Homogenizations
in Perforated Domain



Outline

1. Perforated Domain
2. Neumann Problems (joint work with Minha Yoo; interesting discussion with Li-

Ming Yeh)
3. Dirichlet Problems
3.1. Elliptic Case (joint works with L. Caffarelli)
3.2 Parabolic Case (joint works with Sunghoon Kim)
3.3. Nonlinear Eigen Value Problem (joint works with Sunghoon Kim)
3.4 Porous Medium Equation (joint works with Sunghoon Kim)



1. Perforated Domain

Q, =Q\T,

' A cell




1.1 Linear Equations

(Dirichlet Problems)
Find the solution u, such that
Au, =0 1m Q
u,=0in JQ, NQ
u, = g(x) on JdQ
(Neumann Problems)

Find the solution u, such that

Au, =0 1 Q
Jdu .

£=0in dQ, NQ
v

u, = g(x) on JQ



1.2 Nonlinear Equations

(Dirichlet Problems)

Find the solution u, such that
F(D’u)=0 in Q
u,=0in JdQ, NQ
u, = g(x) on JQ

(Neumann Problems)

Find the solution u, such that
F(D’u,)=0 in Q
du,

v
u, = g(x) on o

=0in 0Q, NQ



1.3 Questions:
(1). What's the uniform estimate satisfied by u,
to extract convergent subsequence?

(2). If u 1s a limit of u,, what 1s the equation
(or Homogenized Equation, Effective Equation) satisfied by u?
(Rough Idea)
Homogenized Equation satisfied by u 1s
the correctibility condition on u so that u can be corrected to u,
so that the corrected u, satisfies € - problem locally.
So the condition for the existence of corrector

1s almost equal to the homogenized equation.



2. Neumann Problem
2.1 Viscosity Method

F(D’u,)=0 in Q

B (8ug ,ug)zO in 0Q, NQ
ov

u, = g(x)on oQ
for an outward normal direction v to 02, .
Conditions :

(1) F(M) i1s uniformly elliptic i.e. for symmetric matrices M and N
AN - AN < F(M + N) - F(M) < A|N*| - AN
where N=N"—-N and N".N™ >0
(2) B(g+4q’,z) > B(q,z) and B(q,z+7z") 2> B(g,z) for ¢'>0,7'>0
(3) F(), B(-;) are C'.




Def. u,_ 1s a viscosity super - solution if
F(D*u,)<0 in Q

B (a”‘e ,u8)2 0Oin IQ, NQ
ov

u, > g(x)on o
in viscosity sense.

Def. u, 1s a viscosity sub - solution if
F(D*u,)>0 in Q

B (a”‘e ,ug)s 0in IQ, NQ
ov

u, < g(x)on oQ

in viscosity sense.



Lemma: (Comparison Principle)
If u and u_ are super - and sub - solutions repectively
such that 1, > u_ on dQ, then u, > u_ in Q.

Cor. (Existence)



Main Theorem
Let u, be the viscosity solution of
F(D’u)=0 in Q
du,

ov
u, =g(x)on oQ.

where F 1s homogeneous of degree one.
Then
(1) There is a Lipschitz function u(x) and n(e) > 0 such that

=0in 0Q, NQ

u, (x)— u(x)| < n(e) forallx eQ,
and n(e) »>0as € —0.
(2) There is a uniformly elliptic operator F(-) such that
u(x) 1s a viscosity solution of
F(D’'u)=0 in Q
u=g(x)on Q.



2.2 The Concept of Convergence

(1) Discrete Gradient Estimate

h —
Lemma. SetA u, =" forpe 7",

Then |A,u, 1< C uniformly

(Idea of Proof)
SetZ=sup A u |’
xeQ,

a. Interior estimate
LIZ])=a;(x)D,Z=20 1in ),

1
for a; = JFlj(leju(x + hee) + (1- s)Dl.ju(x),{) ds.
E
0

(9_Z:O on o2, NQ
ov

So there is no maximum in €, \JQ.



b. Boundary

We need a super - solution such that

h,=0 on dB,
h,=1 onJdB,
F(D’h,)<0 in (B, \B),
dh .
8\/8 >0in Jd(B,\B,), N"(B,\B,)

and ‘hg (x)‘ < Cd(x,0B,) (Linear growth)
It is not easy to construct such barrier.
(Stepl) Choose R'> R and r'<r.
Consider the homogenization 4', in
D=(B, \B,)U(B,\B,), U(B.\B,): apertorated in compact subset
Homogenized equation will be uniformly elliptic and gives
the upper bound gradient of the limit #2' and then uniform upper bound of 7', .

That upper bound is also independent of r — 7'



(Step2) Choose a small r—r' so that 4', is a super - solution

with a small error.



