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ABSTRACT

The nature of statistical predictability is analyzed in a T42 global atmospheric model that is able to
adequately capture the main features of the midlatitude atmosphere. Key novel features of the present
study include very large prediction ensembles and information theoretic techniques. It is found globally that
predictability declines in a quasi-linear fashion with time for short-term predictions (3–25 days), while for
long ranges (30–45 days) there is an exponential tail. In general, beyond 45 days the prediction and
climatological ensembles have essentially converged, which means that beyond that point, atmospheric
initial conditions are irrelevant to atmospheric statistical prediction.

Regional predictions show considerable variation in behavior. Both of the (northern) winter storm-track
regions show a close-to-quasi-linear decline in predictability toward a cutoff at around 40 days. The (south-
ern) summer storm track shows a much more exponential and considerably slower decline with a small
amount of predictability still in evidence even at 90 days. Because the winter storm tracks dominate global
variance the behavior of their predictability tends to dominate the global measure, except at longer lags.
Variability in predictability with respect to initial conditions is also examined, and it is found that this is
related more strongly to ensemble signal rather than ensemble spread. This result may serve to explain why
the relation between weather forecast skill and ensemble spread is often observed to be significantly less
than perfect. Results herein suggest that the ensemble signal as well as spread variations may be a major
contributor to skill variations. Finally, it is found that the sensitivity of the calculated global predictability
to changes in model horizontal resolution is not large; results from a T85 resolution model are not quali-
tatively all that different from the T42 case.

1. Introduction

Limitations to weather prediction have been a sub-
ject of intense investigation for many years. Lorenz
(1969) put forward the idea that unresolved small scales
in the initial conditions of a prediction would be trans-
ferred upscale and eventually swamp the synoptic
scales. He verified this using a simple turbulence model
with an upscale (inverse) energy cascade, which is typi-
cal of fully developed two-dimensional (2D) turbu-
lence. This idea was further developed and verified us-
ing more sophisticated models of such turbulence by
Leith (1971), Leith and Kraichnan (1972), and Kraich-
nan and Montgomery (1980), and recently in direct nu-
merical simulations of an inverse energy cascade by

Boffetta and Musacchio (2001). Charney (1971), Kraich-
nan and Montgomery (1980), and Salmon (1998) have
discussed in detail the close relation between classical
2D turbulence and the quasigeostrophic turbulence
thought to be present in the midlatitude atmosphere
and oceans.

It is often argued on theoretical (Lilly 1983) or ob-
servational (Nastrom and Gage 1985) grounds that at
small scales in the atmosphere a forward, rather than
inverse, energy cascade is more likely. The former cas-
cades are more typical of 3D turbulence. If this is true,
then there are evident implications for predictability
limits, as discussed in detail in the review by Palmer
(2000).

More recently, Tribbia and Baumhefner (2004) have
revisited this problem using a suite of realistic general
circulation models of varying resolutions. They found
that error growth was particularly pronounced in a
wavenumber band associated with baroclinic instabil-
ity, and argued that disturbances/errors there drew sig-
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nificant energy from the mean state. Disturbances in
this wavenumber range were, in the view of these au-
thors, “seeded” from the unresolved smaller scales in a
manner similar to that proposed more broadly by
Lorenz (1969).

A very natural general framework for considering all
of these issues may be found in the idea (and practice)
of statistical prediction (see, e.g., Leith 1974; Toth and
Kalnay 1993; Ehrendorfer 1994a,b; Palmer 2000). Here,
one implicitly assumes that initial condition variables
are random, with a probability distribution defined by
the observing procedure.1 As prediction time increases
this distribution evolves and eventually relaxes toward
some kind of equilibrium distribution. Based on em-
pirical evidence, one usually assumes ergodicity, which
implies that the equilibrium distribution may be ob-
tained from a very long time integration of the dynami-
cal system. In the past five years there has been con-
siderable theoretical study of this distributional relax-
ation process using the tools of information theory (see,
e.g., Schneider and Griffies 1999; Kleeman 2002; Roul-
ston and Smith 2002; Kleeman and Majda 2005; Del-
Sole 2004; Kleeman 2007b).

In stochastic differential equation theory (e.g., Gar-
diner 2004), the natural tool for studying this relaxation
of distributions is the relative entropy, which is a func-
tional of the prediction and equilibrium distributions.
Interestingly, it also happens to be a measure of the
perfect model prediction utility (see Kleeman 2002).
This is because the equilibrium distribution can be con-
sidered a reasonable prior distribution before observa-
tion of initial conditions and running of the prediction
model while the prediction distribution constitutes an
obvious posterior distribution. The quantitative mea-
sure of the shift between prior and posterior distribu-
tions given by the relative entropy is known in Bayesian
statistical theory (see Bernardo and Smith 1994) as the
utility of the process causing the shift, that is, in this case
the prediction process.

Another way of viewing this relaxation process is as
a measure of the importance of initial conditions to
statistical prediction. The “closer” the prediction distri-
bution is to the equilibrium2 distribution, the less im-

portant initial conditions are to the statistical predic-
tion. Such a viewpoint has an obvious application to the
problem of atmospheric climate prediction, where the
equilibrium distribution may be influenced by bound-
ary conditions such as SST.

