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Conceptual Background

= Predictability is often intuitively related to the degree to
which a system has any "regular” oscillations. This is an
indicative but not comprehensive view.

= Some systems such as the solar system are highly regular
and predictable for centuries in advance.

= Other systems with much less periodicity (such as
earthquakes) are quite difficult to predict.

= Predictability is limited in "chaotic" or "stochastic"
(randomly forced) dynamical systems. Such systems often
are characterised by "broadband" spectral peaks.

= What about ENSQO?



Observational Evidence

There are difficulties in defining ENSO irregularity due to the
shortness of the length of time of reliable observations.
Nevertheless the common indices of variability have
"reasonable" definition for about a century or so.
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Observational Evidence

Clearly these indices are irregular but some periodicity can be
discerned if the series are carefully scrutinized. The spectra of
the different indices over this period of a century or so are

remarkably similar:
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Observational Evidence

Other interesting observational features of ENSO include
(partial) phase locking to the annual cycle with warm
events tending to peak in the Northern winter. Also there
appears to be significant decadal variation in the spectrum
as a wavelet analysis shows:
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Theories of ENSO irregularity

= Two main major mechanisms have been proposed and consensus
has yet to be achieved on which dominates. To describe these it is
useful to divide the tropical system into slow and fast components.
The first is set primarily by the ocean while the latter by the
atmosphere. Slow phenomena include things like oceanic internal
waves (Kelvin and Rossby) and the annual cycle while the latter
includes things like tropical "weather” and the MJO. This is a
conceptual division to aid in theoretical description.

Theory 1: ENSO as a chaotic oscillator

= In this theory the slow components of the coupled tropical system
interact non-linearly producing a well known form of chaos.

Theory 2: ENSO as a stochastically forced oscillator

= |n this theory the fast components of the system are able to randomly
disrupt the slow components of the coupled tropical system.



ENSO as a chaotic oscillator

= The slow component of the coupled system has two major natural
modes of variability. The first is the seasonal cycle which is an
external forcing. The second group are internal modes which result
fundamentally from the coupling of the atmosphere and ocean.
Linear instability analysis of coupled models shows that there is
often a dominant (i.e. most destabilized) mode. The structure of
this mode resembles ENSO strongly.

= |n general the external annual forcing causes the internal mode to
"lock onto" a perdiocity which is some multiple of the annual cycle
e.g. 3 or 4 years. Which particular multiple is selected depends on
the nature of the internal coupled mode i.e. what period it would
have in the absence of the external forcing.

= |f the natural period of the internal mode is adjusted to lie between
two multiples of the annual period the system mode may transition
irregularly between the two multiples due to non-linear interaction.



ENSO as a stochastic oscillator

= Linear instability analysis of coupled models (stochastic optimal
analysis) reveals that they are particularly susceptible to forcing
with specific large scale patterns.

= |f variability from the fast component of the system "projects"
significantly onto the above patterns of susceptibility then it can
significantly perturb the coupled system.

= Coupled models with random forcing having the "right" large
scale structure develop highly robust irregular oscillations with
spectra matching the observations well. They can also
reproduce warm event seasonal phase locking as well as
produce strong decadal variation in their spectra again
matching the observations.



NINO3 Index (°C)

ENSO as a stochastic oscillator

A sample stochastically forced coupled model. This model was
used in student projects
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Stochastic Optimals

A crucial aspect of the stochastic oscillator theory of irregularity is that the stochastic forcing
should have significant projection onto certain large scale patterns. We review this.

u(t+At)=R(t+At,t)u(t)+AtF
R is the linear propagator while Fis the additive stochastic forcing. Note that this is a vector
equation where the vector indices are for different spatial points and different variables.

