
OVERVIEW

First set of lectures: Basics of Brownian motion, Stochastic Differential Equations, Ito calculus, con-

nection with jump processes, Fokker-Planck equations and related PDE’s

References:

Oksendal, Stochastic Differential Equations: An Introduction with Applications
Schuss, Introduction to Stochastic Differential Equations

Gardiner, Handbook of Stochatics Methods for Physics and Chemistry

Second set of lecturers: Asymptotic approximations, including large number of events, different time
scales, small noise, and stochastic averaging

References:
Stuart and Pavliotis, Multiscale methods: Homogenization and Averaging

Bender and Orszag, Advanced Mathematical Methods for Scientists and Engineers
(Also references with specific examples)
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1 From Einstein to Ito

Motivating Examples

1.1 Basic stochastic models: continous time and state space

Characteristics of the noise:

Example 1: Motion of a Brownian particle:

mxtt = −ηxt +X (1)

This is just F = ma. x = particle position xt =
∂x
∂t

X = random fluctuations
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Figure 1: Realization for noise process, particle position, and velocity

Langevin gave an alternative (heuristic) derivation to that of Einstein
Here we include some physical motivation, leading to mathematical definition:

m=mass
η = viscous drag

X= irregular fluctuations: 〈X〉 = 0.
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From statistical mechanics: 1
2m
〈
v2
〉
= 1

2m
〈
x2t
〉
= kT

2 as t→∞
T = temperature

(k is Boltzmann’s constant) Then averaging the equation or x gives: x→ x0 as t→∞.

Note: we are averaging over realizations, 〈f(x)〉 =
∫
f(x)p(x)dx for p(x) the (stationary) density of

x. The variation about initial condition has mean zero E[x− x0] = 〈(x− x0)〉
Now let’s look at the variance E[x2]: (take x0 = 0 for simplicity)

Multiply equation of motion by x, integrate:

⇒ mxxtt = −ηxxt +X · x (2)

Here we have assumed X is mathematically “nice”

⇒ m

2

(
(x2)tt − 2(xt)

2
)
= −η

2
(x2)t +X · x (3)

Note: Need to determine features of X , and determine
〈
x2
〉
= E[x2].

Averaging over realizations and using the result for 1
2
m
〈
v2
〉
gives

m

2

〈
x2
〉

tt
= −η

2

〈
x2
〉

t
+ kT +

✟
✟
✟✯
0〈X〉 〈x〉 (4)

assuming independence of X and x

Then, we integrate the equation for
〈
x2
〉

t
to get

〈
x2
〉

t
=

2kT

η
+ Ce−

ηt

m (5)

⇒ as t→∞
〈
x2
〉
→ 2kT

η
t (6)
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Then the variance of the particle position 〈x2〉 behaves as a constant times t

Einstein had derived a similar result, looking for probability density corresponding to diffusion (later).

Note that Langevin’s derivation assumes that the usual rules of calculus apply. We will see that is
a big assumption, which in general is not the case.

Highlights for the behaviour of X

We consider the equation for the velocity v = xt, to look more closely at the implications for the
behavior of the noisy term X What are these fluctuations?

Write the equations of motion of a Brownian particle:

mvt = −ηv +X (7)

Formal solution for v: (assuming X is a “nice” function)

v = v0e
− η

m
t +

1

m

∫ t

0

e−
η

m
(t−s)X(s)ds (8)

so we can consider the variance of v about its mean:
〈(

v − v0e−
η
m
t
)2
〉

=

〈

1

m2

(∫ t

0

e−
η
m
(t−s)X(s)ds

)2
〉

(9)

Let’s now compare the average of this term (
∫
. . . ds)2 to the result 1

2
m
〈
v2
〉
= kT

2

Thinking of the integral as the limit of a sum, we write

∫ t

0

e−
η
m
(t−s)X(s)ds = lim

N→∞

N∑

j=1

e−
η
m
(t−j∆s)∆bj, (10)
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taking X(s) ≈ ∆b
∆s

Here b is used, as we are heading toward identifying Brownian motion
That is, we view X as the derivative of random fluctuations (does not exist as ∆s→ 0).

Assuming the ∆bj are independent (independent increments in the random process) and
〈
∆b2j

〉
=

q∆s yields

〈(
N∑

j=1

e−
η

m
(t−j∆s)∆bj

)2〉

=

N∑

j=1

e−
2η
m
(t−j∆s)q∆s+

∑

j 6=k
()〈∆bj∆bk〉 (11)

For independent increments, the last term vanishes, yielding, as ∆s→ 0, an integral
∫ t

0

e−
2η
m
(t−s)qds

which can be easily evaluated as Const · (1− e− 2η
m
t).

Then, m
2

〈
v2
〉
= const, as t→∞. We can then choose q appropriately so that

m
〈
v2
〉
= kT.

So we have X(s) as a “derivative” of the random fluctuations, such that
〈
(X(s)∆s)2

〉
= ∆s and,

furthermore, have assumed x is independent of X (〈Xx〉 = 〈X〉 〈x〉 previously). Essentially this
follows from the assumption of independent increments of the random fluctuations.

Note: We have a definition of X (random part) that is consistent with the physical behaviour of
v

These calculations illustrate several key mathematical properties of Brownian motion = standard
Wiener process w(t):
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• The increments w(t+s)−w(t) is independent of t and independent of w(t)−w(t−u) (u ≥ 0,s ≥ 0)

• Paths of w(t) are continuous (X(t) undefined, but integrated, gives continuous paths for w)

• Joint probability distribution of (w(t1), w(t2), ..., w(tn)) is mean zero Gaussian, and E[w2(t)] = t
(normalized)

Then w(t) is distributed as N(0,
√
t), with Var(w) = t, and covariance:

E[w(s)w(t)] = E([w(t)− w(s)]w(s)) + E[w2(s)] = 0 + s = min(t, s) (for s < t) (12)

Simulation of SDE’s and Langevin-type stochastic models:
Langevin-type models

dx = f(x)dt+ qdw (13)

f(x) is known as the drift

q is the diffusion coefficient

We write this in differential form, rather than

dx

dt
= f(x) + q

dw

dt
(14)

since w is continuous but not differentiable.