A great practical problem in implementing statistical
prediction occurs because of the high dimensionality of
the atmospheric dynamical system. In general, this
means that one must resort to Monte Carlo sampling of
the appropriate distributions, a process known as en-
semble prediction [for particular practical approaches
to this see, e.g., Toth and Kalnay (1993) and Palmer
(2000)]. In general, for practical situations, the size of
ensembles is considerably less than the dimension of
the weather models being used. This implies a substan-
tial loss of information relative to that which would be
available if one had access to the full distribution. Re-
cently, some theoretical progress has been made in rig-
orously analyzing this situation (see Kleeman 2007b).
We summarize the relevant details from this analysis in
the next section because it is particularly pertinent to
our study here.

Given the uncertainties still apparent in our detailed
understanding of predictability limits,3 the theoretical
developments detailed above were seen as an opportu-
nity to revisit this problem from a rather different per-
spective. Another reason is that advances in computer
capabilities now allow considerably larger ensembles
than were previously possible, which enables us to carry
through our theoretical program satisfactorily.

A final question of considerable practical interest
concerns variations in predictability with initial condi-
tions: Why are some predictions so much more skillful
than others? A particular emphasis in the literature on
this topic (see Palmer 2000) has been the so-called
skill–spread relation where the skill of predictions is
plotted against the ensemble spread. This reflects the
intuitive idea that when the mean state is most unstable,
predictions are least predictable (and vice versa). In
general, while some such relation is often observed, it is
frequently not as strong as one might expect (see
Buizza and Palmer 1998). Recently in the climate pre-
diction literature (see Kleeman and Moore 1999;
Grötzner et al. 1999; Tang et al. 2005) it has been sug-
gested that other factors in the initial conditions beyond
instability may be primarily responsible for at least cor-
relation skill variation. In particular, the amplitudes of
especially “persistent” oscillatory patterns were found

1 Naturally there are considerable challenges that have only
been partially solved involved in deducing such distributions from
the observational network.

2 Note the rather important distinction here (unimportant to
weather prediction) between equilibrium and climatological dis-
tributions; the former will be in equilibrium to the particular
boundary conditions under consideration while the latter will gen-
erally be the equilibrium distribution given mean boundary con-
ditions.

3 An example of such is the precise relative roles of atmospheric
initial and boundary conditions in atmospheric climate predictions
of a particular duration.
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to be significant. Our theoretical framework enables us
to examine this question now for weather prediction.

This paper is structured as follows: Section 2 dis-
cusses the theoretical predictability tools to be used as
well as the atmospheric model chosen for analysis. Sec-
tion 3 examines the relaxation behavior of atmospheric
ensembles as well as the factors behind variations in
prediction utility with different initial conditions. Sec-
tion 4 further analyzes the origins of the relaxation be-
havior, and looks at regional variations in predictability
as well as the issue of the resolution dependency of
results. Section 5 contains a discussion, a summary, and
plans to further investigate the findings of this research.

2. Numerical model and theoretical tools

In this contribution we shall focus on the predictabil-
ity of the midlatitudes and ignore the effects of convec-
tion. This choice is motivated by two considerations:
First, the depiction of convection in present weather
and climate models is still usually highly parameterized
because it needs to describe some very important un-
resolved scales of motion in a statistical sense. In par-
ticular, the cloud scale of several kilometers is beyond
the capabilities of the present generation models.
Given this, it is not surprising that there are often sig-
nificant problems in the simulation of important con-
vective variability, such as the Madden–Julian oscilla-
tion (see, e.g., Lin et al. 2006). Second, physical param-
eterizations add significantly to computational expense,
and here we wish to consider very large ensembles. We
shall examine the limitations of our choice herein in the
discussion section below.

Motivated by this we chose to use the first-generation
Portable University Model of the Atmosphere
(PUMA) primitive-equation model developed at the
University of Hamburg (see Leslie and Fraedrich
1997). The configuration had five vertical (sigma) levels
and, in our standard experiments, a spectral resolution
of T42, which amounts to approximately 3°. Radiative
cooling and convection are depicted by a simple New-
tonian linear damping toward a specified vertical pro-
file. The relaxation temperature profile is zonally uni-
form but varies meridionally in such a way as to simu-
late a northern winter season. Vertically, the
temperature relaxation profile is close to a moist adia-
bat in the Tropics, but becomes more stable at higher
latitudes. Details are provided in appendix B. Momen-
tum dissipation is included with a simple linear Ray-
leigh friction term, which is enhanced in the lowest ver-
tical level. The model also includes a representation of
orography, which has the effect of making the mean
state zonally variable, and in particular in the Northern

Hemisphere this locates storm tracks in the North At-
lantic and North Pacific. The climatological perfor-
mance of the model configuration is detailed in Klee-
man (2007a) and is reasonably realistic. It locates the jet
streams of both hemispheres in approximately the cor-
rect meridional location, and their strength is reason-
able compared to northern winter observations. There
is a noticeable and realistic zonal variation in the north-
ern jet stream, with the jet being strongest over the
North American/Atlantic sector. Pointwise variance of
the streamfunction is concentrated in the North Atlan-
tic and North Pacific midlatitudes in approximate
agreement with observations. A qualitative comparison
of synoptic disturbances in these regions with observa-
tions shows them to be reasonably similar in horizontal
structure and propagation direction. The theoretical
machinery to be utilized here can be found in Kleeman
and Majda (2005) and Kleeman (2007b). We summa-
rize the relevant material here; however, proofs and
considerably more detail and discussion can be found in
these sources.

