
Homogeniza*ons 
in Perforated Domain 

Ki‐Ahm Lee 
Seoul Na*onal University 



Outline 

1.  Perforated Domain 

2.  Neumann Problems (joint work with Minha Yoo; interes*ng discussion with Li‐

Ming Yeh)             
3. Dirichlet Problems    

    3.1. Ellip*c Case (joint works with L. Caffarelli) 

    3.2 Parabolic Case (joint works with  Sunghoon Kim) 

    3.3. Nonlinear Eigen Value Problem  (joint works with  Sunghoon Kim) 
    3.4 Porous Medium Equa*on (joint works with  Sunghoon Kim)  



1. Perforated Domain 

A cell 
� 

aε

� 

Ωε

� 

Ωε = Ω \ Taε



� 

1.1 Linear Equations

 (Dirichlet Problems)
       Find the solution uε  such that
          Δuε = 0     in   Ωε   
          uε = 0 in   ∂Ωε  ∩Ω
          uε = g(x) on   ∂Ω 
(Neumann Problems)
       Find the  solution uε  such that
           Δuε = 0     in   Ωε   

          ∂ uε

∂ν
= 0 in   ∂Ωε  ∩Ω

          uε = g(x) on   ∂Ω 
  



� 

1.2 Nonlinear Equations

 (Dirichlet Problems)
       Find the solution uε  such that
           F(D2uε ) = 0     in   Ωε   
          uε = 0 in   ∂Ωε  ∩Ω
          uε = g(x) on   ∂Ω 
(Neumann Problems)
       Find the solution uε  such that
           F(D2uε ) = 0     in   Ωε   

          ∂ uε
∂ν

= 0 in   ∂Ωε  ∩Ω

          uε = g(x) on   ∂Ω 
  



� 

1.3 Questions :
   (1). What's the uniform estimate satisfied by uε  
        to extract convergent subsequence?
   (2). If u is a limit of uε ,  what is the equation 
       (or Homogenized Equation, Effective Equation) satisfied by u?
      (Rough Idea)
       Homogenized Equation satisfied by u is 
       the correctibility condition on u so that u can be  corrected to uε
       so that the corrected uε  satisfies ε - problem locally.
      So the condition for the existence of corrector
      is almost equal to the homogenized equation.
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            F(D2uε ) = 0     in   Ωε   

             B ∂ uε
∂ν

,uε
⎛ 
⎝ 

⎞ 
⎠ = 0 in   ∂Ωε ∩Ω

             uε = g(x) on   ∂Ω 
             for an outward normal direction ν to ∂Ωε .
      Conditions :
         (1)  F(M) is uniformly elliptic i.e. for symmetric matrices M and N

                 λ N + − Λ N − ≤ F(M + N) − F(M) ≤ Λ N + − λ N −

                  where N = N + − N − and N +,N − ≥ 0
        (2)  B(q + ′ q ,z) ≥  B(q,z) and B(q,z + ′ z ) ≥  B(q,z) for q'≥ 0,z'≥ 0
        (3)  F(⋅), B(⋅,⋅) are C1.

2. Neumann Problem  
2.1   Viscosity Method 



� 

       Def.  uε  is a viscosity super - solution if
               F(D2uε ) ≤ 0     in   Ωε   

               B ∂ uε
∂ν

,uε
⎛ 
⎝ 

⎞ 
⎠ ≥ 0 in   ∂Ωε ∩Ω

                uε ≥ g(x) on   ∂Ω 
                 in viscosity sense.
      Def.  uε  is a viscosity sub - solution if
               F(D2uε ) ≥ 0     in   Ωε   

               B ∂ uε
∂ν

,uε
⎛ 
⎝ 

⎞ 
⎠ ≤ 0 in   ∂Ωε ∩Ω

                uε ≤ g(x) on   ∂Ω 
                 in viscosity sense.
  