General Stochastic Differential Equations (SDE):

dx = A(x, t)dt+ B(x, t)dw (15)

The behavior of the increment dw suggests a simple approach for numerical simulation:

Simulate at discrete time steps: tj = j∆t
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Discrete approximation for the derivative:

dx

dt
≈ x(t+∆t)− x(t)

∆t

Behavior of dw:
dw ≈ ∆w ∼ N(0,

√
∆t)

Then,

x(t+∆t) = x(t) + A(x(t), t)∆t+ B(x(t), t)
√
∆tZ

where Z ∼ N(0, 1).

In general, writing xj = x(j∆t) we have an iterative procedure to get xj for all j , starting with an

initial condition x = x0 and computing to a time T = K∆t.

x(1) = x0;

for j = 1 : K − 1

xj+1 = xj +A(xj, tj)∆t+ B(xj, tj)
√
∆tZj

end

Zj are K − 1 independent N(0, 1) random variables
This is the Euler-Maruyama method. It is generally associated with the Ito interpretation of SDE’s

(later). This has implications for the dynamics via the interpretation of the noise increments.

Higher order methods: Reference: Kloeden and Platen, Numerical Solution of SDE’s, 1992. Both
Weak (in distribution) and Strong (pathwise) methods.

For higher dimensional SDE:

dx = A(x, t)dt+B(x, t)dw (16)
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x,A are d-dimensional, w is n-dimensional, B is d× n dimensional.

Example:

mxtt = −ηxt + qX (17)

For X as above, we write

dx = vdt

dv = − η
m
vdt+

q

m
dw

Note: the drift is linear ( in v), diffusion coefficient is constant
v is an Ornstein-Uhlenbeck (O-U) process - linear drift and constant diffusion coefficient
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Figure 2: Realization for noise process, particle position, and velocity
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x(1) = x0; v(1) = v0

for j = 1 : K − 1

xj+1 = vj∆t

vj+1 = vj −
η

m
vj∆t+

q

m

√
∆tZj

end

Note: v is an Ornstein-Uhlenbeck process (OU process). It has a linear drift term and a constant
coefficient for the diffusion term. OU processes have a Gaussian stationary density with a constant

mean and variance, i.e. normally distributed. That is, as t→∞, v ∼ N(0, q/
√
2η).

Dynamics driven by Jump Processes - “Shot Noise”

dI

dt
= −αI + qµ(t) (18)

µ(t) =
∑

δ(t− tk) (19)

I=current, tk=arrival time of electron. Note that µ(t) is not mean zero.

Define: N(t)=sum of Poisson arrivals,
dN

dt
= µ (20)

formally, but N is a step function. If we want to write the current equation in terms of a mean zero
process (analogous to X in previous example) then consider E[dN ] = λdt, V ar[dN ] = λdt, where λ
is the mean arrival rate.

Note: For a Poisson process N with arrival rate λ, then the average number of arrivals in an
interval of length t is λt.

Then
dη = dN − λdt

9



is a centered Poisson increment, with mean zero, and variance λdt

Formally

dI

dt
= −αI + λq + q

dη

dt
(21)
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Figure 3: Realization for I . On the left, the rate of jumps is smaller compared with the decay rate of I , on the right the jumps are more
frequent. The bottom row figures are zooms of the realizations in the top row.

Note on Numerical simulation
Here η is not a continuous process, rather, events occur at times that are exponentially distributed.

Then some time interval increments of length ∆t will have an event, and some will not.
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Averaging yields
d 〈I〉
dt

= (−α 〈I〉+ λq), 〈I〉 → λq

α
as t→∞ (22)

What about 〈I2〉?

Suppose we consider d(I2) and compare with equation above. We can write d(I2) in a couple of

different ways:
d(I2) = (I + dI)2 − I2 = 2IdI + (dI)2 (23)

and
(dI)2 = ((−αI + λq)dt)2 + 2(−αI + λq)dtdη + q2dη2 (24)

Compare with heuristic as in previous example: multiply equation (21) for I by I and integrate
and average:

1

2

d
〈
I2
〉

dt
= −α

〈
I2
〉
+ λq 〈I〉+ q

〈

I
dη

dt

〉

(25)

What about
〈

I dηdt

〉

? Is it = 0? If so, then we can solve for
〈
I2
〉
as t→∞ (left as an exercise).

〈
I2
〉

=

(
λq

α

)2

= 〈I〈2

⇒ V ar(I) = 〈I2〉 − 〈I〉2 = 0

! No effect of noise - not correct!

This heuristic neglects the term (dI)2 - it is not in the equation for
〈
I2
〉
, obtained from (23)-(24).

So we need to examine that equation

(dI)2 = ( )(dt)2 + ( )dt 〈dη〉+ q2
〈
dη2
〉

(26)
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using the properties of the centered Poisson increment.

〈dη〉 = 0
〈
(dη)2

〉
= λdt

Note that the centered Poisson increment dη has the same variance as the original Poisson incre-
ment dN .

So now, combining results from the expression above, we can get the correct equation for I2:

d
〈
(I)2

〉
= 2 〈IdI〉+

〈
(dI)2

〉
(27)

= 〈(2I(−αI + λq))dt〉+✘✘✘✘✘✘✿0〈2qIdη〉+ q2λdt+ o(dt) (28)

⇒ V ar
〈
I2
〉
=
q2λ

2α
t→∞ (29)

Recall that for the Wiener process 〈w(t)〉 = 0 and
〈
w2
〉
= t. Later we see that the if Poisson events

are very frequent, then one can replace Poisson random variables with appropriate “centering” and

Brownian motion (normal random variables).

Other types of increments: e.g. Levy Processes

Levy Processes can be characterized by a combination of Brownian motion and jumps.

