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Foreword by the PIMS Director

The Sixth Annual PIMS Industrial Problem Solving Workshop was hosted by the PIMS at the
University of British Columbia in Vancouver, May 27–31, 2002. More than 100 participants
worked intensely on seven problems posed by industrial companies from across North America.

The problems were provided by Edmond Lou (Capital Health), Bruce McGee (McMillan-
McGee Corp), Robin Parlee (Precix Advanced Cutting Technologies), Yeqi (Ritchie) He (RBC
Financial Group), Edward Keyes (Semiconductor Insights), Kai Muenzer (Shell Canada), and
Gary Billings (Talisman Energy).

PIMS looks forward to the Seventh Industrial Problem Solving Workshop which will be held
at the University of Calgary next year.

Thank you to Jack Macki from the University of Alberta who edited these proceedings.
I would also like extend my thanks to the other organizers Chris Bose (U. Victoria), Randy
LeVeque (U. Washington), Huaxiong Huang (York U.), Marc Paulhus (U. Calgary), Manfred
Trummer (SFU), and Ian Frigaard (UBC).

Dr. Nassif Ghoussoub, Director
Pacific Institute for the Mathematical Sciences
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Preface

In June of 2002, approximately forty-seven graduate students, twenty-one university professors
and five industry representatives from five different companies/institutions assembled on the
campus of the University of British Columbia.

A small subset of the academics had agreed to be mentors. They studied the problems
posed by the industry representatives during the winter, and devised “training problems” for
the students. The students honed their skills on these training problems during the preceding
week at a camp. Then the students and mentors connected with the industry representatives
and a group of interested academics (many of whom brought vital skills) for the IPSW.

The results were, as one would expect, mixed, ranging from spectacular to a small beginning.
But all participants came away inspired by the experience, and the industry representatives were
the beneficiaries of valuable new insights into their problems.

The problems were:

Stitching Integrated Circuit Images posed by Semiconductor Insights,
Price Pseudo-Variance and Pseudo-Volatility Swaps, posed by RBC Financial Group,
Electromagnetic Detection of Oil or Gas Deposits using Electromagnetic Waves
posed by Shell Canada,
Seismic Inversion in Anisotropic, Inhomogeneous Media posed by Talisman Energy,
Mathematical Surface Matching to Diagnose Scoliosis posed by the Capital Health
Region (Edmonton),
Resistance Monitoring in Well Sites posed by McGee-McMillan Corporation.

We hope the reports convey the intensity and pleasure of our participation in this workshop.
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Pimslips

When people are working intensely, they sometimes say things that, in retrospect,
are amusing or downright hilarious. Here are some:

• Ed, speaking with a colleague in the correct room for their project:
“I saw him at breakfast and he asked if it was in this room”
“What did you tell him?”.

• Semiconductor Insights presentation (A slide of a huge integrated semiconductor board is
being shown):
“We are working with real data–no one said ’this is a picture of my aunt Minnie’ ”.

• Question: “Any progress for the graph theory group?”
Answer (Jenny): “We have three approaches and they both work.”

• Hugh, discussing models for seismic and electromagnetic detection:
“The concept of 1D in geophysics is different from the mathematical definition of 1D...” .

• Alistair: “How many feet in a Newton?”

• Ian: “That is not constant enough”.

• Brian: “Something that is elliptical is necessarily an ellipse.”

• Jeff: “Going from 2D to 3D adds a whole new dimension to the problem.”

• ....and the winner is..... Fabien Youbissi, on checking in at Gage Hall (remember, we are
at the University of British Columbia):
Receptionist: “Name please”.
Fabien: “Youbissi”.
Receptionist: “No, your name, not your university”.
Fabien: “Youbissi, Youbissi is my name” etc.....
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Chapter 1

Stitching IC Images

Michael Baumann1, Chris Bose2, Lorraine Dame2, Isabelle Dechene3, Maria Inez Goncalves2,
Robert Israel1, Edward Keyes4 (presenter), Frithjof Lutscher5, David Lyder6, Colin Macdonald7,
Jenny McNulty8, Joy Morris9, Nancy Ann Neudauer10, Benjamin Ong7, Robert Piché11 (editor),
Arūnas Šalkauskas12, Karen Seyffarth13, Brett Stevens14, Tzvetalin Vassilev15, Brian Wetton1,
Fabien Youbissi16

1.1 Introduction

Errors in stitching (or mosaicing) of integrated circuit (IC) images cause errors in the automated
generation of the schematic. This increases costs and introduces delays as engineers must step
in with interactive computer tools to correct the stitching. Our goal was to develop automated
image stitching methods that keep stitching errors under F/2, where the minimum feature size
F is around 10 pixels.

Although image stitching software is used in many areas such as photogrammetry, biomedical
imaging, and even amateur digital photography, these algorithms require relatively large image
overlap. For this reason they cannot be used to stitch the IC images, whose overlap is typically
less than 60 pixels for a 4096 by 4096 pixel image.

