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The Kinetic Approach to Modelling Simple Markets

General Idea: In an extremely simple market model 1 trading agents
behave like colliding molecules in a homogeneous gas, according to the
following dictionary:

econophysics particle dynamics
agents molecules
wealth momentum
mean wealth total momentum
trade event binary collision

Here the mean wealth (1st momentum) plays the same pivotal role
as the total energy (2nd momentum) for Maxwell molecules.

What makes these models special is an intrinsic randomness:
The risky assets that is exchanged in trades have a stochastic value.

1B. Mandelbrot Int.Econom.Rev.1 (1960)
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Modelling Trades with the Boltzmann Equation

f(t;w) is the density of agents with wealth w ∈ R at time t > 0.

Paradigm (around 1985)

f satisfies a homogeneous one-dim. Boltzmann equation,

∂tf = Q+(f, f)− f,

with collisional gain operator Q+,∫
R
φ(w)Q+(f, f) dw =

1
2

∫∫
R×R

E
[
φ(w′) + φ(w′∗)

]
f(w)dw f(w∗)dw∗,

realizing the “trade rules”

w′ = Lw +Rw∗, w′∗ = L∗w∗ +R∗w

with random variables L, L∗, R, R∗ ≥ 0.

Particle interpretation:
Pre-trade wealths w, w∗ change into post-trade wealths w′, w′∗.



Pareto Tails

Let f∞(w) denote the stationary wealth density,
and F∞(w) =

∫∞
w
f∞(w′) dw′ the associated distribution function.

Pareto’s Law (V. Pareto in “Cours d’Économie Politique” 1897)

F∞(w) ≈ w−ν for w � 1 with a Pareto-index ν ∈ (1.5, 2.5).



Classes of Models

Exponential growth of wealth, E[w′ + w′∗] ≈ (1 + ε)(w + w∗).
Pareto tails appear in self-similar solutions.
Slanina, Phys.Rev.E 69 (2004), Pareschi, Toscani, J.Stat.Phys. 124 (2006), . . .

Conservation in the mean, E[w′ + w′∗] = w + w∗.
Pareto tails appear for sufficiently “risky” trade rules.
Cordier, Pareschi, Toscani, J.Stat.Phys. 120 (2005), Düring, Toscani, Physica A 384 (2007),

D.M., Toscani, J.Stat.Phys. 130 (2008), Düring, D.M., Toscani, Phys.Rev.E 78 (2008), . . .

Strict conservation, w′ + w′∗ = w + w∗.
For Pareto tails, mix species of different trading preferences.
Angle, Social Forces 65 (1986), Dragulescu, Yakovenko, Eur.Phys.J.B 17 (2000), Bouchaud,

Mezard, Physica A 282 (2000), Chatterjee, Chakrabarti, Stinchcombe, Phys.Rev.E 72

(2005), Reptowicz, Hutzler, Richmond, Physica A 356 (2005), Mohanty, Phys.Rev.E 74

(2006), D.M., Toscani, Kin.Rel.Models 1 (2008), . . .

Lots of closely related work on inelastic Maxwell molecules exist, like
Carlen, Gabetta, Toscani, Comm.Math.Phys. 199 (1999), Carlen, Carvalho, Gabetta, Comm.Pure

Appl.Math. 53 (2000), Bobylev, Carrillo, Gamba, J.Stat.Phys. 98 (2000), Bobylev, Cercignani,

J.Stat.Phys. 110 (2003), Carrillo, Cordier, Toscani, Disc.Cont.Dyn.Syst.A 24 (2009), . . .
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D.M., Toscani, J.Stat.Phys. 130 (2008), Düring, D.M., Toscani, Phys.Rev.E 78 (2008), . . .

Strict conservation, w′ + w′∗ = w + w∗.
For Pareto tails, mix species of different trading preferences.
Angle, Social Forces 65 (1986), Dragulescu, Yakovenko, Eur.Phys.J.B 17 (2000), Bouchaud,

Mezard, Physica A 282 (2000), Chatterjee, Chakrabarti, Stinchcombe, Phys.Rev.E 72

(2005), Reptowicz, Hutzler, Richmond, Physica A 356 (2005), Mohanty, Phys.Rev.E 74

(2006), D.M., Toscani, Kin.Rel.Models 1 (2008), . . .