A simple class of Levy Processes are alpha-stable processes. Instead of having a density with expo-

nentially decaying tails, like the Gaussian distribution, they have “fat” tails; that is, the tails of the
density have the behavior

p(x) = |x|α+1 as x→∞ for α < 2

To simulate an SDE with alpha-stable noise increments, e.g.

dx = H(x)dt+ κdLα,β (30)

the iterative steps of the Euler-type method take the form

xn+1 = xn +H(xn)∆t+ κδLα,βn ∆Lα,βn ∼ Sα(β, (∆t)
1/α) (31)
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The alpha-stable distribution is given in terms of its characteristic function, rather than the density,

so X ∼ S
β,σ
α has a characteristic function of the form

ψ(k) = F[p(x)] =

∫

eikxp(x)dx = exp(−σα|k|α(1− iβsgn(k)φ(k)))

φ(k) = =

{
tan
(
πα
2

)
α 6= 1

− 2
π
log |k| α = 1

(32)

Note: for α = 2, we have a Gaussian distribution.

Additional details: Dybiec, Gudowska-Nowak, Hanggi, Phys. Rev E, 2006; Asmussen and Glynn,
2007.
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2 Ito’s Formula

Now we ask:

What are the rules for functions of w(t): f(w(t))?

In particular, we are interested in how to treat df(w(t)), write stochastic differential equations in-
cluding w(t)

Ito’s formula: find equation for df(x) given dx = a dt+ b dw

Review of Chain Rule for deterministic functions: if x′(t) = g(x, t), what is df for f(x, t)?
Simple example: y = w2

∫ t

s

dy = w2(t)− w2(s) (33)

Can we write dy = a dt+ b dw? Or,
∫

dy =

∫

adt +

∫

bdw (34)

where a,b may be functions of y,t?

We need to define bdw: how do we evaluate or interpret b dw ?

Ito interpretation:
∫ t

s

b(w)dw =
∑

j

b(w(tj))(w(tj+1)− w(tj)) (35)

Note that this is the discretization used in the Euler-Maruyama numerical method.
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Stratonovich interpretation:
∫ t

s

b(w)dw =
∑

j

b

(
w(tj) + w(tj+1)

2

)

(w(tj+1)− w(tj)) (36)

where b is evaluated at the average of w(tj) and w(tj+1)

Back to the equation for y = w2: We compare
∫
dy with

∫
w dw - we might expect these two ex-

pressions to be related from the usual rules of calculus. (Why?)

If we use the Ito interpretation, then we rewrite it in a convenient way
∫ t

s

w dw =
1

2

[
∑

j

w2(tj+1)− w2(tj)− (w(tj+1)− w(tj))2
]

(37)

=
1

2
(w2(t)− w2(s))− 1

2

∑

j

(w(tj+1)− w(tj))2 (38)

This looks like an integrated quantity evaluated at the endpoints t and s plus a sum of dw2
j

Considering the expected value of the sum:

E

[
N∑

j=1

(w(tj+1)− w(tj))2
]

=

N∑

j=1

E
[
w2(tj+1)

]
+ E

[
w2(tj)

]
− 2min(tj+1, tj)

=

N∑

j=1

tj+1 + tj − 2tj =

N∑

j=1

∆t = t− s

where we have used the expression for the covariance of w (12). Furthermore, one can show that

V ar

[
N∑

j=1

(w(tj+1)− w(tj))2
]

∼ 1

N
(39)
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(reference: Schuss, Introduction to SDE’s)

So

2

∫ t

s

wdw = w2(t)− w2(s)− t− s = y(t)− y(s)− t− s (40)

in probability, as N →∞. Then for y = w2,

dy = 2w
︸︷︷︸

b

dw + 1
︸︷︷︸
a=1

dt (41)

Note: The expression is not simply dy = 2w dw, but there is also an additional term dt.

Next, we compute the rule for products

Consider dx = adt+ bdw and dw

For a,b constant, x = at+ bw, for x(0) = 0 (using the Ito interpretation)

xw = atw + (bw2) (42)

d(xw) = atdw + awdt+ b(2wdw) + bdt (43)

= xdw + wdx+ bdt (44)

And we can use this, together with the result for y = w2 to find by induction (exercise)

dwm(t) = m(w(t))m−1dw +
m(m− 1)

2
wm−2dt for m ≥ 2 (45)

Then, for any Polynomial P (w)

dP (w) = P ′(w)dw +
1

2
P ′′(w)dt (46)

16



From there, we can write general “noise” functions as f = g(t)φ(w), so

df = φg′(t)dt+ gdφ (47)

⇒ df =

[

φg′(t) +
1

2
gφ′′(w)

]

dt+ gφ′(w)dw (48)

=

[

ft +
1

2
fww

]

dt+ (fw)dw (49)

Applying this term by term to a general expression,

f(w, t) =
∑

g(t)φ(w), (50)

yields the same result for f(w, t)

Finally, for f(x, t), x = at+ bw, a,b, constant

∂f

∂t
=
∂f

∂t
+ a

∂f

∂x
(51)

∂f

∂w
= b

∂f

∂x

∂2f

∂w2
= b2

∂2f

∂x2

Then

df =

[
∂f

∂t
+ a

∂f

∂x
+

1

2
b2
∂2f

∂x2

]

dt+ b
∂f

∂x
dw (52)

This is Ito’s formula, relating the equation for f to the equation for x, dx = adt+ bdw. This can be

viewed as the appropriate chain rule for determining the differential of f(x, t) when dx = adt+ bdw
is interpreted in the Ito sense.

It can be generalized for a(x, t) and b(x, t).

Note: Throughout this we use the Ito interpretation for ()dw.
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Is there a Stratonovich Formula?

(S)
∫
f(w) dw follows the usual rules of calculus

Using (wi+wi+1)/2 = wi+∆wi/2 (S)
∫
f(w) dw =

∑
f
(wi+wi+1

2 , ti
)
∆wi ∼

∑
f(wi)∆wi+

(∆wi)
2

2 f ′(wi)
so we get the Ito interpretation + a correction

Simple example:

(S) w dw = w dw +
(∆w)2

2
∼ w dw +

∆t

2
=

1

2
d(w2) (53)

The general relationship between Ito and Stratonovich interpretations: dx = adt + bdw(S) =
adt+ b ◦ dw = (a+ 1

2bbx)dt+ bdw

Note: for the simple example above in (53) 2x = w2, so b(x) = w =
√
2x, and bbx = 1

How are Stratonovich and Ito intergrals related for b = const?