(2) Almost Flatness
Lemma.

0SCo_ (mnt, (m) Ue = O(¢€) uniformly.

(Idea of Proof)

1
Setv,(y)= —(ug (Ey) — min ugj 20 1n B,(0). Then
£

B48\Ta8
F(D*v,)=0 in B,
v,

v
There 1s y, € B, and v(y,)=0

=0in JT, N B,

By the Harnack inequality and Discrete gradient estimate,

supv, < Ci}rglfvg <Cv,(y,+m)<Ce
B, 2

fory,+meB,



Lemma (Golobal € - Lipschitz Estimate)
u, (x)—u,(y)| < Clx—yl+¢) forallx,y € Q,

'@

oo

Lemma There is a Lipschitz function u(x) and n(g) >0 such that
u, (x)— u(x)| < n(e) forallxeQ,
and n(e) »>0as € —0.



2.3 Correctors

Lemma (Correctors)
For any given matrix P and a vector &, there are € - periodic functions
w, (-;P,£), a unique constant o(P,£), and bounded functions o, (P,£)(x)

such that
F(P+D'w,)=0, inR"\T,
| ow

8—‘/82\/'(5-68 OH&TGE

and o, — o uniformly as € = 0.




Let us consider
—w, +F(P+D'w,)=0 inR"\T,
1 ow

avg+w8:v-§ on oI,

For large M depending on P and ¢,

h*(x)=£M are super - and sub - solutions.
Lemma : (Existence of Corrector)

There 1s a € - periodic solution w, which 1s uniformly bounded.



Set W, (x) = w, (x)— w, (0) and W, (x) = €n, (gj

Then n, satisties 7,(0) =0 and
—e’n, + F(eP +D*w,)=¢ew_(0) inR"\T,

19
N
Et+en. =v-¢ - w0 on ol
5y T =vee - w0) )
By Harnack type estimate and the periodicity,
Lemma :
N|l. <C uniformly.

and osc w, < C¢
Set 0, (P,&) = w, (x) = o (P.E)

(Uniqueness comes from a simple comparison.)



2.4 The proof of main theorem

Set F(P.£)=0(P.%).
Theorem. Whena, = a,€, u1s a viscosity solution of

F(D*u,Du)=0 in Q

u=0 on JQ.
Claim: u 1s a sub - solution.
2 P | ]
/ Otherewise at x,,, P(x) = EPijxix PR o e

F(P,E)<-268,<0.
\t/j—\ 1 and then F(Q.) < -0, < 0.

Let O, =0+w,.



F(Q.)=F(Q+Dw,)=0, < F(Q.£)+8,/2<- 8,2

3 -
i’%zv.g_v.g_gg > - FQE-8/2 8,2 >0

Threfore Q. is a super - solution of € - problem

in a small neighborhood B; of x, =0.
And Q. > u, on dB; from the convergence lemma.

So Q. > u, In B; which 1s a contradiction.

on JT



Lemma:

1.
2. F(tM, tE)=tF(M.E)
3. If F(-) is convex, sois F(-¢).




2.5 Discussions
(1). There are two key estimates:

Discrete gradient estimate and Harnack - type estimate in cell problems

ie. supv, <C(infv, +"data")
B, B,

(2). For a bounded function f (x), consider
F(D’u,)= f(x) in Q
du,

ov
( Discrete Holder Estimate :)

=0in dQ, NQ, u =g(x)on Q.

u (x)—u (y)|<C(lx—yF +e) forallx,yeQ,.
(Main idea : Perturbation theory of Schauder type)
(1) Discrete gradient estimate for fixed constant.

(i1) Perturbation lemma
(111) Improvement approximation

with scaling and Perturbation lemma



(3). F'(D’u,)=0 in Q
F*(D’u)=0 in T

E

aug &ue . ..
5 + P 0 in Q. NQ (Continuity of Flux)
u, = g(x)on Q.

( Harnack Estimate :)
(4). (small permeability in perforated domain)
F'(D’u,)=0 in Q
F*(D’u,)=0 in T
du, e du, _
v oV’
u, = g(x)on Q.

0 in JQ, NQ



(5). Randomly Perforated domain.
We need to consider obstacle problem for Neumann problem
to find subaddative quantity following
L. Caffarelli, P. Souganidis and L. Wang.
We need the stability of this quantity
through discrete nondegeneracy estimate.

And we need a kind of uniform estimate to extract convergent subsequence.