1University of British Columbia
2University of Victoria
3McGill University
4Semiconductor Insights Inc.
5University of Alberta
6King’s University College
7Simon Fraser University
8University of Montana
9University of Lethbridge

10Pacific University
11Tampere University of Technology
12Sorex Software Inc.
13University of Calgary
14Carleton University
15University of Saskatchewan
16Laval University
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2 CHAPTER 1. STITCHING IC IMAGES

IC images are currently stitched as follows. First, the offset between each image and its
neighbours is determined by minimising an error function that measures the difference between
features in overlapping image pairs. These offsets are then used to stitch the images together in
some predetermined pattern. Errors tend to accumulate as the images are added sequentially
to the grid.

In Section 1.2 we use algorithmic graph theory to study optimal patterns for adding the
images one at a time to the grid. In the remaining sections we study ways of stitching all
the images simultaneously using different optimisation approaches: least squares methods in
Section 1.3, simulated annealing in Section 1.4, and nonlinear programming in Section 1.5.

1.2 Stitching using Graph Theory

Here we present a graph theoretic approach to the problem. This approach is purely local in the
sense that we only use the fact that any given pair of adjacent images can be stitched together
perfectly, i.e., all features match, due to the offset data from pairwise correlation. At present,
these local correlations are used for stitching following a certain pattern. We propose different
patterns which should give better global results. To that end, we formulate the problem in a
graph theoretic way and introduce some error measures. We find and compare several alternative
stitching patterns which have smaller errors than the one currently used. Finally, we extend the
approach to include information about the reliability of the pairwise correlation data.

1.2.1 Notation

We assume the images are arranged in a rectangular shape of m rows and n columns, where
m ≥ n. Define the graph G by letting each image correspond to a vertex. Two vertices are
joined by an edge if the corresponding images are adjacent. Hence, G is an m × n grid graph.
We denote by E(G) the edges of G, and for adjacent u, v ∈ G we write uv ∈ E(G).

We use the stitching pattern to define a spanning tree T of G, i.e., a connected subgraph
without cycles. An edge of G is an edge of T if the corresponding images are stitched together
perfectly according to the offset values. The current method of row-wise stitching corresponds
to the row pattern given by the solid lines in Figure 1.1. Here, the images are stitched together
row-wise and then the strips are stitched together along a “spine”

We assume that the error between u and v with respect to the true offset values increases
with the distance between u and v in the tree T . To quantify this error, we define the following.
For each uv ∈ E(G),

d′T (u, v) denotes the distance between u and v in the tree T ;

dT (u, v) = d′T (u, v) − 1;

S(T ) = Σuv∈E(G)dT (u, v) (i.e., the sum of all the distances, in T , between

adjacent vertices of G);

M(T ) = max
uv∈E(G)

dT (u, v).

π



1.2. STITCHING USING GRAPH THEORY 3

Figure 1.1: 14 × 8 Row Pattern, R

Note that we subtracted 1 from the distance in the tree to get dT because we assume that
pairwise stitching is free of error. We address the following optimization problems.

1. Find a spanning tree T of G that minimizes S(T ), the sum of the distances of the tree.

2. Find a spanning tree T of G that minimizes M(T ), the maximum of the distances of the
tree.

3. Find a spanning tree T of G that minimizes S(T ), the sum of the distances of the tree,
subject to M(T ) being as small as possible.

We calculate the total distance and the maximum distance for the row pattern R (Figure 1.1) of
an m×n grid. It is optimal to centre the “spine” in the long direction. In this case M(R) = 2bn

2
c

is as small as possible, and the total sum is given by:

S(R) =

{
(m− 1)(n2)/2 if n is even
(m− 1)(n− 1)(n+ 1)/2 if n is odd

.

We note that this is the method currently employed.

1.2.2 Alternative Stitching Patterns

While the row pattern minimizes the maximum distance it does not minimize the total distance.
In fact, one can replace a single edge of the tree R with a nearby edge and decrease the total
sum. A pattern that reduces the total sum is the Comb Pattern, shown in Figure 1.2. This
pattern is similar to the row pattern in that it has a long “spine”, but it differs in that instead
of long “lines” attached to the spine, it has “combs”. It is again optimal in terms of S(C)
and M(C) to centre the “spine” in the longest direction, as above. Then the maximum is
M(C) = 2bn

2
c + 4 > M(R), but S(C) < S(R). The values of S(C) depend on the modulus of

the parameters m and n, mod 3 and mod 2, respectively. Thus, there are six cases to consider;
they are given in Table 1.1.