The perspective we adopt is that ensembles represent
a sampling of an underlying and unknown probability
density function (pdf). This sampling philosophy also
implies a discretization reference frame because one
must define a partitioning of state space in order to use
the ensemble as a sample estimate of the (now discrete)
pdf. Such a partitioning naturally implies that the pdf is
then only being estimated at a particular resolution.
Now if one chooses a partitioning such that very few
ensemble members are contained in any particular par-
tition element (i.e., subregion of state space), then the
sample estimate provided may have considerable sam-
pling error associated with it. In Kleeman and Majda
(2005) it was shown that this error could be quantified
as information loss and then compared with the infor-
mation content of the ensemble. It was argued that the
choice of partitioning must ensure that this loss should
be small relative to the information content being cal-
culated. In practical terms this means that the number
of ensemble members per partition is required to be
greater than approximately five.

It also should be observed that for a sufficiently large
sample, for which this information loss is not an issue, a
refinement of the partition results in increased infor-
mation (see Cover and Thomas 2006; Kleeman 2007b)
because one is taking into account more of the fine
structure of the pdf. There is, therefore, a trade-off
between losing information because of sampling error
and losing it because of coarse graining. In general, the
optimal point occurs when there are around five en-
semble members in partitions. If one ensures as part of
a partitioning choice that this condition is met, then the
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loss of information resulting from sampling is much
smaller than the practical calculated entropies dis-
cussed below.

Consider now the importance of state-space dimen-
sionality: It is clear that as the dimension of the state
space increases the number of partitions per dimension
must shrink rather rapidly so that sampling information
loss is not significant. The implication, then, is that the
degree of multivariate behavior possible for pdfs at ad-
equate resolution is rather severely constrained by en-
semble size. In fact, a simple calculation shows that for
practical ensembles (i.e., with sizes of less than 104 or
so) the degree of multivariate behavior possible with
four partitions per dimension is at most around six.

One might ask whether this problem could be
avoided by fitting certain reasonable distributions (such
as Gaussians or their generalizations) to the ensemble.
One finds, however, that the constraints described
above then appear in a different form: First, the infor-
mation content obtained from the fitted distributions
are, for high-order multivariate distributions, consider-
ably larger than those obtained using the optimal par-
titioning strategy discussed above. The apparent reason
for this is that there must be considerable sampling
error or information loss associated with the particular
fitted distribution because it is rather uncertain. This
uncertainty also implies that the numerical problem as-
sociated with the fitting can often become quite ill
posed because there are many almost equally well-
fitted distributions.

Given these issues, Kleeman (2007b) proposed the
study of the information content of an ensemble asso-
ciated with multivariate behavior of a particular degree.
More precisely, suppose we have n random variables Xi

with corresponding multivariate distribution p (X1,
X2, . . . , Xn). Consider now all possible marginal distri-
butions of order m � n p(Xj1

, Xj2
, . . . , Xjm

), with jk � n.
We define now the marginal relative entropy of degree
m by

Dm�p ||q� �
1

Cm
n �

j
1
, j

2
, . . . , j

m

D�p�Xj 1
, Xj 2

, . . . , Xjm
�

||q�Xj 1
, Xj 2

, . . . , Xjm
��,

where q(Xj 1
, Xj 2

, . . . , Xjm
) is the corresponding equi-

librium distribution and the summation is over all pos-
sible distinct permutations j1,, j2, . . . , jm. For a given
partitioning of state space the marginal entropies can
also be shown to satisfy an inequality hierarchy, that is,

D1�p ||q� � D2�p ||q� � . . . � Dn�p ||q� � D�p ||q�,

�1�

where it will be noted that the final member of the
chain is the full relative entropy. This hierarchy of in-
equalities has the following natural interpretation: each
marginal relative entropy is measuring the average in-
formation content involved in all possible multivariate
fluctuations of given order m of the n random variables.
Intuitively, as one accounts for higher-order fluctua-
tions (bivariate, trivariate, and so on), one would ex-
pect to account for more and more of the information
content of the full n-dimensional pdf. This is precisely
the reason for the inequality hierarchy above. When
the final point m � n is reached, then all multivariate
variations are accounted for and so the full relative
entropy is recovered.

Consider now the optimal partitioning strategy dis-
cussed previously. It is clear that the number of parti-
tions per dimension will then strongly decrease as we
consider the calculation of marginal relative entropies
of increasing degree. Remembering that because re-
finement of partitioning implies an increase in relative
entropy, it is clear that if we adopt an optimal parti-
tioning strategy then the hierarchy of Eq. (1) may no
longer apply. We will examine this point again in the
next section when we deal with practical atmospheric
ensembles.

Another approach to the above ensemble informa-
tion content methodology is to assume in the limit of an
infinite ensemble that a particular form of distribution
holds. In the present context such a calculation is inter-
esting and of practical significance because, as we shall
see later, it is generally the case that the “converged”
distributions likely appear to be close to Gaussian. We
shall therefore also calculate the relative entropy under
the assumption that the converged distributions are
Gaussian. This is of course a sample estimate because
we are estimating the covariances and means from our
ensembles.4 It also represents the information associ-
ated with only the first two cumulants of the converged
distribution in which no assumptions regarding form
are made (see Majda et al. 2002 for more detail). One
could make less restrictive assumptions than Gaussian-
ity; however, it is not clear exactly what form these
should take, that is, which higher-order cumulants
should be included and which should be neglected. This
is a subject for future work. A motivation for the
Gaussian assumption is the central limit theorem,
which states that a sufficiently large sum of non-
Gaussian random variables results in a nearly Gaussian

4 For the large ensembles we shall deal with the sample error
here is small. The actual error can be estimated by looking at the
very long time prediction value of the relative entropy, as we shall
see below.
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variable. It appears that as the dimensionality of the
dynamical system increases, as it does for realistic sys-
tems, then apparently many random variables of inter-
est are effectively large sums of other random variables
and so by the central limit theorem approximately
Gaussian.