� 

Lemma :  (Comparison Principle)
     If uε

+ and uε
− are super -  and sub - solutions repectively 

     such that uε
+ ≥  uε

− on ∂Ω,  then uε
+ ≥  uε

− in Ω.
Cor.  (Existence)
  



� 

     Let uε  be the viscosity solution of 
           F(D2uε ) = 0     in   Ωε   

          ∂ uε
∂ν

= 0 in   ∂Ωε  ∩Ω

          uε = g(x) on   ∂Ω .
where F is homogeneous of degree one.
   Then 
    (1) There is a Lipschitz function u(x)  and η(ε) > 0 such that
                  uε (x) − u(x) < η(ε)  for all x ∈Ωε

                  and η(ε) → 0 as ε → 0.
    (2) There is a uniformly elliptic operator F(⋅) such that
          u(x) is a viscosity solution of 
                     F(D2u) = 0     in   Ω
                      u = g(x) on   ∂Ω .
  

Main Theorem 



2.2  The Concept of Convergence 

� 

(1) Discrete Gradient Estimate

    Lemma.   Set Δeuε = uε (x+hεe )−uε (x )
hε  for h ∈Zn .

         Then |Δeuε | < C  uniformly
(Idea of Proof)
    Set Z = sup

x∈Ωε

|Δeuε | 2.

   a. Interior estimate
        L[Z] = aij (x)DijZ ≥ 0   in Ωε  

              for aij = Fij (sDiju(x + hεe) + (1− s)Diju(x), x
ε

)ds
0

1

∫ .

       ∂ Z
∂ν

= 0  on ∂Ωε ∩Ω

       So there is no maximum in  Ωε \∂Ω.
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b. Boundary
   We need a super - solution such that 
     hε = 0   on ∂Br

     hε = 1    on ∂BR

     F(D2hε ) ≤ 0     in   (BR \ Br )ε   

     ∂ hε
∂ν

≥ 0 in   ∂(BR \ Br )ε ∩ (BR \ Br )

  and hε (x) < Cd(x,∂Br)  (Linear growth)
It is not easy to construct such barrier.
(Step1) Choose R'> R   and r'< r.
  Consider the homogenization h'ε in
  D = (BR ' \ BR )∪ (BR \ Br)ε ∪ (Br \ Br' ) :  a perforated in compact subset
  Homogenized equation will be uniformly elliptic and  gives 
the upper bound gradient of the limit h'  and then uniform upper bound of h'ε . 
That upper bound is also independent of r − r' .
  



� 

(Step2) Choose a small  r − r'  so that h'ε  is a super - solution 
with a small error.
  



� 

(2) Almost Flatness
    Lemma.   
          oscQε (m )\Taε (m ) uε = O(ε)  uniformly.

(Idea of Proof)

Set vε (y) =
1
ε
uε ε y( ) − min

B4 ε \Taε
uε

⎛ 
⎝ 

⎞ 
⎠ ≥ 0 in B4 (0). Then

       F(D2vε ) = 0     in   B4   

          ∂ vε
∂ν

= 0 in   ∂Ta ∩ B4

There is y0 ∈B4  and v(y0) = 0
  
By the Harnack inequality and Discrete gradient estimate, 
 sup

B2

vε ≤ C inf
B2

vε ≤ Cvε (y0 + m) ≤ Cε

for y0 + m ∈B2
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 Lemma  There is a Lipschitz function u(x)  and η(ε) > 0 such that
                  uε (x) − u(x) < η(ε)  for all x ∈Ωε

                  and η(ε) → 0 as ε → 0.