Suppose we are interested in the variance growth of a particular index region of the model:
Var (t Z X cov ( u’ (1))

With reasonable assumptions about the stochastic forcing we can solve the first stochastic

equation and write this variance as
Var (t)=trace (ZC)

Z=[ R'(r,s) XR(1,s)ds
4
C,=cov(F, F))

The matrices Zand C are usually both symmetric and positive so have orthogonal eigenvectors
with non-negative eigenvalues. Moreover the first line above can be rewritten in terms of these
eigenvectors and eigenvalues:

Var (t)=trace (ZC) meqn P,,0,)

Thus for this to be large we need some of the eigenectors of Zand C to match and also have
large eigenvalues. The latter measure system instability and noise variance respecitively.



Stochastic Optimals

The eigenvectors of Z (i.e. the P,, ) are called stochastic optimals. If we calculate them in a
coupled model we find that their eigenvalues drop off rapidly so only a few are important for
explaining how variance of important indices grows. Here are some examples for heat flux and

wind stress (atmospheric forcing of the ocean).
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These patterns can vary somewhat from coupled model to coupled model so the sensitivity
to stochastic forcing can vary somewhat. Note that for the variance of our target variable to
grow there must be a significant inner product between the stochastic optimals and the
eignevectors of the forcing covariance matrix C (i.e. the ). Thefe eigenvectors give
patterns of stochastic forcing. The corresponding eigenvalue is the variance explained by
the particular pattern. Such patterns are usually called EOFs since they are the
eigenvectors of a covariance matrix.



Stochastic Optimals

If the coupled model is perturbed by the previous pattern the system rapidly (1-2 weeks)
develops a very characteristic response which in some coupled models strongly resembles a
westerly wind burst.
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Predictability and Irregularity

The theoretical upper limit of predictability depends heavily on the
mechanism for irregularity

Chaotic Oscillator Error Growth Stochastic Oscillator Error Growth
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Predictability and Stability

Coupled model behavior usually varies strongly as the parameters are varied. The dominant
variation observed is "stability". For some parameter ranges the model will oscillate in a self
sustained fashion while for other ranges the oscillation will decay. Stability can strongly
influence upper limits of predictability. In both models of irregularity RMSE increases as
stability decreases as expected intuitively. Correlation skill however behaves differently. In
the chaotic oscillator this measure of skill is often not highly sensitive to stability. In the
stochastic oscillator there is a very strong dependency: The more stable the system the
lower the upper limit on correlation skill. This was shown by Thompson and Battisti in 2000.

(a) Correlation
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The asterisk curve is a model with a
strongly decaying oscillation without
stochastic forcing. The upper curves
have oscillation which are almost
self-sustaining without stochastic
forcing. The open circles are
intermediate cases.

The reason for this behaviour is that
when the oscillation is "long lasting"
it is able to resist disruption by the
stochastic forcing for longer. More in
next Lecture.



General Circulation Models

Most physically comprehensive models of ENSO. Can have problems with realism. One model
due to Lengaigne et. al. (2004) is quite good and interesting from the viewpoint of irregularity and

predictability. GCM Observations
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General Circulation Models
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Irregularity is a little weak compared to the U_g_
observations.

RMSE growth appears similar to that of a
stochastic oscillator. Ensembles are very
sensitive to anomalies resembling westerly
wind bursts. These can shift ensembles
strongly toward warm events.
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Practical Implications

The theoretical upper limits on predictability are evidently potentially very important to future
improved coupled models. If the chaotic scenario were the dominant mechanism of irregularity
then useful ENSO predictions beyond 24 months may be possible. If the stochastic scenario
dominates then we may be limited to 9-12 months.

Is it possible to discern these mechanisms in present practical forecasts of ENSO? The 1997
warm event was the largest for roughly a century and yet in real time (an acid test of prediction
efforts) it was not very well forecast. A careful scrutiny of one (real time) forecast system shows
the possible influence of stochastic forcing.

Coupled Model ENSO Predictions 1997
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Notice the large increase in the
predicted warm event between
February and March 1997. What is
: different between the two months?
\ In early March 1997 a large
\ atmospheric westerly wind burst

occured around the dateline. The
S initialization for March included this
— March Start || strong forcing event while obviously
— that for February did not......
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