3. Dirichlet Problem

(Dirichlet Problems)

Find the solution u, such that
F(D’u,)=0 in Q
u,=0in 0Q, NQ
u, = g(x) on o

The Dirichlet Problem can be considered

as an highly oscillating obstacle problem



Highly Oscillating Obstacle Problems

Oscillating Obstacles
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Possible Cases

\.m

|-

fig 1—(a) fig 1—(b) fig 1—(c)

Fig 1 This figures show the oscillation of u. when the decary rate
of a. is subcritical (fig 1-(a)), critical (fig 1-(b)), and supercritical (fig

1-(c))



3.1 Main Theorem For Laplace Equations

3.1.1 Main Theorem For Laplace Equations

(1). (The Concept of Convergence)

There is u and p > 0 such that y, ——uin L".
And for any 0 > 0, there is D; < € such that

u, —>u uniformly in D;
and 1Q\D; I<0

1
n

(2) Leta, = &* for o, = ; forn=3anda,=e ¢ forn=2.
n—

(a) For c,o, <, < C,0t,, uis a viscosity solution of
Au+kx, (@—u), =0 in Q
u=0 on dQ

where x 1s the capacity of B, 1f 7, =lim 2 exists.

e—0 Q¢



(b) If o, = o(a: ), then u 1s a viscosity solution of
Au=0 1in Q
u=0 on dQ.

(c) If (x: =o(o,), then u 1s a viscosity solution of
Au<0 in Q
u=>¢@ in
u=0 on 0.



3.1.2 Correctors

Aw,=k 1n R"
w.(x)=1 1n T,

Lemma. Leta, =c,&”. There is a unique number o = 5 st

J/\

liminfw, =—c  for any k>0 if a > o,
liminfw,(x)=1 fora=0o.and k =k, s.t. k, — cap(B,)

liminfw, =0  forany k>01if o <ar,



(c) a, = o(a,)

(b) a, = o(a,)

. 1 1 An—2 1
lax | 1uin 0’ pn—2 o (GE)R—Z ’En—Z - (as)n—Z

hZ(x) = max [g7 (lx —m])]

meehn

gl(.’lf) — ,,.:;—2 — =

gt (x) = 1) + cxfz]?




3.1.3 The Concept of Convergence

(1) Discrete Gradient Estimate

u, (x+hee)—u, (x)

Lemma. SetA u, = P

Then |A,u, |< C uniformly

— A 5(x) + Bs(us6(x) — p(x)) =0 in €
u-s5(r) =0 on J

—A(|Aus?) + ;‘"féﬂ)(2|£E’HE!5(;J.‘)|2 — 20 u N p.) = 0.



(2) Almost Flatness
Lemma. Seta, =(a,)"’.Then

— Y .

'@

oo o




Nonlinear Equations
F(D’u,x) =0 is uniformly elliptic if
1
XHNH <F(M+N,x)— F(M,x)< A||N|

for n X n symmetric metrices M, N s.t. N =2 0.
(F(D*1,)<0 in Q

U, (x)=0 on dQ
4, (x)2 ¢, (x) 1n L2

(NL,)

N

Ex)
F(D*u)= kA (D*u)+ k,A_(D’u)=0
Let u=r".

Then F(D°r*) =

2 (k(ot+1)—k,)=0.

o
r



Homogeneous Solutions

Proposition 1.5.
Let F(D?u) be homogeneous of degree 1. Then there is a homogeneous

solution V (x) for F(D?*V) = 0 in R™\{0} which is one of the following
three types.
(1) (TypelI) V(x) has negative degree —\ < 0 and satisfies lim, . V =
0 and limpy oV = oc. It is also unique up to constant ratio
and has the form

V(z) = |z ®(0)

for 8 = =.
||
(2) (Type II) V(x) has zero degree and satisfies limpy .o V' = oc
and limy, oV = —oc. It is also unique up to constant ratio

and has the form
Vix) = log(|x]) + P(0)
for 8 = ﬁ
(3) (Type III) V() has positive degree X > 0 and satisfies lim, o V =

oc and limy—oV = 0. It is also unique up to constant ratio
and has the form

Vix) = |z d(0)
ford =%

||~



Theorem II
(1). (The Concept of Convergence)

There is u and p > 0 such that 4, —uin L.
And for any 0 > 0, there is D; < € such that

u, —>u uniformly in D;
and |Q\D; I<0
(2) In (Type III), for any a,, the limit u 18 a least viscosity
super - solution of
F(Du) <0 in Q
u=>¢@ in
u=0 on JQ.