� 

Lemma  (Golobal ε - Lipschitz Estimate)
                  uε (x) − uε (y) < C(| x − y | +ε)  for all x,y ∈Ωε

                 



 2.3 Correctors 

� 

Lemma (Correctors)
   For any given matrix P and a vector ξ,  there are ε - periodic functions
   wε (⋅ ;P,ξ), a unique constant σ (P,ξ),  and bounded functions σε (P,ξ)(x)
  such that 

F(P + D2wε ) = σε   in Rn \ Taε
∂wε

∂ν
= ν ⋅ξ -σε              on ∂Taε

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

and σε →σ  uniformly as ε → 0.
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Let us consider 

−wε + F(P + D2wε ) = 0  in Rn \ Taε
∂wε

∂ν
+ wε = ν ⋅ξ              on ∂Taε

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

For large M depending on P and ξ,   
h± (x) = ±M are super -  and sub - solutions.
Lemma : (Existence of Corrector)
 There is a ε - periodic solution wε  which is uniformly bounded.
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     Set ˆ w ε (x) = wε (x) − wε (0) and ˆ w ε (x) = εηε
x
ε

⎛ 
⎝ 

⎞ 
⎠ 

     Then ηε  satisfies  ηε (0) = 0 and 

     
−ε 2ηε + F(εP + D2wε ) = εwε (0)  in Rn \ Ta

∂ηε

∂ν
+ εηε = ν ⋅ξ  -  wε (0)          on ∂Ta

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

     By  Harnack type estimate and the periodicity, 
Lemma :
          ηε ∞

< C  uniformly.
           and osc wε < Cε
Set σε (P,ξ) = wε (x) →σ (P,ξ)
(Uniqueness comes from a simple comparison.)
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  Set F(P,ξ) = σ (P,ξ).
Theorem.   When aε = a0ε,   u is a viscosity solution of 
                       F(D2u,Du) = 0   in  Ω
                                       u = 0    on ∂Ω.

� 

u� 

P

� 

Q

� 

Claim :  u is a sub - solution. 

Otherewise at x0,  P(x) =
1
2
Pij xix j + ξixi + c

                        F(P,ξ) < −2δ0 < 0.
and then   F(Q,ξ) < −δ0 < 0.
Let   Qε = Q + wε .   
  

2.4 The proof of main theorem 



� 

F(Qε ) = F(Q + D2wε ) = σε <  F(Q,ξ) + δ0/2 < - δ0/2 
∂Qε

∂ν
≈ ν ⋅ξ − ν ⋅ξ -σε   >  -  F(Q,ξ) − δ0/2  > δ0/2  > 0        on ∂Taε

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

Threfore  Qε  is a super - solution of ε - problem 
in a small neighborhood Bδ  of x0 = 0.
And Qε > uε  on  ∂Bδ  from the convergence lemma.
So Qε > uε  in  Bδ  which is a contradiction.



� 

Lemma :

1.    λ N + − Λ N − ≤ F(M + N,ξ) − F(M,ξ) ≤ Λ N + − λ N −

2.   F(tM, tξ) = tF(M,ξ)
3.   If F(⋅) is convex,  so is F(⋅,ξ).



2.5 Discussions 

� 

(1). There are two key estimates :  
        Discrete gradient estimate and Harnack - type estimate in cell problems
       i.e.   sup

B2

vε ≤ C(inf
B2

vε +"data")

(2).      For a bounded function f (x),  consider  
          F(D2uε ) = f (x)     in   Ωε   

          ∂ uε
∂ν

= 0 in   ∂Ωε  ∩Ω,  uε = g(x) on   ∂Ω .

         ( Discrete H˙ ̇ o lder Estimate :)
                  uε (x) − uε (y) < C(| x − y |α +ε)  for all x,y ∈Ωε .
                (Main idea :  Perturbation theory of Schauder type)
                  (i) Discrete gradient estimate for fixed constant.
                  (ii) Perturbation lemma
                  (iii) Improvement approximation 
                         with scaling and Perturbation lemma
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(3).     F1(D2uε ) = 0     in   Ωε   
          F 2(D2uε ) = 0     in   Tε   

