1) = 0 admit these possibilites:

Main Result for Models with Conservation of Mean Wealth

Theorem (D.M&G.Toscani J.Stat.Phys. (2008))

Assume $\sigma \neq 1$, and unit first momentum for f_0 .

The unique transient solution f(t; w) to the Boltzmann equation converges weakly-* to the unique steady state $f_{\infty}(w)$.

Theorem (D.M&G.Toscani J.Stat.Phys. (2008))

Assume $\sigma \neq 1$, and unit first momentum for f_0 .

The unique transient solution f(t; w) to the Boltzmann equation converges weakly- \star to the unique steady state $f_{\infty}(w)$.

- If $0 < \sigma < 1$, then f_{∞} is a Dirac distribution at w = 0.
- 3 If $1 < \sigma < +\infty$, then f_{∞} posseses a Pareto tail of index $\nu = \sigma$.
- If $\sigma = +\infty$, then f_{∞} possesses a slim tail.

Theorem (D.M&G.Toscani J.Stat.Phys. (2008))

Assume $\sigma \neq 1$, and unit first momentum for f_0 .

The unique transient solution f(t; w) to the Boltzmann equation converges weakly- \star to the unique steady state $f_{\infty}(w)$.

• If $0 < \sigma < 1$, then f_{∞} is a Dirac distribution at w = 0.

3 If $1 < \sigma < +\infty$, then f_{∞} posseses a Pareto tail of index $\nu = \sigma$.

• If $\sigma = +\infty$, then f_{∞} possesses a slim tail.

Remark 1: The steady state is always supported on \mathbb{R}_+ .

Remark 2: Under additional moment and regularity hypotheses on f_0 , the convergence $f(t) \rightarrow f_{\infty}$ is strong in L^1 and at exponential rate in t.

First: Show contractivity of the evolution in Fourier distance, ²

$$d_s(f(t), g(t)) \le \exp\left(\mathbf{S}(s) \cdot t\right) d_s(f_0, g_0).$$

Second: Study evolution of the momentum hierarchy,

$$\frac{d}{dt}\int w^s f(t;w)dw = C(t) + \mathbf{S}(s) \cdot \int_{\mathbb{R}} w^s f(t;w)dw.$$

²E.Gabetta&G.Toscani&W.Wennberg. J.Stat.Phys. (1995)

First: Show contractivity of the evolution in Fourier distance, ²

$$d_s(f(t), g(t)) \le \exp\left(\mathbf{S}(s) \cdot t\right) d_s(f_0, g_0).$$

Second: Study evolution of the momentum hierarchy,

$$\frac{d}{dt}\int w^s f(t;w)dw = C(t) + \mathbf{S}(s) \cdot \int_{\mathbb{R}} w^s f(t;w)dw.$$

For $\mathbf{S}(s) < 0,$ one has

- weak-* convergence $f(t) \rightharpoonup f_{\infty}$ at exponential rate in d_s ,
- *t*-uniform boundedness of the *s*th moment.

²E.Gabetta&G.Toscani&W.Wennberg. J.Stat.Phys. (1995)

Regimes for High Societies

In the CPT model with $\eta=\pm\mu$, i.e.,

$$w' = (\lambda \pm \mu)w + (1 - \lambda)w_*, \quad w'_* = (\lambda \pm \mu)w_* + (1 - \lambda)w,$$

one obtains the following classification for f_∞ :

- Region II: Socialism (Slim tails)
- Region III: Capitalism (Pareto tails)
- Region IV: Plutocracy (Dirac distribution)

Special Cases

Trade Rules (Winner-takes-all-model)

$$w' = w + w_*, \qquad w'_* = 0.$$

Wealth condensation occurs. One explicit solution is given by

$$f(t;w) = \left(\frac{2}{2+t}\right)^2 \exp\left(-\frac{2w}{2+t}\right) \mathbf{1}_{w>0} + \frac{t}{2+t}\delta_0(w).$$

More and more wealth is accumulated by fewer and fewer people.