Lots of closely related work on inelastic Maxwell molecules exist, like
Carlen, Gabetta, Toscani, Comm.Math.Phys. 199 (1999), Carlen, Carvalho, Gabetta, Comm.Pure

Appl.Math. 53 (2000), Bobylev, Carrillo, Gamba, J.Stat.Phys. 98 (2000), Bobylev, Cercignani,

J.Stat.Phys. 110 (2003), Carrillo, Cordier, Toscani, Disc.Cont.Dyn.Syst.A 24 (2009), . . .



The CPT-Model — Trade Rules

Trade Rules (S.Cordier&L.Pareschi&G.Toscani, J.Stat.Phys. (2005))

w′ =

(

λ

+ η)

︸ ︷︷ ︸
L

w + (1− λ)︸ ︷︷ ︸
R

w∗, w′∗ =

(

λ

+ η∗)

︸ ︷︷ ︸
L∗

w∗ + (1− λ)︸ ︷︷ ︸
R∗

w,

1 the number λ ∈ (0, 1) is the saving propensity
(i.e. the fraction of wealth not available for trading),

2 the centered i.i.d. random varibles η, η∗ ∈ (−λ,+∞) define the risk
(i.e. gains/losses due to stochastic value of the traded assets).

The CPT model conserves the mean wealth,

E[w′ + w′∗] = E[1 + η]w + E[1 + η∗]w∗ = w + w∗,

but is not strictly conservative unless η ≡ η∗ ≡ 0 a.s.
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Existence of Pareto tails

More generally, one can consider rules of the form

w′ = Lw +Rw∗, w′∗ = L∗w∗ +R∗w,

with random variables L,L∗, R,R∗ ≥ 0 satisfying

E[L+R∗] = E[L∗ +R] = 1 =⇒ E[w′ + w′∗] = w + w∗.

Tail properties of the corresponding steady state f∞ are read off from

S(s) =
1
2

E[Ls + Ls∗ +Rs +Rs∗]− 1.

Convexity of S and S(0) = 1, S(1) = 0 admit these possibilites:

1

1

σ

0 < σ < 1
1

1

σ = 1
1

1

σ

σ > 1
1

1

σ =∞
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Main Result for Models with Conservation of Mean Wealth

Theorem (D.M&G.Toscani J.Stat.Phys. (2008))

Assume σ 6= 1, and unit first momentum for f0.

The unique transient solution f(t;w) to the Boltzmann equation
converges weakly-? to the unique steady state f∞(w).

1 If 0 < σ < 1, then f∞ is a Dirac distribution at w = 0.

2 If 1 < σ < +∞, then f∞ posseses a Pareto tail of index ν = σ.

3 If σ = +∞, then f∞ possesses a slim tail.

Remark 1: The steady state is always supported on R+.

Remark 2: Under additional moment and regularity hypotheses on f0,
the convergence f(t)→ f∞ is strong in L1 and at exponential rate in t.
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Elements of the Proof

First: Show contractivity of the evolution in Fourier distance, 2

ds
(
f(t), g(t)

)
≤ exp

(
S(s) · t

)
ds(f0, g0).

Second: Study evolution of the momentum hierarchy,

d

dt

∫
ws f(t;w)dw = C(t) + S(s) ·

∫
R
ws f(t;w)dw.

For S(s) < 0, one has

weak-? convergence f(t) ⇀ f∞ at exponential rate in ds,

t-uniform boundedness of the sth moment.

2E.Gabetta&G.Toscani&W.Wennberg. J.Stat.Phys. (1995)
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Regimes for High Societies

In the CPT model with η = ±µ, i.e.,

w′ = (λ± µ)w + (1− λ)w∗, w′∗ = (λ± µ)w∗ + (1− λ)w,

one obtains the following classification for f∞:

Zone I
Not allowed

Zone II
Slim Tails

Zone III
Pareto Tails

Zone IV
Condensation

0.25 0.5 0.75 1 Λ

0.25

0.5

0.75

1

Μ

Region II: Socialism (Slim tails)

Region III: Capitalism (Pareto tails)

Region IV: Plutocracy (Dirac distribution)



Special Cases

Trade Rules (Winner-takes-all–model)

w′ = w + w∗, w′∗ = 0.

Wealth condensation occurs. One explicit solution is given by

f(t;w) =
( 2

2 + t

)2

exp
(
− 2w

2 + t

)
1w>0 +

t

2 + t
δ0(w).