1

3) Set of = =2 for a, = &2 in (Type I) and of = ¢~ = in (Type
£ A £
II). Then
(a) For coal < a. < C,a?, there is a uniform elliptic operator
F(D?u, (p—u)y) such that the limit u is a viscosity solution
of
F(D*u,(p—u)y) =0 in(
u=0 on .
And F(0,¢) = kg,c.
(b) If a. = o(al) then u is a viscosity solution of
F(D*u) =0 in(
u=0 on Jf)
(¢c) If af = o(a:) then u is a least viscosity super solution of
F(D*u) <0 in(
u > in f)
u=0 on Jf)



3.2. Parabolic Problems

Find the smallest super - solution u, such that
Au, —du, <0 in Q Xx(0,T]
u, 2 @, (x)in Q x(0,T]
u,=0on JQ x(0,T]
u,=gon Q x{0}



1
n

Theorem. Leta, = &* for o, = 5
n —_—

For c,o, <, < C,0t,, uis a viscosity solution of
Au +Kp, (—u), -u,=0 1 Q,
u=0 ondQ,
u=g(x) in Qx{r=0}

where K 1s the capacity of B, if r, = 11m— exists.

e—0 %¢

Idea : Q. (x,t) = O(x,t) + (@(x,)— O(xy,t,))W, (x)

forn=3and05*=e_€2 forn=2.



3.3. Nonlinear Eigen Value Problems

Let us consider nonlinear eigen value problems:

Ap, =-Ag, in Q

@, >0 in €

lg, =0 on JI,

L9, =0 on oQ
for 0< p<I1.

LetA=1.



3.3.1. Homogenized Equation

Theorem: (1). (The Concept of Convergence)

There 1s u and g > 0 such that 4, ——uin L”.
And for any 0 >0, there is D; < Q such that

u, —u uniformly in D; and 1Q\D; <0

1

(2) Leta: =& for o, = n2 for n =3 and oc*:e_’f2 forn=2.
n_

(a) For c,0r, <o, <Cyx,, uis a viscosity solution of
Au-Ky u, ==Au’ in Q
u>0 1n Q2
u=0 on dQ

where x 1s the capacity of B, 1f 7, =lim 2 exists.

e—0 ¢



3.3.2. Main Steps

a. Discrete Gradient Estimate for the Green Function for Laplace operator.
idea) * GQE (X,y) — GQ(x’y) + hg (x,y)
Ah, (x;y)=0 1in €,
where
® /i_(x;y) has discrete gradient estimate with the order of IVG,, |.

= Discrete Gradient estimate of u, from Green's representation.
b. Almost Flatness

v, (X)=u, (w/a: x)=Av, = —a: v,”



c. Correctibility Condition (or Homogenizd Equation)
-Aw, +5(b—bw,)’ =k,

Set v, (x)=w, (a: x).

AV, + 55 (b= bv,) =k (@)’ in Q,\D

E

/\

v, =1 ondD
v, =IVy_ I=0 ond Q.

.

- JAVE dx = (a:)2 Jkg — bP—l(l_ v, )p dx

0O.\D O.\D
£ €

dge ag

When & 50, -k(D)=k—b"" = k=-k(D)+b""



P(x) 1s correctible = P.(x)= P(x)— P(x,)w, 1s a solution of € - problem
0= AP, +(P.(x))" =AP—P(x,)Aw, + P(x,)"(1-w,)"
= AP + P(x,)k
=~ AP —k(D)P(x,)+ P(x,)"

d. Discrete Hopf Principle
idea) Creat a barrier from the oscillating obstacle problem

= Discrete nondegeneracy of u,



3.4. Porous Medium Equations in a fixed Perforated domain
Au? —du, =0 in Q, x(0,T]
u, =0on 0Q, x(0,T]
u, =g on Q  x{0}

Set v, =u. which is a flux.
Vv, #0 on a fixed boundary o€2.

For v > 0 > 0, we can use the results on Laplacian.

Vgl_;q Av, — atve =0 Qag x(0.1]
v,=0on dQ, x(0,T]
v, = g;n on Qag X{O}



1
n

Theorem. Leta, =&* for o, = forn=3and a, =¢ ¢ forn=2.

n—72
For c,o, <o, < C,0r,, uis a viscosity solution of
v (Av-ky v,) -v,=0 in Q
v=0 ondQ,
v=g(x)" in Qx{r=0}

where Kk, is the capacity of B, if r, =lim =% exists.

o e—0 ¢



3.4.1. Main Steps

a. Discrete Nondegeneracy

¢, (x)
(1 + t)l/(m(m_l))

c, U .(x,t)<u, <c,U,(x,t) forsome 0<c, <c, <o

idea) U, (x,f) =

= Discrete nondegeneracy of u,
= u>01in Q
b.Discrete Gradient Estimate for u, ,(x,0) <0
by applying maximum principle on

Z=D"ul



c. Almost Flatness

¢, (x)
(1 n t)l/(m(m—l))

c, U .(x,t)Su, <c,U,(x,t) forsome 0<c, <c, <o
Set T, ={u,(x,1)<0,}.
On 2, =Q\T, , the equation is uniformly parabolic.

idea) U, (x,f) =

Similar method can be applicable.



Thank you!