Exercise: Demonstrate this for a general expression for dx? What does the result look like for
products and polynomials, as considered in deriving Ito’s formula.

Other Processes:

For Levy Processes, the analogy for the Stratonovich interpretation is known as the Marcus inter-
pretation. Here, written in an SDE with increments of an alpha-stable process

dx = a(x)dt+ b(x)✸dLα,β (54)

For α = 2 it is equivalent to the Stratonovich interpretation.
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To implement this for evaluation/simulation, the Marcus integral takes the form
∫ t

0

b(xs)✸dL
α,β
s =

∑

s≤t
θ(1;∆Ls, x

−
s )− x−s

dθ

dr
= ∆Lxb(θ), θ(0) = z−s (55)

The quantity θ here is known as the Marcus map, and it is a time-like variable that travels infinitely
fast along a curve connecting across the jumps. Then, a numerical approximation of dx = a(x)dt+

b(x)✸dLα,β is given by

xn+1 = xn + a(xn)∆t+ (θ(1;∆Lα,β, xn)− xn] (56)

Additional references on implementation:
Grigoriu, Phys. Rev. E, 2009.

Asmussen and Glynn, Stochastic Simulation: Algorithms and Analysis, 2007.
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3 Master and Forward equations

Random walk as a Markov process

j
0 2 4 6 8 10 12 14 16

X

0

1

2

3

4

5

6

We define Xn as a random walk, where Xn =position

after n steps, with probabilities of taking a step up or down:

P(step up: Xn+1 = Xn + 1) = p

P(step down: Xn+1 = Xn − 1) = 1 - p

Each step is independent of previous steps (Markovian) (depends only on present location), so we

can write P (Xn = k) in terms of the conditional probability, conditioning on the location at the
previous step:

P (Xn = k) = P (Xn = k|Xn−1 = k − 1)P (Xn−1 = k − 1)

+ P (Xn = k|Xn−1 = k + 1)P (Xn−1 = k + 1)

= pP (Xn−1 = k − 1) + (1− p)P (Xn−1 = k + 1)

In general,

P (Xn = k) = P ( location after n steps, m + steps, l - steps,

with m− l = k, m+ l = n)

Now let’s look at how we can use this to derive an equation for P (Xn), and to derive a partial

differential equation for this probability in the continuum limit - that is the limit as we “zoom out”,
so steps and time intervals shrink.
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Random walk: use the shorthand, P (k, j) = P (Xj = k)

P (k, j) = P (Xj = k) = pP (Xj−1 = k − 1) + (1− p)P (Xj−1 = k + 1)

= pP (k − 1, j − 1) + (1− p)P (k + 1, j − 1)

For p =
1

2
(symmetric) we rewrite this as:

P (k, j)− P (k, j − 1) =
1

2
[P (k − 1, j − 1) + P (k + 1, j − 1)−

2P (k, j − 1)]

It doesn’t matter what the grid size is, so, take time step size ∆t, space step size ∆X ,

P (Xk, tj)− P (Xk, tj −∆t) =
1

2
[P (Xk −∆X, tj −∆t)+

P (Xk +∆X, tj −∆t)− 2P (Xk, tj −∆t)]

Suppose
(∆X)2 = C∆t

Then the equation for P (Xk, tj) becomes (for all k):

P (Xk, tj)− P (Xk, tj −∆t)

C∆t
=

1

2(∆X)2
[P (Xk −∆X, tj −∆t) + (57)

P (Xk +∆X, tj −∆t)− 2P (Xk, tj −∆t)] (58)

=⇒ Pt =
C

2
PXX as ∆t, (∆x)2→ 0 (59)

Exercise: Show how to obtain (59) via a Taylor series expansion about ∆t = 0 and ∆X = 0, with

relationship ∆t ∝ (∆X)2.

This PDE is the diffusion equation or the heat equation.
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The solution is a mean zero Gaussian with variance proportional to t! This is the density of Brownian

motion.

P (X, t) =
1√
πCt

eX
2/(Ct) for P (X, 0) = δ(X) (60)

C/2 = diffusion coefficient (61)

Exercise: Show that (60) is the solution to (59).

So we get Brownian motion under a diffusive scaling for the random walk.

This also illustrates the self-similarity of this diffusion. In particular, if w(t) is a standard Brownian
motion, then so is

1√
α
w(αt), 〈( 1√

α
w(αt))2〉 = t
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Asymptotic approximations

In the next sections we cover different types of asymptotic behavior in SDE’s.

Examples:
1. Approximating systems with a large number of discrete events with a continuous process: Related
to central limit theorem: normal approximation for a large number N of realizations

2. Small noise asymptotics and behavior in the state space for: boundary layers in state space

3. Systems with multiple time scales: quasi-steady approximations and stochastic averaging

Example: Quasi-steady approximations in deterministic dynamics

Michaelis-Menten Model: (deterministic model)

S + E
k1
−→
←−
k3

C
k2−→ P + E

substrate + enzyme =⇒ complex =⇒ further reaction to product + enzyme

S + E
k1−→ C (62)

Ċ = k1SE − k3C − k2C
Ṡ = −k1SE + k3C

Ė = −k1SE + k2C + k3C

Ṗ = k2C

E + C = conserved quantity = E0 Take (C (0) = 0) so we can eliminate E

Here the kj are the reaction rates.
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Ċ = k1S(E0 − C)− k3C − k2C
Ṡ = −k1S(E0 − C) + k3C

Ṗ = k2C



⇒
linear stability shows that
C = 0, S = 0

is stable fixed point.

(63)

Note that this is a nonlinear system of ODE’s - in general it is difficult to get a closed-form expression
for systems of this type.