More and more wealth is accumulated by fewer and fewer people.

Trade Rules (Pure Exchange model)

w′ = λw + (1− λ)w∗, w′∗ = λw∗ + (1− λ)w.

The unique steady state f∞ = δ1 is concentrated in the mean wealth.
All agents are equally rich eventually.
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The CCM-Model — Trade Rules

Trade Rules (Chakrabarti&Chatterjee&Manna Physica A (2004))

w′ = λw + (1− λ∗)w∗, w′∗ = λ∗w∗ + (1− λ)w,

with agent-specific time-independent saving propensities λ, λ∗ ∈ (0, 1).

The model is strictly conservative, w′ + w′∗ = w + w∗.

There are (vague) similarities to a 1-dim. homogeneous
gas mixture of components with different molecular weights.

Equilibrium in the Boltzmann equation for f̃(t;λ,w) is achieved iff
(1− λ)w = γ a.s. for a global constant γ > 0.

With the density ρ of λ on (0, 1),

f∞(w) =
∫ 1

0

f̃∞(λ,w)dλ =
γ

w2
ρ
(
1− γ

w

)
,
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CCM–model — Existence of Pareto Tails

Calculate moments of f∞,∫ ∞
0

wsf∞(w)dw =
∫ ∞

1/γ

ws
γ

w2
ρ
(
1− γ

w

)
dw = γs

∫ 1

0

(1− λ)−sρ(λ)dλ︸ ︷︷ ︸
=:Q(s)

.

Theorem (D.M.&G.Toscani Kinet.Rel.Models (2008))

Assume Q(1) <∞. Let f0 have unit first and finite second momentum.

Then the transient wealth distribution f(t;w) converges weakly-?
to the unique steady distribution

f∞(w) =
1

Q(1)w2
ρ
(
1− 1

Q(1)w

)
,

and f∞ has a Pareto tail of index ν = inf{s |Q(s) = +∞}.
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Time Scales in Relaxation

Two processes:

1 Agents of the same λ accumulate at “local” mean wealth W (t;λ)
2 W (t;λ) tends to limit Q(1)−1(1− λ)−1

Result from direct simulation Monte Carlo for 30 families of agents with
30 members each; vertical axis shows Q(1)(1− λ)w.


agents.mov
Media File (video/quicktime)



Creating of a Pareto Tail

To show: f̃(t;λ,w) concentrates on

M :=
{

(λ,w)
∣∣ (1− λ)w = Q(1)−1} ⊂ (0, 1)× R+.

1 Fast dynamics: Concentration of the λ-species at w = W (t;λ),

ρ(λ)−1

∫ ∞
0

(
w −W (t;λ)

)2
f̃(t;λ,w)dw → 0

in L1
ρ at rate t−ν .

2 Slow dynamics: Convergence of the λ-specific mean wealth

W (t;λ) := ρ(λ)−1

∫ ∞
0

wf̃(t;λ,w)dw → 1
(1− λ)Q(1)

in L1
ρ at rate t−(ν−1).

Optimality: Lower bound on Wasserstein distance W1 follows from

W (t;λ) ≤W (0;λ) + t, and

“unfilled” Pareto tail t < w <∞ has first momentum ≈ t−(ν−1).
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“unfilled” Pareto tail t < w <∞ has first momentum ≈ t−(ν−1).



Creating of a Pareto Tail

To show: f̃(t;λ,w) concentrates on

M :=
{

(λ,w)
∣∣ (1− λ)w = Q(1)−1} ⊂ (0, 1)× R+.

1 Fast dynamics: Concentration of the λ-species at w = W (t;λ),

ρ(λ)−1

∫ ∞
0

(
w −W (t;λ)

)2
f̃(t;λ,w)dw → 0

in L1
ρ at rate t−ν .
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Optimality: Lower bound on Wasserstein distance W1 follows from

W (t;λ) ≤W (0;λ) + t, and

“unfilled” Pareto tail t < w <∞ has first momentum ≈ t−(ν−1).



Summary

Mandelbrot’s Paradigma:
Simple markets behave like homogeneous Boltzmann gases.

Benchmark:
Steady states should exhibit Pareto tails.

Equilibration:
Pareto tails. . .

. . . are exponentially stable in the CPT-model,
which conserves wealth in the statistical mean only.
. . . are only algebraically stable in the CCM-model,
which is strictly conservative.

Thank you!