Special Cases

Trade Rules (Winner-takes-all-model)

$$w' = w + w_*, \qquad w'_* = 0.$$

Wealth condensation occurs. One explicit solution is given by

$$f(t;w) = \left(\frac{2}{2+t}\right)^2 \exp\left(-\frac{2w}{2+t}\right) \mathbf{1}_{w>0} + \frac{t}{2+t}\delta_0(w).$$

More and more wealth is accumulated by fewer and fewer people.

Trade Rules (Pure Exchange model)

$$w' = \lambda w + (1 - \lambda)w_*, \quad w'_* = \lambda w_* + (1 - \lambda)w.$$

The unique steady state $f_{\infty} = \delta_1$ is concentrated in the mean wealth. All agents are equally rich eventually.

$$w' = \lambda w + (1 - \lambda_*)w_*, \qquad w'_* = \lambda_* w_* + (1 - \lambda)w,$$

$$w' = \lambda w + (1 - \lambda_*)w_*, \qquad w'_* = \lambda_* w_* + (1 - \lambda)w,$$

with agent-specific time-independent saving propensities λ , $\lambda_* \in (0, 1)$.

• The model is strictly conservative, $w' + w'_* = w + w_*$.

$$w' = \lambda w + (1 - \lambda_*)w_*, \qquad w'_* = \lambda_* w_* + (1 - \lambda)w,$$

- The model is strictly conservative, $w' + w'_* = w + w_*$.
- There are (vague) similarities to a 1-dim. homogeneous gas mixture of components with different molecular weights.

$$w' = \lambda w + (1 - \lambda_*)w_*, \qquad w'_* = \lambda_* w_* + (1 - \lambda)w,$$

- The model is strictly conservative, $w' + w'_* = w + w_*$.
- There are (vague) similarities to a 1-dim. homogeneous gas mixture of components with different molecular weights.
- Equilibrium in the Boltzmann equation for *f̃*(t; λ, w) is achieved iff (1 − λ)w = γ a.s. for a global constant γ > 0.

$$w' = \lambda w + (1 - \lambda_*)w_*, \qquad w'_* = \lambda_* w_* + (1 - \lambda)w,$$

- The model is strictly conservative, $w' + w'_* = w + w_*$.
- There are (vague) similarities to a 1-dim. homogeneous gas mixture of components with different molecular weights.
- Equilibrium in the Boltzmann equation for $\tilde{f}(t; \lambda, w)$ is achieved iff $(1 \lambda)w = \gamma$ a.s. for a global constant $\gamma > 0$.
- With the density ρ of λ on (0,1),

$$f_{\infty}(w) = \int_{0}^{1} \tilde{f}_{\infty}(\lambda, w) d\lambda = \frac{\gamma}{w^{2}} \rho \Big(1 - \frac{\gamma}{w} \Big),$$

CCM-model — Existence of Pareto Tails

Calculate moments of f_∞ ,

$$\int_0^\infty w^s f_\infty(w) dw = \int_{1/\gamma}^\infty w^s \frac{\gamma}{w^2} \rho\Big(1 - \frac{\gamma}{w}\Big) dw = \gamma^s \underbrace{\int_0^1 (1 - \lambda)^{-s} \rho(\lambda) d\lambda}_{=:\mathbf{Q}(s)}.$$

CCM-model — Existence of Pareto Tails

Calculate moments of f_∞ ,

$$\int_0^\infty w^s f_\infty(w) dw = \int_{1/\gamma}^\infty w^s \frac{\gamma}{w^2} \rho \Big(1 - \frac{\gamma}{w} \Big) dw = \gamma^s \underbrace{\int_0^1 (1 - \lambda)^{-s} \rho(\lambda) d\lambda}_{=:\mathbf{Q}(s)}.$$

Theorem (D.M.&G.Toscani Kinet.Rel.Models (2008))

Assume $\mathbf{Q}(1) < \infty$. Let f_0 have unit first and finite second momentum.

Then the transient wealth distribution f(t;w) converges weakly- \star to the unique steady distribution

$$f_{\infty}(w) = \frac{1}{\mathbf{Q}(1)w^2} \rho\Big(1 - \frac{1}{\mathbf{Q}(1)w}\Big),$$

and f_{∞} has a Pareto tail of index $\nu = \inf\{s \mid \mathbf{Q}(s) = +\infty\}$.