Instead, suppose E0 ≪ 1 (small amount of enzyme); then also small amount of C .

The notation ≪ is interpreted as “is much less than”, and is usually related to orders of magnitude
- that is the initial amount of enzyme E0 is small compared with other quantities that are larger
(sometimes stated as O(1) - order one, that is, a constant that is not large or small).

C = E0c (64)

⇒ E0ċ = k1S(1− c)E0 − k3E0c− k2E0c (65)

Ṡ = −k1S(1− c)E0 + k3E0c (66)

To see the leading order behavior, T = E0t (note this is a short time)

⇒ E0cT = k1S1(1− c)− k3c− k2c (67)

ST = −k1S(1− c) + k3c (68)

Leading order: set E0cT = 0

⇒ c =
k1S

k1S + k2 + k3

]
like a steady–state, if

S was a constant
(69)

ST = −k1S(1− c) + k3c (70)

Leading order indicates comparing the relative sizes of different terms, under the assumption that

E0 ≪ 1 while other quantities are O(1).
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The system (70) is the quasi-steady approximation: S is treated like a constant in the equation for
c. The solution is compared to the solution of the full system (62) in the figure. Note that even

though E0 is not very small, the approximation still does well after an initial transient.

What is the physical interpretation: c changes quickly to adjust to the value of S , i.e. S is used
up quickly in the reaction with E . Meanwhile S changes slowly, and looks like a constant relative to c.

t
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C
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Figure 4: Realization M-M process, with E0 ≪ 1. The red line is S , the blue line is C , both obtained from (62). The +’s are obtained for c
from the quasi-steady approximation (70. Here E0 = .2.
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4 Approximations of interacting individuals

The SIR model: Simple epidemiological model
Reference: Kuske, Greenwood, Gordillo, 2007, Journal of Theoretical Biology; Chaffee and Kuske,

Bull. Math Bio, 2011:

Models: spread of disease Susceptible population = S : don’t have the disease
Infective population = I : has the disease

Population of recovered individuals R: had the disease, can’t get it again

For either probabilistic or deterministic models, we think in terms of rates

transition rate

S → S + 1 µN

S → S − 1 βSI/N + µS

I → I + 1 βSI/N (71)

I → I − 1 (γ + µ)I

R→ R + 1 γI

R→ R − 1 µR

N = total population size: we will look at the case for large N , N ≫ 1
µ = birth/death rate µ

γ = recovery rate
βI/N = average number of contacts with infectives per susceptible per unit time.
N = total population size

Stochastic model: the rates (per unit time) are the conditional transition rates of the stochastic

(Poisson) process (S, I, R)
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Can write this as a Continuous time Markov process: {(St, It, Rt) : t ∈ [0,∞)}, state space Z3
+. N

= expected population size N = E[S + I +R]

We need to break this down into Poisson events - births, deaths, infections, recoveries

For example: P (St+∆t = s+ 1|St = s) = µN∆t+ o(∆t)

A birth process is a Poisson event with probability µN∆t for a birth in time interval of length ∆t

Other events:
P (St+∆t = s+ 1|St = s) = µN∆t+ o(∆t),
P (St+∆t = s− 1|St = s) = µS∆t+ o(∆t) decrease in susceptibles due to death

P (St+∆t = s− 1|St = s) = βSI/N∆t+ o(∆t) decrease in susceptibles due to infections
P (It+∆t = i+ 1|It = i) = βSI/N∆t+ o(∆t), increase in infectives (only by infections)

Approximations

Deterministic (mean field) model
dS
dt = µ(N − S)− β SIN ,

dI
dt = β SIN − (γ + µ)I,

(72)

Note: R equation is redundant, S + I + R = N .

Basic reproductive number, R0 =
β

µ+γ

If R0 > 1 there is a stable endemic (I 6= 0) equilibrium. (ODE exercise)

We express the stochastic equations of the process in a form easily compared with the equations (72)

of the deterministic model.
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Figure 5: A realization of a stochastic SIR model (black) and its deterministic counterpart (red) for N = 2000000, µ = 1/55, R0 = 15 and
γ = 20. Both show the number infected. Note that the stochastic result does not settle near an equlibrium value, but rather has a distinct
nearly regular oscillation.

Approximation of the stochastic process with a continuous time, continuous state space: Typically
for larger populations, with short time increments. N ≫ 1

Recall diffusion processes - approximating a random walk with a Brownian motion for (∆x)2 = ∆t.

Ultimately, we will approximate Poisson process increments with Brownian motion increments.

It is useful to recall the centered Poisson increments that were considered in the model for shot

noise. Then the centered increments will have mean zero and variance proportional to ∆t.
Viewing our Poisson processes as increments: To each increment we add and subtract its conditional
expectation, conditioned on the value of the process at the beginning of the time increment of length

∆t. Each increment of the process is then the sum of the expected value of the increment of the
process and the centered increment,

For a Poisson process U , composed of two independent types of Poisson events with probability P+,

P− for increasing or decreasing by one, we have
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P (Ut+∆t = u+ 1|Ut = u) = P+∆t+ o(∆t)

P (Ut+∆t = u− 1|Ut = u) = P−∆t+ o(∆t)

Then the equation for an increment of U is written as the average change plus the increments:

∆U = (P+ − P−)∆t+ Z+ + Z−,

Z+/− = U+/− − E[U+/−]

Z+ Z− are centered Poisson increments, that is E[Z+/−] = 0 with variances P+/−∆t

Note: Can simplify, for two processes independent: ∆U = (P+ − P−)∆t+ Z

Z is a centered Poisson increment, that is E[Z] = 0 with variance that is the sum of the two variances
(P+ + P−)∆t

Recall: σdW has distribution N(0, σ
√
∆t), so Z has zero mean and standard deviation proportional

to
√
∆t, as does the standard Brownian motion.

When is a Poisson random variable well-approximated by a Gaussian random variable? Typically

when there are enough events so that the Poisson parameter is large (e.g. > 10)

So we can write:

∆S = (µ(N − S)− β SIN )∆t+∆Z1 −∆Z2,

∆I = (β SI
N
− (γ + µ)I)∆t+∆Z2 −∆Z3.