3. Initial conditions probability distribution

Errors arise in the initial conditions of weather pre-
dictions for two principal reasons—first because the ob-
servational networks that determine the current state of
the atmosphere are less than perfect, and second be-
cause the models utilized to make forecasts have mis-
representations of physical processes in the atmo-
sphere. This is primarily due to a lack of model resolu-
tion, which forces the parameterization of unresolved
scales of motion.

In this study we are ignoring errors of the second
kind by making the perfect model assumption. We thus
are considering errors that arise solely from the imper-
fections in the observational network.

In practical weather prediction many methods have
been used to process observational data for the purpose
of initializing prediction models. The following three
main types of techniques have been utilized:

1) optimal interpolation of earlier predictions and ob-
servations (see, e.g., Lorenc 1986),

2) variational assimilation of observations into a model
over a particular time window (see, e.g., Rabier et al.
2000), and

3) Kalman filtering a combination of forward integra-
tions of a model with observational data (see, e.g.,
Houtekamer and Mitchell 1998).

In all of these cases the prediction model itself is used
in a fundamental way to “fill in the gaps” of the obser-
vational network. This interpolation is required to ad-
equately initialize a particular prediction model on its
numerical grid.

As a consequence of following such analysis meth-
ods, error estimates for the initial conditions reflect as-
pects of model dynamics as well as deficiencies in the
actual observational network, which we mentioned
above. Disentangling these combined effects is evi-
dently a complex, interesting, and important subject of
study. Because our primary focus in this contribution is
upon the statistical evolution of errors and not on the
initialization process, we defer a comprehensive and
rigorous analysis of this situation and its effect on sta-
tistical predictability to a future contribution.

In place of the sophisticated methodologies of initial-
ization mentioned above, we shall instead fix our ini-

tialization distribution by appealing to a rather ideal-
ized picture of deficiencies in the observation network;
in particular, we shall assume that observations of prog-
nostic variables are available only at a coarse horizontal
resolution, which amounts to an integrated knowledge
of variables in a particular “observation box.” The lat-
ter implies naturally errors in the pointwise-defined ini-
tial conditions. The coarse resolution of the box also
implies that errors in model variables at grid points with
close horizontal proximity will show significant corre-
lation with each other. Using these basic precepts we
build a multivariate Gaussian distribution for our initial
conditions. The particular assumed horizontal structure
is similar in several respects to that assumed in optimal
interpolation for forecast errors (see Lorenc 1986).

In addition to the above covariance structure we also
assume that the means for the initial condition distri-
bution are obtained at random from an extended inte-
gration of the prediction model. This ensures that pre-
dictions are always close to the natural “attractor” of
the prediction model. This prescription is also concep-
tually consistent with our perfect model assumption.
The exact details and a justification of the distribution
may be found in appendix A.

4. Limits and variability of predictability

The theoretical framework discussed above was now
applied to the model detailed. Ensembles were con-
structed by sampling from a particular choice for the
initial condition distribution discussed above. We shall
assume, as discussed, that the primitive-equation prog-
nostic variables are distributed according to a Gaussian
(multivariate) distribution, which has a horizontal
decorrelation scale of 1000 km and mean values drawn
randomly from the equilibrium distribution with vari-
ances two orders of magnitude smaller than the equi-
librium distribution. The variances chosen here are
probably larger than one might expect in a well-
observed region.

In the first numerical experiment, which explored
predictability limits, we chose a very large ensemble of
9600 members. The large size was used in order to ex-
plore convergence with respect to the order of com-
puted marginal relative entropy. In later experiments,
aimed at examining variations in predictability with re-
spect to the choice of initial conditions, and also in a
higher-resolution run, we reduce this to 1000 members
and compute only marginal entropies of order three or
less.

To make the calculation of marginal relative entropy
practical we require a reduced state space, because all
possible permutations of state variables must be com-
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puted [see Eq. (1)]. Accordingly, we calculated the first
60 EOFs from an equilibrium run using a multivariate
calculation that used the full set of prognostic variables
(divergence, vorticity, temperature, and the log of sur-
face pressure) at all five vertical levels. The four dy-
namically different state variables were rescaled to
have equal mean global variance before the EOF cal-
culation was performed in order that all should be given
equal weight in the reduced state space. The divergence
was rescaled with the same factor as the vorticity be-
cause they have the same physical units. Without such
a rescaling, results are dominated by the temperature
variable. We also sampled the equilibrium run every 90
days to ensure temporal correlation. The set of calcu-
lated EOFs account for approximately 90% of the vari-
ance of the complete set of prognostic state variables. It
was found that all results shown below were not quali-
tatively sensitive to cutoff dimension, a result checked
by examining all results using 20 and 40 EOFs. The first
EOF is shown in Fig. 1. Notice that overall it has the
greatest amplitude in the northern jet stream and
storm-track regions. It is also interesting to note that
our results were insensitive to the state-space vari-
able(s) selected. We also examined just streamfunction
as a state-space variable and found little qualitative dif-
ference in the results.