π



4 CHAPTER 1. STITCHING IC IMAGES

Figure 1.2: 14 × 8 Comb Pattern, C

m mod 3 n odd n even
0 1

6
(m− 3)(n− 1)(n+ 17) + 4(n− 1) 1

6
(m− 3)(n2 + 16n− 16) + 4(n− 1)

1 1
6
(m− 4)(n− 1)(n+ 17) + 8(n− 1) 1

6
(m− 4)(n2 + 16n− 16) + 8(n− 1)

2 1
6
(m− 5)(n− 1)(n+ 17) + 12(n− 1) 1

6
(m− 5)(n2 + 16n− 16) + 12(n− 1)

Table 1.1: Values for S(C)

The next method is to create a breadth-first search spanning tree which leads to what we call
the Breadth Pattern, B. Let Ge be an n×n grid graph with n even and Go be an n× (n− 1)
grid graph with n odd. Define an “almost square” grid graph to be a graph of the form Ge or
Go. We first define the breadth patterns Be and Bo for these graphs. Label each vertex of the
graph by the shortest distance to the perimeter of the grid. Figure 1.3 illustrates the 9 × 8
case. For the graph Ge, there are 6 vertices labeled (n−3)/2 in the centre and for the graph Go,
there are 4 vertices labeled (n− 2)/2 in the centre. Begin with a spanning tree of these centre
vertices as indicated in Figure 1.3.
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0 1 0

0 0 0 0 0 0 0

0

0

0

0

0

0

1

1

1

1

1

1 2 2 2 2 1

1

1

1
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Figure 1.3: Breadth Pattern Construction

The procedure for growing the tree begins in the centre and radiates outwards. Suppose the
tree has been grown to include all vertices labeled at least j, where j > 0. Add vertices labeled
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j − 1 as described below.

• If a vertex x with label j − 1 is adjacent to a vertex y with label j, then y is unique. Add
xy to the tree.

• If a vertex x with label j − 1 is not adjacent to a vertex with label j, then x has two
neighbors labeled j − 1. Arbitrary choose one of these, say y, and add xy to the tree.

Figure 1.3 shows one possible breadth pattern for a 9×8 grid graph. We can easily calculate
the sum of the distances for Bo and Be in the almost square cases.

S(Bo) = (n− 1)(n+ 1)(2n− 3)/6,

S(Be) = n(n+ 1)(n− 1)/3.

The breadth pattern, B, for any m× n grid graph is formed by placing half of the breadth
pattern for the almost square grid on the top and bottom, and a row pattern in the middle. See
Figure 1.4 for an example of this construction.

Figure 1.4: 14 × 8 Breadth Pattern, B

The maximum distance M(B) = 2bn
2
c is minimal, while the total sum is smaller than the

row pattern sum. The values of S(B) for the breadth pattern B of an m × n grid are given
below.

S(B) =

{
(3mn2 − n3 − 2n)/6 if n is even,
(3mn2 − n3 − 3m+ n)/6 if n is odd.

Comparing these patterns with the current row pattern, we see that the comb pattern im-
proves the total sum at the expense of an increase in the maximum distance while the the
breadth pattern improves the total sum while keeping the maximum distance at a minimum.
We call a combination of these patterns a Combed–Breadth Pattern (Figure 1.5).
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Figure 1.5: 14 × 8 Combed–Breadth Pattern, CB

1.2.3 Reliability

Not all the pairwise optimal offset values have the same confidence levels. We incorporate
uncertainties by not allowing adjacent images to be stitched together if the corresponding offset
values are highly uncertain. This is implemented by disallowing certain edges from the spanning
tree.

This rule for excluding edges in the tree can be incorporated into breadth pattern. In Figure
1.6 the excluded edges are marked by grey barriers. Barriers were put where the uncertainty
was higher than 7%. The tree is grown subject to the extra condition that it cannot grow across
a barrier. We call this a Barred Pattern. One can also take the row pattern and the comb
pattern and adjust them locally such that none of the edges of the spanning trees cross a barrier.

Figure 1.6: Barred Pattern, BA

In all cases, the numbers M and S cannot decrease. For this particular barred pattern,
M = 10 for the modified row pattern and M = 12 for the modified comb and breadth patterns.
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pattern S(·) M(·)
R (row) 416 8
C (comb) 234 12
B (breadth) 360 8
CB (combed-breadth) 258 12

Table 1.2: S(·) and M(·) values for a 14 × 8 grid

Also, the sum, S, increases by 4 for all three patterns. Table 1.2 contains calculations for Data
set 1. In addition to the barred pattern in Figure 1.6 we also constructed a Greedy Pattern

G, where we chose edges solely on the basis of confidence. The calculations for these patterns
are also included in Table 1.2.

1.2.4 Data

Table 1.2 gives the S(·) and M(·) values for a 14× 8 grid for the four tree patterns that we have
defined.

Using the two sets of real data available, we evaluated the performance of each of these
tree patterns. After stitching together the full image according to each pattern, we calculated
the new pairwise relative offsets that each of these methods gave us. Then we calculated the
differences both horizontally and vertically between these and the given “ideal” relative offsets.
The larger a difference is, the more likely that it will create a significant misalignment that will
lead to a problem in recreating the circuit. Thus we created three measures of the “badness” of
each of our results.