(73)

The increments ∆Z1, ∆Z2, ∆Z3 are independent, centered Poisson variables with variances µ(N +

S)∆t, β SIN ∆t and (γ + µ)I∆t, respectively.
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Note here that S and I have fluctuations that are not independent from each other. ∆Z2 is the in-

crement of the process that influences both S and I (infection), so it must appear in both equations.
Thus the noise in the equations is correlated.

We replace ∆Zi by increments of Brownian motion, dWi, with the same standard deviations,

dS =

(

µ(N − S)− β

N
SI

)

dt+G1dW1 −G2dW2,

dI =

(
β

N
SI − (γ + µ)I

)

dt+G2dW2 −G3dW3, (74)

G1 =
√

µ(N + S), G2 =

√

β

N
SI, G3 =

√

(γ + µ)I.

This is the diffusion approximation for the stochastic SIR model
Note - these have the Ito interpretation.

Note - some noise coefficients may be large or small? If the noise is small, why not just use the
deterministic equations (72)?

References:
Allen, Allen, Arciniega, Greenwood, Stochastic Analysis and Applications, 2008.

dX = f(t,X) +G(t,X)dW

dY = f(t,Y) + B(t,Y)dV

X, Y are d-dimensional, W is m-dimensional, V is d-dimensional, m > d. For GGT = H and
B = H1/2, for f, G,B satisfying certain continuity conditions, giving pathwise unique solutions.
Then X and Y have the same distribution. (weak sense)

So we can express the noise terms in different forms, can choose for our convenience. In the example

above, it is easy to derive, easy to see influence of different biological processes in the equations.
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Approximating Poisson with Normal

Expect N is relatively large (larger rates for Poisson processes in a time interval)

Are stochastic terms significant? i.e. if N is large, are the fluctuations significant?

Consider rescaled system S = Nu, I = Nv - here u is the proportion of the total population that
are susceptible, v is the proportion that are infected. Both u, v are between 0 and 1.

du =

(

µ(1− u)− β

u
v

)

dt+ g1dW1 − g2dW2,

dv =

(
β

N
SI − (γ + µ)I

)

dt+ g2dW2 − g3dW3, (75)

g1 =
√

µ(1 + u)/N, g2 =

√

β

N
uv, g3 =

√

(γ + µ)v/N.

Note, coefficients gj of noise term scale as N−1/2, vanish as N → ∞. Then we recover the mean
field (deterministic) model (72).

What if N is just large, rather than infinite?

We consider the system with the basic reproductive number, R0 =
β

µ+γ > 1. Then the deterministic

system has a unique nontrivial stable equilibrium point (Seq, Ieq) at

Seq =
N

R0
, Ieq =

Nµ

β
(R0 − 1). (76)

Consider simulations for different parameter values: Why is the noise sometimes significant?
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Let’s use different rescaled variables, to reflect this non-trivial stable equilibrium. We introduce the

dimensionless variables

u =
S − Seq
Seq

, v =
I − Ieq
Ieq

,

Note Seq and Ieq are both proportional to N . u, v are fluctuations around the equilibrum values,
normalized by the size of that equilibrium.

t→ Ωt, Ω =
√

βµ
R0
(R0 − 1) (for convenience) to get the equations (exercise)

du =
1

Ω
[(−µ− βIeq

N
)u− βIeq

N
v − βIeq

N
uv]dt+

+

√
µ

ΩS2
eq

(N + Seq(u+ 1))dW1(t)−
√

βIeq
ΩNSeq

(v + 1)(u+ 1)dW2(t),

dv =
1

Ω
[
βSeq
N

(u+ v) +
βSeq
N

uv − (γ + µ)v]dt+

+

√

βSeq
ΩNIeq

(v + 1)(u+ 1)dW2(t)−
√

γ + µ

ΩIeq
(v + 1)dW3(t). (77)

Noise coefficients: still N−1/2

The Power Spectral density (PSD) is the modulus of the Fourier transform of the process, here
graphed as a function of frequency. Large peak indicates most of the energy is in a particular

frequency. This indicates a dominant oscillation with that frequency. Fluctuations indicated by the
width of the peak.

Consider equations linearized about u = v = 0 (near equilibrium). This is a linear approxima-
tion about the equilibrium, and this linear approximation describes a multi-dimensional Ornstein-
Uhlenbeck process.
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Figure 6: Graphs of the PSD (vertical axis) vs. frequency of the oscillations, a)R0 = 15, γ = 20, µ = 1/55, N = 500000. b)R0 = 15, γ =
25, µ = 1/55, N = 500000. c)R0 = 15, γ = 30, µ = 1/55, N = 500000. d)R0 = 15, γ = 30, µ = 1/55, N = 2000000. e)R0 = 7, γ = 33, µ =
1/55, N = 2000000. f)R0 = 10, γ = 35, µ = 1/10, N = 500000.

d

(
u
v

)

= M

(
u
v

)

dt+G





dW1

dW2

dW3



 , M =

(

−µR0

Ω −µR0−1
Ω

β
ΩR0

0

)

, (78)

G =





√
µ

ΩS2
eq
(N + Seq) −

√
βIeq

ΩNSeq
0

0
√

βSeq

ΩNIeq
−
√

γ+µ
ΩIeq



 =

(
g1 −b2g2 0

0 g2 −g2

)

.

33



0 500 1000 1500 2000 2500
0

1

2

3

4

5

6
x 10

−3

0 500 1000 1500 2000 2500
0

1

2

3

4

5

6
x 10

−3

I I
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Solutions of the deterministic version of (78) are given in terms of the eigenvalues of M, which are

λ = −ǫ2 ±
√

ǫ4 − 1 ,

where

ǫ2 =
µR0

2Ω
.

What does the solution look like for ǫ≪ 1? Under what conditions is ǫ≪ 1?

(
u

v

)

∼ C1e
−ǫ2t

(
b cos t

sin t

)

+ C2e
−ǫ2t

(
b sin t

− cos t

)

, (79)

34



dropping O(ǫ2) corrections.