As noted previously, an important practical consid-
eration in the calculation of entropic functionals is the
partitioning used. We chose to use the finest partition-
ing consistent with ensuring that the information loss
resulting from sampling is reasonably small. Such a
strategy is optimal in extracting information. We also
chose to partition based on retaining an equal number
of prediction ensemble members in each dimension
partition. The number of partitions per dimension for
the marginal entropy calculations in the first experi-
ment is listed in Table 1.

a. Basic behavior

The results for a particular initial condition distribu-
tion are shown in Fig. 2. Plotted are the first four mar-
ginal entropies as well as the hypothetical Gaussian
relative entropy discussed above.

The latter has been divided by 60 to facilitate com-
parison with the marginal entropies. It is much larger
because it represents the information contained in a
hypothetical converged distribution while the marginal
entropies reflect the (severely) reduced information
content of an ensemble. It is rather curious that despite
this difference in calculation basis it appears to behave
very similarly after rescaling. The correspondence is
not perfect however, as we shall see later when we
examine predictability variation. All entropic measures

qualitatively show the same behavior, namely, a quasi-
linear drop for the first month or so of a prediction and
some evidence of an exponential tail between 30 and 50
days. Beyond this there is approximately flat behavior
for all measures. The level beyond 60 days is not zero,
as one might expect from the convergence of prediction
and climatological distributions, because of the issue of
ensemble sampling. Thus, if one takes two different
climatological ensembles of size 9600 and calculates the
marginal and Gaussian relative entropies then one ob-
tains a small positive residual equal to that seen in the
long lead values of Fig. 2.

A number of other features are notable in the be-
havior of the entropies. First, for longer lags there is
little difference in the behavior of the second- through
fourth-order marginal entropies, suggesting that some
kind of rough convergence is occurring. Second, there is
a hint of “leveling off” of the higher marginal entropies
for short lags. This is not apparent for the univariate
and Gaussian measures. The difference is due to the
relative coarseness of resolution used for the higher-
order measures. For short lags the partitioning used
ensures that the coarse cases do not resolve well the
climatological distribution. Recall that partitioning is
chosen with respect to the prediction distribution. For
longer lags as the ensembles approach each other in
spread the partitioning resolves better both distribu-
tions.

b. Regional variations in predictability

We next examined the variation of predictability be-
havior in different storm-track regions of the globe. In
particular, we examined the Southern Ocean (70°–28°S
and all longitudes), the North Atlantic (25°–56°N, 76°–
174°W), and the North Pacific (25°–56°N, 143°E–
115°W). The first region is dynamically very different
from the last two because in this study it lies in the
summer hemisphere and thus has a mean state likely to
be much less baroclinically unstable. The last two re-
gions have very similar mean states.

In each regional area we recalculated the first 60
EOFs in order to obtain a dynamically relevant reduced
state space in each case. The explained variance of
these new sets of 60 EOFs was higher than the corre-
sponding global set. The ensemble predictions were
identical to the global case. We simply restricted atten-
tion to the specific region and projected onto the re-
gional EOFs rather than the global ones.

Predictability results are displayed in Fig. 3 and show
that the summer storm-track region indeed behaves
very differently from the two northern winter regions,
which appear almost identical in their behavior. In par-
ticular, the summer region shows a much slower decline
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in the relative entropy measures with statistical conver-
gence of the prediction ensemble to the climatological
ensemble still not quite complete after 90 days. The two
northern winter regions by contrast showed somewhat
faster predictability decline than the global case, with
convergence almost complete by approximately 30
days. There is also a general impression that the pre-
dictability decline in the summer case is exponential in

character, while the winter case is almost quasi linear
with a well-defined cutoff point in time beyond which
there is no statistical predictability due to initial condi-
tions.

c. Variation in predictability with initial conditions

This issue is of some obvious practical interest be-
cause a priori information about the likely skill of a

FIG. 1. The first global EOF of rescaled model prog-
nostic variables (see text). Sigma values of [(left); except
for (g)] 0.2 and (right) 1.0 are shown. The contour range
and interval varies between plots in order to emphasize
structure. The contour values (i.e., bottom, top, interval)
multiplied by 10 000 for each frame are (a) (	100, 80, 20),
(b) (	250, 250, 50), (c) (	180, 120, 30), (d) (	120, 100,
20), (e) (	18, 12, 3), (f) (	80, 50, 10), and (g) (	200, 150,
50).
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particular forecast has utilitarian consequences [a good
review can be found in the work of Palmer (2000)].
Considerable attention in the literature in this respect
has focused on the relation between prediction skill and
ensemble spread. Some useful results have been ob-
tained (see, e.g., Buizza and Palmer 1998); however, the
relationship found has often been less than ideal.

Our present study allows us to reexamine this issue
using rather clear theoretical measures of predictability
with large ensembles. The focus here has been on using
the relative entropy as a measure of the convergence of
the prediction to the climatological ensemble, however,
one may also interpret it clearly as the perfect model
utility of the statistical prediction. This is the case be-
cause it measures the overall shift in expected predic-
tion ensemble once initial conditions and dynamics are
taken into account (see Kleeman 2002; Bernardo and
Smith 1994).