The first measure was a sum of the absolute values of all of the horizontal and vertical
differences between the relative offsets we obtained and the ideal relative offsets. This is denoted
ABS ERROR. The second measure was chosen to highlight the fact that if a particular pair of
images is placed (relative to one another) very far from their ideal relative alignment, this is
worse than having a lot of images that are pairwise only slightly off their ideal alignment. Here
we took the sum of the squares of all of the horizontal and vertical differences. This is labelled
SQ. ERROR. The third measure took the threshold value of plus or minus 5 pixels as the worst
tolerable error, and counted the number of values (horizontal or vertical) that were more than
5 pixels from their ideal relative alignment. This is labeled BAD VALUES in Tables 1.3, 1.4.

The barred and greedy patterns are present in Table 1.3 but not Table 1.4, since confidence
data were only available for the first data set.

From this data, it appears that the breadth pattern produces the best results, although the
barred pattern may improve on it in some ways. Similar to the barred pattern, one can modify
the row and comb patterns to disallow certain edges. It seems that these highly regular patterns
are quite sensitive to the precise locations of the barriers. If one changes an arbitrarily chosen
edge in the spanning tree and replaces it in an optimal way, the breadth pattern performs much
better than the row and comb patterns. This may be in part because there are many choices
for constructing such a breadth pattern.

The greedy tree, although using high confidence values, resulted in extremely large values
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pattern ABS ERROR SQ. ERROR BAD VALUES
R 518 5092 32
C 513 5067 37
B 449 4229 30
CB 513 4897 39
BA 453 4309 27
G 721 7059 52

Table 1.3: Data Set 1

pattern ABS ERROR SQ. ERROR BAD VALUES
R 569 6007 27
C 636 7560 34
B 517 5639 27
CB 619 7507 34

Table 1.4: Data Set 2

of M and S, and the effect of these is apparent in its poor performance. Of course, additional
experimental data would be desirable, and it is likely that situations would arise in which differ-
ent patterns provided the best performance, so one reasonable approach would be to maintain
this as a small collection of trees to try on any given data set, and keep whichever final result
is best. Some of these patterns could ultimately be discarded if additional experimental data
showed them to consistently perform poorly.

We note that the breadth pattern continually outperforms the row pattern which is currently
being used. In addition, the barred pattern may prove to be useful at a higher tolerance.
Currently, a tolerance of 10% is used; however we chose 7% rather arbitrarily based on the one
data set available. We also note that while the comb pattern has the minimum value of the
total distances S(C) it performs as well as the row pattern. Thus, it seems that the solution we
seek will be the solution to optimization problem 3. Currently, the breadth pattern is the best
candidate for a solution to that problem.

1.3 Least Squares

The pairwise offsets overdetermine the positions of images in the final grid. In this section we
develop stitching solutions by simultaneously minimising the sum of the squares of the offset
discrepancies.

1.3.1 Offset Equations

Let (Xi,j, Yi,j) be the coordinates (in a global reference frame) for the northwest corner of the
image in row i and column j (Figure 1.7). The grid of images has m rows and n columns.
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1.3. LEAST SQUARES 9

Figure 1.7: Coordinates and labelling of images in the grid. In least squares stitching the images
can be interpreted as rigid plates connected by springs.

The x-component offsets Rx
i,j between adjacent images in a row are described by the equations

Xi,j+1 −Xi,j = Rx
i,j (i = 1 : m, j = 1 : n− 1)

These m(n− 1) row stitching equations can be written compactly as

XBT
n = Rx (1.1)

where Bn is the (n− 1) × n bidiagonal matrix

Bn =




−1 1
−1 1

. . .
. . .

−1 1




The x-component offsets Cx
i,j between adjacent images in a column are described by the

equations

Xi+1,j −Xi,j = Cx
i,j (i = 1 : m− 1, j = 1 : n)

These (m− 1)n column stitching equations can be summarised as

BmX = Cx (1.2)

The foregoing discussion can be repeated for y-components, leading to the stitching equations

Y BT
n = Ry, BmY = Cy

These equations are of the same form as the equations (1.1–1.2) for the x-components, and
so may be treated in the same way. The y-component equations are not coupled with the
x-component equations, so they may be computed separately.
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In order to use standard software, it is convenient to convert the stitching equations into
matrix-vector form. The Kronecker product is a standard technique for this sort of conversion [1].
The matrix of image location x-components X is converted into a vector by stacking the columns,

x̄ = vec(X) =



X1:m,1

...
X1:m,n




Converting the row stitching equations (1.1) gives

(Bn ⊗ Im)x̄ = vec(Rx)

where Im is the m×m identity matrix and ⊗ is the Kronecker product. Similarly, the column
stitching equations (1.2) are converted to

(In ⊗ Bm)x̄ = vec(Cx)

The system of stitching equations is thus Āx̄ = b where

Ā =

[
Bn ⊗ Im
In ⊗ Bm

]
, b =

[
vec(Rx)
vec(Cx)

]

Finally, we impose the condition x̄1 = X1,1 = 0, which fixes the global coordinate system’s
origin. This yields the system

Ax = b (1.3)

where A is Ā with the first column deleted, and x is x̄ with the first element deleted. The
system (1.3) has full column rank.