For N large and finite - drift and diffusion coefficients both small
Oscillations have weak (slow) decay, noise coefficients may play a role

This is shown in the references, where u and v are sinusoidal with stochastic amplitudes that are
O-U processes.
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5 Equation(s) for the probability density:

General continuous time/space

We derived an equation for P (x, t) using conditional probability - that is conditioning on starting
at x0 at time t, then taking a step up or down.

In general, this is a useful approach to deriving and equation for P (x, t)
Chapman-Kolmogorov equation:

P (X(t) = y|X(s) = x) = p(y, t, x, s) =

∫

p(y, t, z, τ)p(z, τ, x, s)dz s < τ < t (80)

This is the probability of going from x to y via z, “summed” over all possible intermediate z.
While in general this doesn’t look like a simplification of the problem, it may be, given the particular
problem and the choice of z.

This general equation is used to derive the PDE for the probability density p(y, t|x, s) (often, s = 0)

as follows:

We will show that ∂p
∂t = L∗p where

L∗p =
1

2

∂2

∂y2
(
b2(y, t)p(y, t, x, s)

)
− ∂

∂y
(a(y, t)p(y, t, x, s)) (FPE) (81)

where dξ = adt + bdw , p(ξ = y, t|ξ = x, s) = p(y, t, x, s). This is the Fokker-Planck equation
(FPE) or more generally, the Forward Kolmogorov equation.

This is accomplished by showing:
∫

g(y)
∂p

∂t
dy =

∫

g(y)L∗p(y, t, x, s) dy (82)
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for an appropriate “nice” test function g (weak sense). To do this, we show that

∫ {∫

p(z, t+ h, y, t)[g(z)− g(y)]dz
}

p(y, t, x, s) dy (83)

=

∫

[p(y, t+ h, x, s)− p(y, t, x, s)]g(y) dy (FPI) (84)

The RHS of FPI can be approximated with

h

∫

pt(y, t, x, s)g(y)dy, h = ∆t (85)

as h→ 0.

The LHS of FPI can be written as:

∫ {∫

p(z, t+ h, y, t)[g′(y)(z − y) + 1/2g′′(y)(z − y)2...] dz
}

p(y, t, x, s) dy (86)

by using a Taylor series expansion about z = y.
Borrowing the 1

h from (85), the LHS can be written as
∫ (

1

h
E [ξ(t+ h)− ξ(t)] g′(y) + 1

2
g′′(y)

1

h
E
[

(ξ(t+ h)− ξ(t))2
])

p(y, t, x, s) dy (87)

Defining
1

h
E [ξ(t+ h)− ξ(t)] = a(y, t) as h→ 0 (88)

1

h
E
[

(ξ(t+ h)− ξ(t))2
]

= b2(y, t) as h→ 0 (89)

which is essentially the statement that the particle displacement is a(y, t)h with variance b2h (thus
a diffusion process). Together the RHS and LHS of FPI yields:
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∫

pt(y, t, x, s)g(y)dy =

∫ [

a(y, t)g′(y) +
g′′(y)

2
b2(y, t)

]

p(y, t, x, s)dy (90)

Integrating by parts - which moves the derivatives to the terms ap and b2p - yields the FPE for

p(y, t, x, s) (weak version - integrated with test function g(y)dy). Then we get pt = L∗p.

To show FPI: Write RHS:
∫

p(z, t+ h, x, s)g(z)dz −
∫

p(y, t, x, s)g(y)dy (91)

First term
∫

p(z, t+ h, x, s)g(z)dz =

∫ (∫

p(z, t+ h, y, t)p(y, t, x, s) dy

)

g(z) dz

=

∫

p(y, t, x, s)

(∫

p(z, t+ h, y, t)g(z) dz

)

dy

using Chapman-Kolmogorov equation. Second term:
∫

p(y, t, x, s) · 1 · g(y)dy =

∫

p(y, t, x, s)

(∫

p(z, t+ h, y, t)dz

)

g(y)dy

=

∫

p(y, t, x, s)

(∫

p(z, t+ h, y, t)g(y)dz

)

dy

Subtract first and second to get the LHS of FPI.

So we can find the density of dy = a dt + b dw by solving a PDE ∂p
∂t = L∗p. Note here that b dw is

in the sense of Ito.

Computationally, we can find p(x, t) using methods for solving a PDE.
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We can also obtain a numerical approximation to p(x, t) via a simulation of the SDE for x.

This is accomplished by simulating the SDE for x to time t using N (independent) realizations of
the SDE. Recording the N values of x(t), we construct a histogram from these values, recording the

number of realizations that fall into bins of width ∆x. Then

p(X, t)∆x ≈ ki/N (92)

where 0 ≤ ki ≤ N is the number of realizations of x(t) that take values in the interval between X
and X +∆x. We see examples of these approximations in later applications.

5.1 Exit Time

Another key quantity is Expected Exit Time (Expected Transition Time).

Later, we will see that the equation for mean exit time has the form, ut + Lu = −1 and u(ξ ∈
∂Ω, t) = 0, where

Lu = auξ +
1

2
b2uξξ where dξ = adt+ bdw

L is the adjoint of L∗, where pt = L∗p.

6 Mean exit time

Another key quantity is Expected Exit Time (Expected Transition Time).