If one assumes Gaussian ensembles, then this utility
measure involves both the first and second cumulants
of the ensembles, which makes it more similar to an
anomaly correlation rather than an RMS skill measure
(see Kleeman and Moore 1999) which only depends on
the second cumulant.5 In fact, one may write the Gauss-
ian relative entropy as the sum of a piece depending
only on the prediction’s second cumulant (dispersion)
and a piece depending only on the prediction’s first
cumulant (signal):

RE �
1
2 �ln�det��q

2�

det��p
2�
�
 tr��p

2��q
2�	1� 	 n�Dispersion



1
2

��p 	 �q�t��q
2�	1��p 	 �q� Signal, �2�

where the subscripts p and q refer to prediction and
climatological ensembles, respectively. The interpreta-
tion of the first piece is the prediction utility associated
with reduction in uncertainty, while the second piece

represents the utility associated with shifts in the means
of the ensemble from the climatological case. Some re-
flection shows that both pieces have clear practical
value to consumers of forecasts.

An interesting question is whether variations in pre-
diction utility with respect to differing mean initial con-
ditions are more closely associated with variations in
either dispersion or signal. Clearly, an attempt to find a
relationship between ensemble spread and anomaly
correlation implicitly assumes that the former is the
case. In fact, we find that the opposite is true.

To examine this we obtained 48 uncorrelated initial
conditions from a climatological integration, which
were used as the means for initial condition ensembles
constructed using the method described previously. To
make this exercise computationally practical a smaller
ensemble of 1000 members was then constructed for
each initial condition. The second and third marginal
entropies were then calculated for each initial condition
using 5 and 10 partitions per dimension. The Gaussian
entropy was also computed and split according to
Eq. (2).

In Fig. 4 we have plotted the correlations between
the various entropies at different prediction times. The
relationship between the marginal entropy and the
Gaussian entropy is always quite strong (usually 0.8–
0.9), which is evidence of the near-Gaussian nature of
ensembles in atmospheric prediction. Note, however,
that it is not as high as the correlation between different
marginal entropies, suggesting some small but nonzero
role for non-Gaussianity. This is only a tentative con-

5 Recall that we are considering perfect model skill measures
here. Naturally, in the case of model error the RMS error will also
depend on the mean as well.

FIG. 2. Functional describing global predictability at various
prediction times. Shown are various orders of marginal relative
entropy (see text) as well as the hypothetical Gaussian relative
entropy that applies if the converged distributions are Gaussian.
The Gaussian functional has been rescaled by dividing by 60 for
ease of viewing.

TABLE 1. Partitioning of state space for the various marginal
relative entropies.

Marginal order
Partitions per

dimension Total partitions

1 1024 1024
2 32 1024
3 10 1000
4 6 1296
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clusion of course, and requires further detailed investi-
gation that the author is currently undertaking and will
document elsewhere.

The interesting aspect about Fig. 4 is that of the two
Gaussian pieces, it is very clearly the signal that is more
closely associated with marginal entropy variation than
the dispersion. This holds at all prediction times, but
most noticeably for shorter-range, more skillful predic-
tions. In this respect the nature of primitive-equation
midlatitude atmospheric predictability variation ap-
pears more similar to that seen previously in baroclinic
quasigeostrophic turbulence (see Kleeman and Majda
2005), climate prediction (see Tang et al. 2005), and
stochastically forced systems (see Kleeman 2002) rather
than in chaotic systems like the Lorenz (1963) model
(see Kleeman 2002). This idea is not new to weather
prediction (see, e.g., van den Dool and Toth 1991),
however the present work confirms it in a very general
statistical predictability setting with very large en-
sembles.

Given this important role for the signal, it is interest-
ing to view its variation with initial condition and pre-

diction time. This is plotted in Fig. 5, and two things are
apparent. First, there can be considerable variation in
this quantity from one set of initial conditions to an-
other, and occasionally it is unusually high even for
2-week predictions. Second, it is reasonably coherent in
time or, in other words, if the signal is large for short-
range predictions it will tend to be also large for longer-
range predictions (and vice versa).

An important caveat to the above results concerns
the method used to produce the initial condition distri-
bution. As noted in appendix A, the fixed covariance
matrix assumed will ensure that at time zero there will
be no variation in the dispersion component between
differing initial conditions. With a more practical as-
similation system one would not expect this to be the
case because model dynamics then play a role in deter-
mining error covariances. It is worth observing, how-
ever, that the conclusion regarding dominance of the
signal over dispersion is true at all prediction times, not
just very short ones. Evidently, for lags of the order of
2–10 days, the prediction distribution is very heavily
influenced by model dynamics in a way that is some-

FIG. 3. Same as for Fig. 2, but broken into different geographical regions of particular dynamical interest: (a) Southern Ocean,
(b) North Atlantic, (c) North Pacific.
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what analogous to practical data assimilation, and yet
the signal term actually is increasingly dominant over
dispersion during that period. The dispersion term
however does grow from zero to a correlation of 0.45 in
the first day, which does suggest that practical assimi-
lation systems may have a significantly larger role for
dispersion, at least for short-range predictions.

d. Sensitivity to resolution

In general in models of the type deployed here, scale-
dependent dissipation is used to control small-scale
noise. As resolution increases this typically acts pri-
marily on smaller and smaller scales, which are well
below the synoptic scales that dominate the leading
part of the EOF spectrum that we have used to analyze
predictability. Effectively, then, as we increase resolu-
tion we reduce dissipation of modes in this part of the
spectrum, and at the same time increase the effective
stochastic backscatter from previously unresolved
smaller scales (see, e.g., Frederiksen and Davies 1997).
We tested the sensitivity of our results to these effects
by using a T85 rather than T42 version of the PUMA
model. The effective horizontal resolution of this con-
figuration was exactly double that of the standard
model. We kept the vertical resolution at the standard
five levels, and in all other respects, except for internal
dissipation, the new configuration was identical to the
standard one.