1.3.2 Least squares

Equation system (1.3) has (m − 1)n + m(n − 1) stitching equations for the mn − 1 unknowns
in x. This system of equations is overdetermined whenever m > 1 and n > 1. Unless the offsets
Rx and Cx happen to be consistent, any set X of image locations will give some nonzero error
(“residual”) in the equations.

One way to determine X is to seek the minimiser of the sum of squares of the residuals
of equations (1.1–1.2) subject to the grounding condition X1,1 = 0. This is equivalent to the
unconstrained minimisation of

(Ax− b)T (Ax− b)

For a physical interpretation of the least squares formulation, imagine the grid as an array
of rigid plates connected by elastic springs (Figure 1.7). A stitching equation that is satisfied
corresponds to a spring that is neither stretched nor contracted. There are more springs than
there are degrees of freedom, so the springs stretch or contract to find the configuration of
minimum potential energy. This configuration is the least squares solution, and the residuals
are the extensions in the springs.
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Figure 1.8: Residuals for least squares stitching

The least squares minimiser is the solution of the square system of “normal” equations

ATAx = AT b

The normal equation system is nonsingular because A has full rank, and it can be solved reliably
and efficiently using standard sparse linear algebra software.

The Matlab script LSstitching.m [2] does least squares stitching of a 14 by 8 grid of images
using offset data provided by the problem proposer. Computing time on a 400 MHz Macintosh
is 0.02 s. The least squares solution’s residuals are mostly 0–3 pixels, although a few seams have
residuals of 4–7 pixels (Figure 1.8). The problem proposer did a visual inspection of the least
squares solution and reported that all but one of the seams appears to be OK.

1.3.3 Constrained Least Squares

In order to reduce the maximum residual obtained by the least squares solution we impose the
inequality constraints

−α ≤ b− Ax ≤ α

where α is the desired limit on the residual’s absolute value. The smallest value of α that
gives a feasible solution can be found by trial and error or by solving a linear programming
problem. The constrained least squares problem can be solved using standard optimisation
software packages.

In script CLSstitching.m [2] we used the Matlab Optimization Toolbox (v. 1.5.2) routine
conls. For the 14 by 8 grid the smallest feasible α was 4 pixels for the x-components and 5
pixels for the y-components. The maximum residual thus has length

√
42 + 52 ≈ 6, which is

only 1 pixel smaller than for the unconstrained least squares solution, and many more of the
residuals are large (Figure 2), so this solution seems to be of little practical value.
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Figure 1.9: Residuals for constrained least squares stitching

1.3.4 Weighted Least Squares

Another approach to improving the practical quality of the stitching is to minimize the weighted
sum of squares of the residuals,

(Ax− b)TW 2(Ax− b)

where the weighting matrix W is a nonsingular diagonal matrix. The diagonal elements of
W can be interpreted as stiffness constants for the springs holding together the rigid plates
in Figure 1.7. With W = I all the springs have equal stiffness, and we revert to the original
“unweighted” least squares problem. The weighted least squares problem can be solved by
simply replacing A and b in the unweighted problem by WA and Wb.

One possible strategy for assigning the weights would be to give larger weights to those
equations where the quality of the stitching is most sensitive to stretching or shear. For example,
in parts of the images that contain a lot of parallel lines we want the lines to match up correctly
at a seam, so we assign a large stiffness to the appropriate spring. A seam that contains no
features would be assigned a small stiffness. It might be possible to derive this kind of sensitivity
information automatically from the correlation data that were used by the problem proposer to
compute the offsets; we would need more information about the images and the correlations to
explore this possibility.

Another strategy would be to assign the weights using interactive graphics. Based on the
solution of the unweighted least squares problem, a human operator would examine the seams
where stitching quality is unacceptable, adjust those seams’ stretching and shearing stiffnesses,
and recompute the weighted least squares solution. This process could be iterated until (hope-
fully!) all the seams were acceptable. If the initial solution gives only a small number of
unacceptable seams, this interactive adjustment would not be too laborious.

A third strategy, which uses only the information given in the problem, is to assign small
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Figure 1.10: Histograms of offset values

weights to those equations whose offset value differs significantly from the mean value. The
rationale is that these offsets are erroneous (“outliers”), because of some sort of measurement
error, and should be ignored.

Applying this third strategy to the 14 by 8 grid, we assigned weights of
√

0.1 to those equa-
tions whose offset value differed by more than 3 pixels from the mean (Figure 1.10); the remaining
equations’ weights were 1.0. In the weighted least squares solution (WLSstitching.m [2]) the
residuals of the outliers tends to increase (compared to their values in the unweighted least
squares solution), but the remaining residuals mostly decrease (Figure 1.11). The problem pro-
poser reports that with the weighted least squares solution all the seams appear to be OK, so
this strategy seems to be promising.