If we define τx=time to reach certain state, ∂Ω, given initial state ξ(s) = x ∈ Ω,

E[τx]=Expected time to exit Ω and reach new state (∂Ω) given ξ(s) = x.
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We can write this as

E[τx] =

∫ ∞

0

∫

Ω

p(y, t, x, s)dydt =

∫ ∞

0

P (τx > t)dt (93)

since P (τx > t) is the probability that y ∈ Ω at time t. Can also compute this, noting that for u(ξ, t)
with dξ = adt+ bdw,

du(ξ(t), t) =

(
∂u

∂t
+
∂u

∂ξ
a+

1

2
b2
∂2u

∂ξ2

)

dt+
∂u

∂ξ
bdw (94)

using Ito’s formula, so that

u(ξ(t), t) = u(ξ(s), s) +

∫ t

0

[ut + Lu] dt̂+

∫ t

0

∂u

∂ξ
bdw (95)

(Below we use s = 0)

Note Lu = auξ +
1
2b

2uξξ , is the adjoint operator for L∗u = −(au)ξ + 1
2(bu)ξξ

Suppose, ut + Lu = −1 and u(ξ ∈ ∂Ω, t) = 0. Then substitute t = τx above and take expected

values,

E[u(ξ(τx), τx)] = u(x, s) + E

[∫ τx

0

(−1)dt
]

+ 0 (96)

⇒ 0 = u(x, s)− E[τx] (+s if s 6= 0) (97)

Example: Exit time of a particle from potential U(x).

Simple example: U(x) = x2

2 , on −1 < x < 1

Particle position: dξ = −ξdt+
√
2ǫdw = −U ′(ξ)dt+

√
2ǫdw
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Figure 8: Left: Realizations of ξ vs. t for ǫ = .05, .04, .03 (top to bottom). Right: The uniform approximation for q (blue line), compared to
the potential U(x) (red dash-dotted line).

Note: this is a time homogeneous case ⇒
ǫu′′ − xu′ = −1 for u= mean exit time from interval [−1, 1]
u(−1) = u(1) = 0

This is an example which we could solve exactly, but we see how the asymptotic solution gives phys-

ical insight: Consider for ǫ≪ 1. Then we use boundary layer theory to get an approximation to the
solution.

For small ǫ (small noise), expect u→∞ as ǫ→ 0 (at least for x 6= ±1)
so take u = C(ǫ)q(x) for C(ǫ)→∞ as ǫ→ 0

Then, substituting into equation for u,

ǫq′′ − xq′ ∼ 0 q(−1) = q(1) = 0 (98)

For ǫ = 0, we have, to leading order: ⇒ q0 = constant constant 6= 0
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However, the boundary conditions are not satisfied, so we must find the boundary layer behaviour.
The solution q0 is the “outer” solution (away from the boundaries).

Next we have to look near the boundaries, and zoom in. Then, taking ǫz = 1− x, as a local variable
near x = 1, yields

ǫ

ǫ2
qzz −

1− ǫz
ǫ

qz = 0 , q ∼ q0 + ǫq1 + ... (99)

⇒ q0zz − q0z = 0 , q0(z = 0) = 0 (100)

q0 =
(
1− e−z

)
=
(

1− e−
(1−x)

ǫ

)

(101)

Thus we see the different behavior of q in this local region - q is near 1 when x is not near 1. q
approaches zero as x approaches 1. Similarly for x near −1.

Then we can construct the uniform solution:

q ∼ 1 away from x = ±1
q ∼ 1− e−

(1−x)
ǫ near x = 1

q ∼ 1− e−
(x+1)

ǫ year x = −1

Boundary layer approximations → constant, as matched to “outer” approximation

Uniform approximation: Add boundary layer expansions + outer approximation - parts matched

u = C(ǫ)
(

1− e−
(1−x)

ǫ − e−
(x+1)

ǫ

)

(102)

Still, we don’t know C(ǫ), but can it determine using our knowledge of p(x) (invariant density).
That is, p satisfies equation with the adjoint operator: L∗p = 0.
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We have the equation for u

Lu = −1 (103)

and

L∗p = 0 = ǫpxx + (xp)x⇒ p(x) =
1√
2πǫ

e−
x2

2ǫ (104)

So,
∫

pLudx = pǫu′|1−1 +
∫

✟
✟
✟
✟✯
0

(L∗p)udx = −
∫ 1

−1
1 · pdx (105)

If we use the uniform expansion for u we can evaluate (exercise), then we get the equation for

C(ǫ) from the calculation of p(x)

C(ǫ) ∼ K
√
2πǫe−

U(1)
ǫ + higher order corrections (106)

Additional exercise: Could there be a longer time to escape from the bottom of the potential?
Show that there is no internal layer in the construction of the uniform solution. Use local variable

v = ǫαx, find appropriate α and equation for q(v). A contradiction in matching to the outer solution
results, which shows no layer at x = 0.

Asymptotic methods for determining p(x, t)
Another asymptotic method that is commonly used to determine p(x, t) in the small noise case is

the WKB method - another asymptotic method fro solving PDE’s.

Let’s see how this works for the simple example above. The equation for p(x, t) is

pt = (xp)x + ǫpxx = L∗p (107)

The WKB method is based on the observation that is we take ǫ → 0 in the equation for p, we
eliminate the highest order derivative. This doesn’t make sense, as it eliminates the diffusion from

the equation.
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So, instead we should look for a form of the solution that better balances the effect of the diffusion

with the other contributions.

p(x, t) = K(x, t) exp−ψ/ǫ (108)

This makes intuitive sense, particularly if we are expecting densities that decay exponentially for
large values.

Substituting into the equation for p(x, t), we get:

Kt −
1

ǫ
Kψt = x

[

Kx −
ψx
ǫ
K

]

+K + ǫ

[

−ψxx
ǫ
K +

(ψx)
2

ǫ2
− 2Kx

ψx
ǫ

+Kxx

]

(109)

Here we have terms with coefficients corresponding to different orders of ǫ: O(ǫ−1) and O(ǫ0). For
simplicity, we consider the case of the invariant density - no t dependence.

Then, to leading order (terms with coefficient of ǫ−1) we have

−xψx + ψ2
x = 0 (110)

from which we obtain ψ = constant or ψ = x2/2. This is a nonlinear first order PDE for ψ - the
eikonal equation. The constant solution is the trivial solution, and is also not normalizable for p a

probability density.

Then, the equation for K (terms with coefficient ǫ0) is

(1− ψxx)K + (x− 2ψx)Kx +Kxx = −xKx +Kxx = 0 (111)

The solution for K that is normalizable, i.e.
∫
K(x)e−ψ(x)/ǫdx is K= constant. Then we obtain the

result given above in (104).
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