The internal dissipation used in the model was an
order-8 hyperviscosity. The coefficient for this term was

adjusted with resolution so that the dissipation time
scale of the highest wavenumber remained constant at
4 days for both the T85 and T42 experiments.

Increasing resolution forces one to choose a signifi-
cantly shorter time step for numerical stability, mean-
ing that the computational cost of our high-resolution
model is more than an order of magnitude higher. We
thus restricted our attention to smaller ensembles, and
in particular considered a 960-member ensemble.

At a higher resolution an EOF analysis similar to that
reported above for T42 revealed, perhaps not surpris-
ingly, a slower convergence with respect to explained
variance. Thus, 100 modes explained around 55% of
variance, rather than the 95% in the T42 case. Our
experiments were conducted with 100-mode-reduced
state space. As an initial condition distribution we used
the identical one to that used in the T42 case to produce
Fig. 1. The reduced ensemble meant that we were only
able to calculate the first three marginal entropies, and
these were performed using 121, 11, and 5 partitions per
dimension, respectively. Again, the Gaussian relative
entropy was also calculated and rescaled by the (new)
reduced space dimension for ease of viewing. Results
are displayed in Fig. 6 and show that, similar to the T42
case in Fig. 2, for all considered entropic functionals
there is essential convergence of prediction and clima-
tological ensembles by about 45–50 days. The general
qualitative behavior is relatively unchanged, although
there is some reduction in all relative entropies at short
leads. This is possibly because the smaller total variance
of the reduced state space for the high-resolution case
may mean that more information is being omitted in
the present case relative to the control case. The rela-
tive robustness of the results to rather large changes in
horizontal resolution is a little surprising. It suggests
that the stochastic backscatter from very small-scale

FIG. 4. Correlation of the third-order marginal relative entropy
with various other functionals of interest. Correlations were com-
puted by considering different initial conditions as data points and
are plotted as a function of prediction time. Other functionals
considered include the second-order (bivariate) marginal entropy,
and the Gaussian relative entropy (see Fig. 1) and its constituent
pieces, signal and dispersion (see text).

FIG. 5. The signal component of Gaussian relative entropy plot-
ted as a function of prediction time and particular initial condition
(there are 48 considered).
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wavenumbers is not very important to the basic statis-
tical predictability properties of the atmosphere. Natu-
rally, more detailed study of this issue is warranted.

5. Summary and discussion

In this contribution, for the first time we have inves-
tigated perfect atmospheric statistical predictability
comprehensively using very large ensembles and tools
from information theory. The model used is quite sim-
plified compared to state-of-the-art numerical weather
prediction models; however, it exhibits reasonably re-
alistic behavior in the midlatitude storm tracks.

Our principal novel result is that in the winter storm
tracks, model prediction and climatological ensembles
are essentially indistinguishable beyond approximately
45 days. This has important consequences for atmo-
spheric climate prediction because it suggests that be-
yond this time there is no value in incorporating initial
condition data, and only boundary condition data are
relevant to predictions. This qualitative result appears
robust to significant increases in the horizontal resolu-
tion of the model used. It is also seems robust to the
dynamical variables used in the predictability analysis
(see Kleeman 2007b).

A further novel result concerns regional variation in
potential predictability. We find that in the southern
summer hemisphere storm tracks, statistical predict-
ability is at least twice as long as in the northern winter
hemisphere. In addition, the decline of predictability as
measured by the relative entropy of the prediction and

climatological ensembles was of a much more marked
exponential character, whereas the winter case showed
a more linear behavior. It seems plausible that these
two different predictability regimes are consequences
of the different nature of the geophysical turbulence
operating in the various regions. The mean state verti-
cal shear resulting from the local jet stream is perhaps
a factor of 5 larger in the winter case.

A final major novel result concerns variations in pre-
dictability with differing initial conditions. This prob-
lem is of major practical interest to forecasters, and
many attempts have been made to relate skill of pre-
dictions to ensemble spread variations. Our measure of
predictability—relative entropy—is derived from infor-
mation theory and may be interpreted as the utility of a
statistical prediction given a perfect model. We find
that variations in this measure are primarily not due to
variations in prediction ensemble spread, but to varia-
tions in the anomalous means of these ensembles. We
refer to the first effect as dispersion and the second as
signal.

This result needs further detailed investigation be-
cause our method of constructing initial conditions en-
sures that differing initial conditions have the same ini-
tial condition spread. There are many options used in
data assimilation to produce such initial conditions, and
often they use the prediction model in a fundamental
way to interpolate sparse observational data to the
model grid. This ensures that the flow instability of the
initial state will likely have some role in setting initial
errors. Nevertheless, despite this caveat we find that
after a prediction of 5–10 days, during which such in-
stabilities may be expected to strongly influence en-
semble spread, that the importance of signal relative to
dispersion is actually somewhat increased.