          ∂ uε
∂ν1 +

∂ uε
∂ν 2 = 0  in   ∂Ωε  ∩Ω (Continuity of Flux)

          uε = g(x) on   ∂Ω .
         ( Harnack Estimate :)
(4). (small permeability in perforated domain)
          F1(D2uε ) = 0     in   Ωε   
          F 2(D2uε ) = 0     in   Tε   

          ∂ uε
∂ν1 + ε ∂ uε

∂ν 2 = 0  in   ∂Ωε  ∩Ω 

          uε = g(x) on   ∂Ω .
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(5). Randomly Perforated domain.
   We need to consider obstacle problem for Neumann problem 
   to find subaddative quantity following 
   L. Caffarelli, P. Souganidis and L. Wang.
   We need the stability of this quantity 
   through discrete nondegeneracy estimate.
And we need a kind of uniform estimate to extract convergent subsequence.



3. Dirichlet Problem 

� 

 (Dirichlet Problems)
       Find the solution uε  such that
           F(D2uε ) = 0     in   Ωε   
          uε = 0 in   ∂Ωε  ∩Ω
          uε = g(x) on   ∂Ω 

The Dirichlet Problem can be considered 
as an highly oscillating obstacle problem
  



Oscilla*ng Obstacles 

� 

ϕε = ϕ χTaε

� 

ϕ

Highly Oscilla*ng  Obstacle Problems  



Possible Cases 



3.1.1 Main Theorem For Laplace Equa*ons 

� 

(1). (The Concept of Convergence)

     There is u and p > 0 such that  uε ⎯ → ⎯ u in Lp . 
     And for any δ > 0, there is Dδ ⊂ Ω such that

               uε ⎯ → ⎯ u  uniformly in Dδ  
                     and  |Ω \ Dδ | < δ

� 

(2)         Let aε
* = εα *  for α* =

n
n − 2

 for n = 3 and α* = e
−

1
ε 2  for n = 2. 

     (a) For c0αε
* ≤ αε ≤ C0αε

*,   u is a viscosity solution of 
                Δu +κ Bro

(ϕ − u)+ = 0   in  Ω

                                        u = 0    on ∂Ω

           where  κBro
 is the capacity of Bro

 if  ro = lim
ε→0

α ε

α ε
*  exists.

3.1 Main Theorem For Laplace Equa*ons 



� 

    (c) If αε
* = o(αε ),  then  u is a viscosity solution of 

                                       Δu ≤ 0   in  Ω
                                       u ≥ ϕ      in  Ω
                                       u = 0    on ∂Ω.

� 

    (b) If αε = o(αε
*), then  u is a viscosity solution of 

                                       Δu = 0   in  Ω
                                        u = 0    on ∂Ω.



 3.1.2 Correctors 

� 

Δwε = k      in  Rn

wε (x) = 1  in  ∪Taε

⎧ 
⎨ 
⎩ 

� 

Lemma.   Let aε = c0ε
α . There is a unique number α* =

n
n − 2

 s.t.

liminf wε = −∞      for any k > 0 if α >α*

liminf wε (x) = 1  for α =α* and k = kε  s.t. kε → cap(B1)
liminf wε = 0      for any k > 0 if α <α*

⎧ 
⎨ 
⎪ 

⎩ ⎪ 



� 

(c) aε = o(aε
*)

� 

(b) aε
* = o(aε )

� 

(c) aε
* = εα *



3.1.3  The Concept of Convergence 

� 

(1) Discrete Gradient Estimate

    Lemma.   Set Δeuε = uε (x+hεe )−uε (x )
hε .

         Then |Δeuε | < C  uniformly



� 

(2) Almost Flatness
    Lemma.   Set aε = (aε

*)1/ 2 . Then
          oscBε (m )\B aε

(m ) uε = o(εγ )  uniformly.



Nonlinear Equa*ons 

� 

F(D2u,x) = 0 is uniformly elliptic if
1
Λ
N ≤ F(M + N,x) − F(M,x) ≤ Λ N

for  n × n symmetric metrices M, N s.t. N ≥ 0.