1.3.5 Least Squares with Deformable Images

A way of reducing the residual at all the seams is to introduce more degrees of freedom by
allowing the images to deform in various ways. We introduced deformability by dividing each
image into four equal subimages. Theoretically, the sum of squares of the residuals scaled by the
length of the seams of the subimages should decrease. Applying this approach to the 8 by 14 grid
gave a maximum residual of 5 pixels, which is 2 pixels less than with the original least squares
solution. We believe that more sophisticated deformation models, combined with weighting and
more offset data (for example, measuring several x-offsets along an east-west seam), could bring
all the seam residuals down to less than 1 pixel.
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Figure 1.11: Residuals for weighted least squares stitching

1.4 Simulated Annealing

A more fundamental approach to stitching is to directly minimise an error function computed
from the overlapping pixels in the entire image. In this section the minimisation problem is
solved using the method of simulated annealing. Continuous minimisation methods for this
problem are studied in section 1.5.

Simulated annealing is one of a family of meta-heuristics that are able to solve instances
of hard optimization problems. These meta-heuristics take advantage of the ability to quickly
define a local perturbation and then to recalculate the global objective function by a fast,
local calculation. This family of meta-heuristics also includes hill-climbing, Tabu search, genetic
algorithms, and rising flood techniques. The central problem is to avoid local extrema. Simulated
annealing does this by analogy to cooling solids. Initially the setting is “hot”, meaning that
perturbations that worsen the objective function are sometimes allowed. We gradually “cool
down” the setting, meaning that fewer bad moves are acceptable, as we hone in on better
objective values. To avoid getting stuck in a local extremum, we periodically crank up the heat
and again slowly cool. Repeating this leads to surprisingly good solutions.

We wrote a C++ simulated annealing program for image stitching. It is licensed under
the GNU GPL and available for download [3]. The program has sophisticated error handling
routines that identify well-formatted input data. Input parameters include minimum feature
size, image translation bounds, temperature, number of reheating and recooling stages, and
temperature thresholds.

We first defined an objective function that measured how far each image is placed from its
ideal offsets using an error threshold defined by the minimum feature size. A seam whose error is
less than this threshold in both coordinates contributes 0 to the objective function, otherwise it
contributes 1. The program randomly selects an image to move and makes a small translation of
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the image, locally recalculating the overall objective function by comparison to the ideal offsets
for that single image. This objective function always rapidly diverged to the worst case (all
boundaries bad) and was never able to improve. We believe the problem was the fact that the
objective function had no way to recognize if a boundary was non-optimal but very close. It
registers the same value as the boundary being far from a good fit. Thus once a boundary was
bad, the vast majority of perturbations would leave the objective function unchanged leading
to wandering on plateau in the state space.

We then defined an objective function that scored 0 if the alignment is within a feature size
and scored a value that was proportional to how far away from correct the boundary was if it
was not a good fit. This rapidly converges to a good layout.

Instead of doing merely local translations, it is straightforward to incorporate small rota-
tional changes, shrinking and expanding changes, and slight skewing changes into this simulated
annealing algorithm. This would require subroutines to rapidly recalculate alignment scores
along changed borders between images. After performing the above generalized perturbations
on a single image, we would compute the correlations of pairs of images to determine how the
changed image correlates with adjacent images, and use that to measure the fitness of the image.
If these routines are quick then the algorithm could address the very real concern that stack
movement and other noise may produce skewed, scaled, or rotated images.

1.5 Nonlinear Programming

1.5.1 Cost Function

In this section we represent each image as a matrix [uij]Ly×Lx
of integers (corresponding to pixel

grey scale values). There are target offset overlaps (Sx and Sy) which provide overlap regions
to help align the images. Assuming that the target overlaps are achieved, the top left corner
of each image define the reference grid (Figure 1.12). In practice however, errors during image
acquisition modify these overlap regions. This can be quantified by associating an offset error
~∆pq = (∆pq

x ,∆
pq
y ) with every image upq. The offset error is defined relative to the reference grid.

The left overlap region between image uij and ui,j−1 has width
(
Sx − (∆ij

x − ∆i,j−1
x )

)
and height(

Ly − (∆ij
y − ∆i,j−1

y )
)
. Similarly, the top overlap region between image uij and ui−1,j has width(

Lx − (∆ij
x − ∆i−1,j

x )
)

and height
(
Sy − (∆ij

y − ∆i−1,j
y )

)
.

It is also assumed that we have an upper bound on the offset errors, i.e., |∆ij
x | ≤ βx and

|∆ij
y | ≤ βy where βx and βy are constants, or, an upper bound on the relative offset errors

between every pair of neighbouring images. Let

ηx = ∆i,j−1
x − ∆ij

x , (1.4a)

ηy = ∆i,j−1
y − ∆ij

y , (1.4b)

ξx = ∆i−1,j
x − ∆ij

x , (1.4c)

ξy = ∆i−1,j
y − ∆ij

y , (1.4d)
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Figure 1.12: Image layout using reference grid approach. Solid lines show images at target offset
overlaps (upper left corners are shown as •), dashed box shows image uij displaced by offset

error ~∆ij.

and thus

|ηx| ≤ βx, |ηy| ≤ βy,

|ξx| ≤ βx, |ξy| ≤ βy.

