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Errors in Predictions

 The particular physical model used may be flawed. Commonly 
called model error. Difficult to analyze since such errors have 
little commonality.

 In a closed dynamical system there may be initial condition 
errors. Such errors are unavoidable in any practical prediction 
since observing systems are always incomplete and subject to 
some error.

In this talk we focus on errors of the second kind. This is often 
called a perfect model prediction scenario. We shall also focus on 
the dynamical evolution of such errors rather than on their specific 
form in the initial conditions since the latter is obviously observing 
system dependent. Errors of the first kind are obviously important 
but in a sense are issues of better future modelling rather than 
fundamental limitations. The presence of uncertainty implies that 
formally variables should be considered random variables each 
with an associated probability distribution. 



  

A Bayesian Approach to Utility

Suppose we have a vector of random variables X with vector outcomes x 
associated with a particular dynamical system. Further suppose that such a 
system prior to the present has been observed for a significant period and 
the probability distribution q(x) deduced. Now suppose that further 
observational information concerning the system is received. In general 
this will result in  a modified distribution p(x). In the Bayesian perspective 
q(x) is referred to as the prior distribution whereas p(x) is called the 
posterior distribution. Bayesian learning theory measures the utility of the 
additional observations using the relative entropy of the two distributions.

The process of statistical prediction in a dynamical system fits this model of 
learning: If no reference is made to time and the associated state of the 
system (i.e. the initial conditions) then the natural choice for a prior 
distribution is provided by the equilibrium or  climatological distribution. 
Suppose now that the initial state is carefully observed and the state 
projected forward in time using a dynamical model. This process will result 
in a modified  distribution for the random state variables at some future 
time. Such a distribution is commonly called the prediction distribution. The 
discrepancy or relative entropy between the prediction and equilibrium 
distributions then is a measure of the utility of the prediction process.   



  

Properties of Relative Entropy

D  p∥q≡∫ p  x ln 
p  x 
q  x 

dx

● Relative entropy is non-negative and zero only when the distributions are 
effectively identical. It is asymetric which is perhaps not surprising since 
so is the (ideal) learning process.

● In a closed system relative entropy does not increase with time and 
usually decreases. The Earth overall is approximately a closed system in 
the sense meant here. 

● If one applies a general non-linear non-singular transformation to the 
state space then  relative entropy is left invariant. Thus it is a 'universal' 
measure of utility. Very few skill/utility measures have such a property.

Given the above attractive mathematical properties we use relative 
entropy as a measure of prediction utility.



  

Utility as disequilibrium
 In conventional stochastic 

differential equation theory, 
convergence of distributions to 
equilibrium is measured by the 
relative entropy (called the 
Lyuponov functional) since it 
satisfies the temporal monotonicity 
property above.

 In practical dynamical systems 
asymptotic convergence to a 
unique equilibrium distribution is 
common. Thus it is illuminating to 
use relative entropy as a measure 
of both predictability as well as of 
statistical disequilibrium.

 Notice that upon convergence of 
prediction distributions (as 
measured by relative entropy), 
initial condition information 
becomes irrelevant.



  

Gaussian Distributions

Many practical applications have approximately Gaussian pdfs so it is of interest to use 
the analytical formula for Gaussian relative entropy.



  

Meaning of Dispersion and Signal



  

Why are models skillful?

Coupled models are able to predict ENSO with some skill for about 9-12 months.

Where does this skill come from?Where does this skill come from?

The answer depends on the skill measure used obviously however for the usual anomaly 
correlation statistic used for NWP and ENSO prediction the answer is rather interesting for 
all the ENSO coupled models I have checked.........

If you break the anomaly correlation into its contributing pieces timewise you find nearly all the 
skill comes from major events. The larger the event the greater its contribution to skill.....

This is fascinating because it suggests that useful forecasts are not common but may be very 
useful indeed on certain occasions. We turn to theory to develop understanding.



  

Connection to usual skill measures

The relative entropy utility measure is defined on one particular set of ensemble predictions 
all starting from close to the same initial conditions. Typical skill measures are defined with 
respect to a series of predictions from different  initial conditions. The former measure is a 
perfect model one while the latter are not. 

We can make a (rough) connection between the two types of measures by considering the 
optimal case for prediction i.e. when the model is perfect and compute the common skill 
measures. This then represents an upper limit on skill given the model is a good one 
physically. 

The two most common skill measures are RMS error and anomaly correlation. The 
theoretical upper limits of these are easily shown to be:

RMSE= p

AC=
 x p−xq

2

 p x p−xq
2

Where the upper overbar means average over all initial conditions. We see that AC 
(in an average and Gaussian sense) incorporates part of the signal term while RMSE
 is only related to dispersion. Due to the above formula AC can be viewed intuitively 
as a signal to noise metric which is consistent with the relationship we are attempting 
to draw with the signal part of relative entropy. 



  

A simple stochastic oscillator

In the first lecture the stochastic oscillator was put forward as a believable model for ENSO.
Let us therefore examine the simplest possible model for this and analyze its predictability
characteristics.

The two components here can be interpreted as the coefficients of the first two EOFs 
of ENSO upper ocean heat content.

F is a white noise forcing and τ is the damping time while T is the period of the is the period of the 
damped oscillator. damped oscillator. 

Noise represents fast modes. Simplest strategy for initial conditions is to assume very Noise represents fast modes. Simplest strategy for initial conditions is to assume very 
small errors in the fast modes which can be approximately represented as slow mode small errors in the fast modes which can be approximately represented as slow mode 
deterministic initial conditions. We choose these slow mode initial conditions at deterministic initial conditions. We choose these slow mode initial conditions at 
random from a realization of the equilibrium distribution since this amounts to a random from a realization of the equilibrium distribution since this amounts to a 
representative selection of initial conditions.representative selection of initial conditions.



  

A simple stochastic oscillator

To be more concrete about our simple stochastic 
oscillator, the first two EOFs of upper layer heat 
content are shown at the left. Because they are 
correlated if lagged in time they can be grouped 
together as a Principal Oscillation Pattern (POP).

This time lag correlation or POP behaviour is 
completely consistent with our simple model of 
ENSO. One of the EOFs is the peak warm or cold 
event behaviour while the other is the classical 
Wyrtki build up of heat content which tends to 
precede events.

The amplitude of the POP which is central to 
predictability (see next slide) shows substantial 
variation with time as the bottom panel illustrates.
Notice it was very small in the late 1970s and 
early 1990s. 



  

A simple stochastic oscillator

If the initial conditions are chosen to be deterministic 
then one can show the following important facts about 
solutions to this model

● The pdfs are (bivariate) Gaussian.

● The time evolution of the covariance matrix does not 
depend on the initial condition chosen.

●  The (unique) equilibrium covariance matrix is diagonal 
i.e. the two model variables are uncorrelated at very long 
times.
 
The implication of these facts is that only the signal 
controls variations in utility with initial conditions. 
Secondly the signal component of utility is proportional 
to a (rescaled) square of the amplitude of the anomaly of 
the two components. 

This centrally important amplitude or signal can vary 
with time just for random reasons i.e. it executes a 
random walk.   



  

Signal based predictability
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