� 

Ex)
F(D2u) = k1λ+ (D2u) + k2λ−(D2u) = 0 
Let  u = rα .
Then F(D2rα ) = α

rα +2 (k1(α + 1) − k2) = 0.

� 

(NLε )   
F(D2uε ) ≤ 0    in  Ω
uε (x) = 0         on  ∂Ω
uε (x) ≥ ϕε (x)   in Ω

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 



Homogeneous Solu*ons 



� 

Theorem II
(1). (The Concept of Convergence)

     There is u and p > 0 such that  uε ⎯ → ⎯ u in Lp . 
     And for any δ > 0, there is Dδ ⊂ Ω such that

               uε ⎯ → ⎯ u  uniformly in Dδ  
                     and  |Ω \ Dδ | < δ
(2) In (Type III), for any aε ,  the limit u is a least viscosity 
 super - solution of 
                                    F(D2u) ≤ 0   in  Ω
                                       u ≥ ϕ      in  Ω
                                       u = 0    on ∂Ω.





3.2. Parabolic Problems  

� 

 Find the smallest super - solution uε  such that
           Δuε − ∂ tuε ≤ 0     in   Ω  × (0,T] 
          uε ≥ ϕε (x) in   Ω × (0,T]  
          uε = 0 on   ∂Ω  × (0,T] 
          uε = g on   Ω  × {0}
  



� 

Theorem.         Let aε
* = εα *  for α* =

n
n − 2

 for n = 3 and α* = e
−

1
ε 2  for n = 2. 

     For c0αε
* ≤ αε ≤ C0αε

*,   u is a viscosity solution of 
                Δu +κ Bro

(ϕ − u)+  - ut = 0   in  QT

                                        u = 0    on ∂ lQT

                                        u = g(x)  in  Ω× {t = 0}

           where  κBro
 is the capacity of Bro

 if  ro = lim
ε→0

α ε

α ε
*  exists.

� 

Idea :  Qε (x,t) = Q(x,t) + (ϕ(x0) −Q(x0,t0))wε (x)
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Let us consider nonlinear eigen value problems:

           

Δϕε = −λϕε
p      in   Ωε

 ϕε > 0           in     Ωε

ϕε = 0            on    ∂Taε
 ϕε = 0           on   ∂Ω

⎧ 

⎨ 
⎪ 
⎪ 

⎩ 
⎪ 
⎪ 

 

for  0 < p < 1.

Let λ =1.

3.3. Nonlinear Eigen Value Problems 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Theorem :  (1). (The Concept of Convergence)

               There is u and q > 0 such that  uε ⎯ → ⎯ u in Lq . 
              And for any δ > 0, there is Dδ ⊂ Ω such that

                   uε ⎯ → ⎯ u  uniformly in Dδ   and  |Ω \ Dδ | < δ

� 

(2)         Let aε
* = εα *  for α* =

n
n − 2

 for n = 3 and α* = e
−

1
ε 2  for n = 2. 

     (a) For c0αε
* ≤ αε ≤ C0αε

*,   u is a viscosity solution of 
                Δu -κ Bro

u+ = −λ up    in  Ω

                                    u > 0   in Ω
                                    u = 0    on ∂Ω

           where  κBro
 is the capacity of Bro

 if  ro = lim
ε→0

α ε

α ε
*  exists.

3.3.1.  Homogenized Equa*on 



3.3.2.  Main Steps 

� 

a. Discrete Gradient Estimate for the Green Function for Laplace operator.
   idea)  •  GΩε

(x,y) = GΩ(x,y) + hε (x ;y)

                 where 
Δhε (x;y) = 0   in  Ωε

hε (x;y) = −GΩ(x,y)   on  ∂Ωε

⎧ 
⎨ 
⎩ 

            •  hε (x ;y) has discrete gradient estimate with the order of |∇GΩ | . 
       ⇒  Discrete Gradient estimate of uε  from Green's representation.
b. Almost Flatness

     vε (x) = uε ( aε
* x) ⇒ Δvε = − aε

* vε
p
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c. Correctibility Condition (or Homogenizd Equation)
     - Δwε + 1

b (b − bwε )p = kε
    Set  vε (x) = wε (aε

* x).