It is unclear from the problem specification whether the βx and βy bound the relative offset
errors or the actual offset errors, but the following discussion and code handles both cases.

We calculate the cost function by summing the contributions from the top and left overlap
regions for all images uij. The cost function contribution due to uij is

d ij =

∑∑

left overlap pixels

∣∣uij − ui,j−1
∣∣2

# of left overlap pixels
+

∑∑

top overlap pixels

∣∣uij − ui−1,j
∣∣2

# of top overlap pixels
,

= cost contrib left(uij, ui,j−1, ηx, ηy)

+ cost contrib top(uij, ui−1,j, ξx, ξy), (1.5)

where the first term is 0 if j = 1 and the second term is 0 if i = 1. Note that d ij depends
explicitly on ~∆ij, ~∆i−1,j and ~∆i,j−1. The total cost function is then calculated as

d =
∑

i

∑

j

d ij. (1.6)
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1.5.2 Minimization

At this point, we try minimizing the above cost function using Matlab’s fminsearch over the
space of ~∆’s. However, we encounter an unexpected hurdle: the stitching of images is not
a discrete problem whereas our cost function calculation assumes that the offset errors were
integers. One may question the usefulness of resolving the offset errors to a “sub-pixel” level
when feature sizes are O(10) pixels, however, finding a free black-box optimization code which
generates and uses only integer values is difficult. We propose several fixes:

• round ~∆ij when calculating the cost function.

• interpolate the image data on the sub-pixel level.

• interpolate our cost function.

As expected, rounding does not produce a convergent result. Interpolating the image is imprac-
tical for larger problems where realistically, a caching approach as discussed in Section 1.5.2 is
required. We choose to implement interpolation of the cost function.

Cost Function Interpolation

Let cost contrib left() be a function that calculates the cost function contribution in the left
overlap region between neighbouring images uij and ui,j−1. Assuming that ηx and ηy are integers,
the cost contribution is calculated as

cost contrib left(uij, ui,j−1, ηx, ηy).

To accommodate fractional offset errors, consider

ηx = bηxc + δx, (1.7a)

ηy = bηyc + δy, (1.7b)

where ~δ ∈ [0, 1) × [0, 1), b·c = floor(·) and d·e = ceil(·).
We now build the lookup table for the cost function contribution at the 4 nearest neighbouring

integer values of ~η by calculating

cbxcdye = cost contrib left(uij, ui,j−1, bηxc, dηye), (1.8a)

cdxedye = cost contrib left(uij, ui,j−1, dηxe, dηye), (1.8b)

cbxcbyc = cost contrib left(uij, ui,j−1, bηxc, bηyc), (1.8c)

cdxebyc = cost contrib left(uij, ui,j−1, dηxe, bηyc). (1.8d)

Our estimate, c of the cost function contribution is a weighted average of (1.8). Specifically, we
use bilinear interpolation, by first calculating

cdxe = (1 − δy)cdxebyc + δycdxedye,

cbxc = (1 − δy)cbxcbyc + δycbxcdye,

and then calculating

c = (1 − δx)cbxc + δxcdxe.

A similar discussion applies for cost contrib up() using ξx and ξy.
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Figure 1.13: Test Case 1.

Cost Function Space

The set of images above was used as Test Case 1. The original image provided by Semiconductor
Insights of a chip was artificially broken into nine 700 × 600 pieces with overlap regions of 100
pixels and random offset errors in the range of −6 to 6 in both the horizontal and vertical
direction (Figure 1.13).

Unfortunately, given a random initial guess for the ~∆’s, fminsearch could not find the global
minimizer. We present two figures of the function space in question. Given two sets of offset
errors say ~∆ and ~∆exact, we define the radius r as ‖~∆ − ~∆exact‖. Figure 1.14 shows the cost as
a function of radius for fixed directions θ̂ from the exact solution, i.e., define

θ̂ =
~∆ − ~∆exact

‖~∆ − ~∆exact‖
(1.9)

and plot cost as a function of r. Notice that none of curves are monotonic, in fact, a plot of cost
as a function of radius for 1000 θ̂’s reveal that only one or two curves were monotone. The cost
function space has a lot of local mimima; this presents problems for most optimization routines.

We also present the plots obtained by keeping most of the offset variables constant at the
known exact errors while varying pairs of offset variables (Figure 1.15). One can clearly see the
existence of many local minimas. Close to the exact solution however, the function spaces are
very smooth (Figure 1.16). This provides some hope that an optimization scheme can indeed
be used, provided a good initial guess is given.