Two processes:

- $\textbf{0} \ \text{Agents of the same } \lambda \text{ accumulate at "local" mean wealth } W(t;\lambda)$
- 2 $W(t;\lambda)$ tends to limit $\mathbf{Q}(1)^{-1}(1-\lambda)^{-1}$

Result from direct simulation Monte Carlo for 30 families of agents with 30 members each; vertical axis shows $\mathbf{Q}(1)(1-\lambda)w$.

To show: $\tilde{f}(t;\boldsymbol{\lambda},w)$ concentrates on

$$\mathcal{M} := \left\{ \left(\lambda, w \right) \middle| (1 - \lambda) w = \mathbf{Q}(1)^{-1} \right\} \subset (0, 1) \times \mathbb{R}_+.$$

To show: $\tilde{f}(t;\lambda,w)$ concentrates on

$$\mathcal{M} := \left\{ \left(\lambda, w \right) \middle| (1 - \lambda) w = \mathbf{Q}(1)^{-1} \right\} \subset (0, 1) \times \mathbb{R}_+.$$

1 Fast dynamics: Concentration of the λ -species at $w = W(t; \lambda)$,

$$\rho(\lambda)^{-1} \int_0^\infty \left(w - W(t;\lambda) \right)^2 \tilde{f}(t;\lambda,w) dw \to 0$$

in L^1_{ρ} at rate $t^{-\nu}$.

To show: $\tilde{f}(t; \lambda, w)$ concentrates on

$$\mathcal{M} := \left\{ \left(\lambda, w \right) \middle| (1 - \lambda) w = \mathbf{Q}(1)^{-1} \right\} \subset (0, 1) \times \mathbb{R}_+.$$

9 Fast dynamics: Concentration of the λ -species at $w = W(t; \lambda)$,

$$\rho(\lambda)^{-1} \int_0^\infty \left(w - W(t;\lambda) \right)^2 \tilde{f}(t;\lambda,w) dw \to 0$$

in L^1_{ρ} at rate $t^{-\nu}$.

3 Slow dynamics: Convergence of the λ -specific mean wealth

$$W(t;\lambda) := \rho(\lambda)^{-1} \int_0^\infty w \tilde{f}(t;\lambda,w) dw \to \frac{1}{(1-\lambda)\mathbf{Q}(1)}$$

in L^1_{ρ} at rate $t^{-(\nu-1)}$.

To show: $\tilde{f}(t;\lambda,w)$ concentrates on

$$\mathcal{M} := \left\{ \left(\lambda, w \right) \middle| (1 - \lambda) w = \mathbf{Q}(1)^{-1} \right\} \subset (0, 1) \times \mathbb{R}_+.$$

9 Fast dynamics: Concentration of the λ -species at $w = W(t; \lambda)$,

$$\rho(\lambda)^{-1} \int_0^\infty \left(w - W(t;\lambda) \right)^2 \tilde{f}(t;\lambda,w) dw \to 0$$

in L^1_{ρ} at rate $t^{-\nu}$.

3 Slow dynamics: Convergence of the λ -specific mean wealth

$$W(t;\lambda) := \rho(\lambda)^{-1} \int_0^\infty w \tilde{f}(t;\lambda,w) dw \to \frac{1}{(1-\lambda)\mathbf{Q}(1)}$$

in L^1_{ρ} at rate $t^{-(\nu-1)}$.

Optimality: Lower bound on Wasserstein distance W_1 follows from

•
$$W(t;\lambda) \leq W(0;\lambda) + t$$
, and

• "unfilled" Pareto tail $t < w < \infty$ has first momentum $\approx t^{-(\nu-1)}$.

Summary

• Mandelbrot's Paradigma:

Simple markets behave like homogeneous Boltzmann gases.

Benchmark:

Steady states should exhibit Pareto tails.

• Equilibration:

Pareto tails...

- ... are exponentially stable in the CPT-model, which conserves wealth in the statistical mean only.
- ... are only algebraically stable in the CCM-model, which is strictly conservative.

Thank you!