A limitation of the present study is the neglect of
convective processes. Apart from the computational
overhead involved with the inclusion of these effects,
there is often a serious problem of model verisimili-
tude. It is well known, for example, that models often
have difficulty in simulating both the amplitude and
period of low-frequency large-scale variations in con-
vection, such as the Madden–Julian oscillation (MJO;
see Lin et al. 2006). This may be due to the lack of
horizontal resolution of the turbulence because cloud-
resolving models often (and not surprisingly) appear to
simulate aspects of convection better (see, e.g., Ziemi-
aski et al. 2005). The precise manner in which the con-
clusions presented here are modified by the consider-
ation of convection is likely to depend on details of the
convective “turbulent cascade,” and so in the view of
this author they will need to be studied in a number of
models with very different convection parameteriza-

FIG. 6. Same as Fig. 1, but for a high-resolution (T85) version of
the numerical model. The Gaussian marginal entropy has here
been rescaled by 100 rather than 60 (see text). The fourth-order
marginal relative entropy has been omitted because smaller en-
sembles were used.
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tions. One can easily imagine that if a model has too
much variability at very high frequencies and high
wavenumbers (convective “noise”), and too little asso-
ciated with low-frequency and large-scale coherent
structures, then estimates of predictability may be un-
duly pessimistic.
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APPENDIX A

Initial Condition Distribution

Following the general philosophy outlined in the
main body of the text, we assume that all prognostic
variables are governed by a multivariate distribution
that ensures a fixed horizontal decorrelation scale. Spe-
cifically, we assume that the set of prognostic variables
xi have the distribution

P�x1, . . ., xN� � D exp�	�
i, j

C ij
	1�xi 	 �i��xj 	 �j��,

�A1�

where the �i are the means of the corresponding prog-
nostic variables, which have a covariance matrix Cij. We
assume that the �i are drawn randomly from a long
integration of the atmospheric model. The covariances
are assumed to have the form

Cij � SiSj exp�	�dij�a�2�Vij , �A2�

where d ij is the horizontal distance between the various
prognostic variables. Here, a is set at one-sixth the
earth’s radius (i.e., around 1000 km); Vij � 1 if xi and xj

are on the same vertical level and the same type of
prognostic variable (i.e., temperature, vorticity, diver-
gence, or surface pressure), and zero otherwise. This
ensures no correlation between different vertical levels
or different prognostic variables. This formulation is
perhaps a little oversimplified because one would ex-
pect some correlation between different prognostic
variables at a particular locality and also in the vertical.

The prognostic variables are assumed to have vari-
ance S2

i , which is set at 1/100 of the climatological vari-
ance of the particular prognostic variable. These were
determined by a long integration of the atmospheric
model.

The idealized formulation given above can be justi-
fied qualitatively as follows: If one takes a prognostic

variable from the model and performs a local horizon-
tal average to roughly represent the coarse-resolution
value of this variable, one can use such an integrated
variable to represent approximately an observation of
the prognostic variable at coarse resolution. The dis-
crepancy between this “observation” and the actual
value of the variable at the center of the local averaging
region then is an estimate of the observational error
resulting from the lack of horizontal resolution. One
can now obtain statistics for this estimated observation
error using a long integration of the atmospheric
model. The “errors” are approximately Gaussian with a
horizontal decorrelation scale that varies directly with
the degree of coarsening chosen to produce the obser-
vations.

In the initial condition experiments described in sec-
tion 4c, it is worth noting that the error covariances will
not vary from one mean initial condition to another
because of our fixed choices outlined in Eq. (A2). A
practical data assimilation methodology will not have
this property because model dynamics will play a com-
plex role in determining error covariances.

The initial conditions drawn from the distribution
(A1) may be unbalanced quasi geostrophically, and
thus possibly generate undesirable gravity waves. To
circumvent this, a gravity wave time filter described in
Lynch and Huang (1994) was applied to the prognostic
variables for all ensemble members before a prediction
integration.

APPENDIX B

Relaxation Temperature

The model temperature is relaxed using Newtonian
cooling with a damping time of 15 days toward a zonally
and vertically varying profile TR(�, ), which is in-
tended to represent the radiative convective profile for
the global atmosphere in the northern winter. It is given
as a function of latitude � and the vertical coordinate
 by

TR��, �� � TR��� 
 f�����TNS

�

2
	 �TEP��2 	

1
3��,

�B1�

where � � sin� ; �TNS � 	53 K is the temperature
difference between the north and south poles; and
�TEP � 70 K is the mean equator pole temperature
difference. The first term TR() is the global mean ver-
tical temperature profile, which is determined as fol-
lows: It is assumed that the relaxation temperature is a
hyperbolic function of z, which is asymptotically iso-
thermal as z → � and asymptotically a constant gradi-
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ent of 6.5 K (km)	1 as z → 	�. At z � 0 it is assumed
to have value 288 K and at the tropopause (assumed at
12 km) it is assumed to be warmer than the constant
gradient from the surface by an offset of 2 K. These
four conditions are sufficient to uniquely define a regu-
lar conic section hyperbola. The profile was converted
to sigma coordinates using the hydrostatic relation and
by assuming that the surface profile temperature on
nonzero orography is calculated using the z profile just
discussed. For example, an orography of 1 km has an
assumed surface profile value of a little more than
281.5 K.

The function f() is a “surface intensification” factor
that makes the atmosphere more stable as the surface
cools from its equatorial value. It is given by

f��� � sin���� 	 �T�

2�1 	 �T� � �B2�

for  � T the sigma value of the tropopause and zero
elsewhere.
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