-Δvε + (aε
* )2

b (b − bvε )p = kε (aε
*)2   in   Q ε

aε
*

\ D

  vε =1    on ∂D
vε =|∇vε |= 0  on ∂ Q ε

aε
*
 

⎧ 

⎨ 
⎪ 
⎪ 

⎩ 
⎪ 
⎪ 

    - Δvε dx
Q ε
aε

*
\D
∫ = (aε

*)2  kε − b
p−1(1− vε )p dx

Q ε
aε

*
\D
∫   

When ε → 0, -κ (D) = k − bp−1 ⇒ k = -κ (D) + bp−1
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P(x) is correctible ≈  Pε (x) = P(x) − P(x0)wε  is a solution of ε - problem
       0 =  ΔPε + (Pε (x))p ≈ ΔP − P(x0)Δwε + P(x0)p (1− wε )p

          ≈ ΔP + P(x0)k
           ≈ ΔP −κ (D)P(x0) + P(x0)p

    

� 

d. Discrete Hopf Principle
    idea) Creat a barrier from the oscillating obstacle problem 
   ⇒  Discrete nondegeneracy of uε



3.4.  Porous Medium Equa*ons in a fixed Perforated domain 

� 

         Δuε
m − ∂ tuε = 0     in   Ωaε

 × (0,T] 
          uε = 0 on   ∂Ωaε

 × (0,T] 
          uε = gε  on   Ωaε

  × {0}
  

� 

   Set vε = uε
m which is a flux.

   ∇vε ≠ 0 on a fixed boundary ∂Ω.      
For v > δ > 0, we can use the results on Laplacian.

        vε
1− 1

m  Δvε − ∂ tvε = 0     in   Ωaε
 × (0,T] 

          vε = 0 on   ∂Ωaε
 × (0,T] 

          vε = gε
m  on   Ωaε

  × {0}
  



� 

Theorem.         Let aε
* = εα *  for α* =

n
n − 2

 for n = 3 and α* = e
−

1
ε 2  for n = 2. 

     For c0αε
* ≤ αε ≤ C0αε

*,   u is a viscosity solution of 

               v1− 1
m  ( Δv -κBro

v+ ) - vt = 0   in  QT

                                        v = 0    on ∂ lQT

                                        v = g(x)m   in  Ω× {t = 0}

           where  κBro
 is the capacity of Bro

 if  ro = lim
ε→0

α ε

α ε
*  exists.



3.4.1.  Main Steps 

� 

a. Discrete Nondegeneracy

    idea) Uε (x, t) =
ϕε (x)

(1 + t)1/(m(m−1))

              c1 Uε (x, t) ≤ uε ≤c2Uε (x, t) for some 0 < c1 < c2 < ∞  
             ⇒  Discrete nondegeneracy of uε
             ⇒  u > 0 in Ω
b.Discrete Gradient Estimate for uε , t (x,0) ≤ 0
     by applying maximum principle on  
       Z =|De

ε hu |2



� 

c.  Almost Flatness

    idea) Uε (x, t) =
ϕε (x)

(1 + t)1/(m(m−1))

              c1 Uε (x, t) ≤ uε ≤c2 Uε (x, t) for some 0 < c1 < c2 < ∞  
               Set T˜ a ε

= {uε (x,t) < δ0}. 
              On Ω ˜ a ε

= Ω \ T˜ a ε
,   the equation is uniformly parabolic.

             Similar method can be applicable.



Thank you! 