Iterative Scheme

To provide a better initial guess for the optimization routine, we adopt an iterative approach to
the problem. This involves stitching one additional image each iteration.
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Figure 1.14: Cost as a function of radius for various directions in offset error space.
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Figure 1.15: Multiple plots of the cost function space for arbitrary pairs of offset variables.
(Other variables held at constant, correct minimizing values.)
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Figure 1.16: Multiple plots of the cost function space close to the global minimum. Also note
the effect of bilinear interpolation.

We begin by choosing a particular ordering of the images, (u1, u2, . . . , uK), K = M ∗N where
each uk corresponds to a unique uij and uk shares at least one common edge with (u1, . . . , uk−1).
A simple ordering is

u1 u2 u3

u4 u5 u6

More effective orderings are considered in Section 1.2.

The following pseudo-algorithm then illustrates the process of sequentially stitching one
additional image per iteration:

1. Assume that ~∆1 ≡ ~0 and set k = 2.

2. Stitch u1, . . . , uk assuming that the known ~∆1, . . . , ~∆k−1 are fixed and only ~∆k is allowed
to change, i.e., find the optimal ~∆k which stiches the images. (Note, we use a random

initial guess for ~∆k)

3. Stitch u1, . . . , uk varying ~∆1, . . . , ~∆k, using the values from step 2 as the initial guess.

4. Set k = k + 1 and return to step 2.

We acheived correct convergent results in approximately 90% of the trials, however, the conver-
gence was very slow. On a 3× 3 set of images (i.e., 14 offset variables), the code took over eight
hours to complete on a 1.2 GHz Athlon MP.
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Pre-Conditioner

In retrospect, it is not necessary and quite inefficient to take a random initial guess for ~∆k in
step 2, Section 1.5.2. Figure 1.16 shows that an initial guess within two pixels is likely sufficient
for convergence.

A better approach is to do an exhaustive search over a finite set of values for ~∆k, and use
the ~∆k providing the smallest contribution to the cost function as the initial guess in step 3 of
Section 1.5.2. A natural space of relative offset errors is {~∆ ∈ Z, |~η| ≤ |~β|} (where ~β = (βx, βy))
if we have bounds on the offset errors. If we instead have bounds on the relative error between
images, we can do something similar: {~η ∈ Z, |~η| ≤ |~β|} where the inequalities are between uij

and ui−1,j unless i ≡ 1, in which case the inequalities are between uij and ui,j−1. An important
point to realize is that although our formulation uses a fixed reference grid, the contribution to
the cost function between neighbouring images only depends on the relative difference in offset
errors between them.

Upon implementation of the pre-conditioner, our code became more robust, with a noticable
increase in speed. We were actually quite surprised at how robust the code was. It was unclear
if our results were attributed to the artificial construction of test images (cutting a single picture
into multiple parts), so we tested our code on a variety of altered images, for example:

• After cutting up the image into smaller test images, each test image was saved as a jpeg
with a quality rating of 20. Quality ratings for jpeg range from 0 to 100 where a higher
number means less image degradation due to compression.

• Each test image was also subjected to a filter which added gaussian bluring (within a
radius of 5 pixels).

• Each test image was subjected to a noise filter. This noise filter “jittered” the image by
randomly perturbing some pixels a small distance1. This filter actually made the images
look quite horrible and hard to optimize.

• The output from the pre-conditioner was perturbed by |ε| < 1 to simulate the case when
the pre-conditioner does not find the correct values.

Our code still found the global minimum for all the test cases, giving us confidence that it could
work when real images are used. Lots of nasty attributes such as lens abberation, difference in
contrasts, warping of images would be noticed in real images.

Caching

A co-author suggested that caching the cost function contribution for various ~∆’s would pro-
vide significant speedup. This should translate to significant computational savings during our
bilinear interpolation. Another important motivation is the difficulty in storing a 8 × 14 grid
of 8k × 8k images in memory (7 Gb at one byte per pixel). There are two possible stages to
implement caching: pre-caching the cost function contributions before the optimization step or
caching during the optimization step (i.e., cache the cost contribution for each new integer ~∆).

1“pick” filter in GIMP (www.gimp.org)
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The former approach was taken because there is less book-keeping involved. It is likely though
that caching during the optimization step will provide further speedup.

For every image uij, associate two matrices DL and DU which correspond to cached contri-
butions from the left and top image respectively. As mentioned in Section 1.5.2, although our
formulation uses the fixed reference grid, the contribution to the cost function from neighbour-
ing images depends only on the relative difference in offset errors. We utilize the experimental
constraint that the offset errors are bounded above by ~β. Thus, DL and DU are matrices with
(2βy +1)×(2βx+1) elements. Note, in practice, we cache a larger matrix to account for roundoff
error.

For a 6 × 5 grid of 700 × 600 images (Test Case 2) with βx = 10 and βy = 8, caching
took 7 minutes and optimization took 14 minutes. Note, our non-caching code for this problem
was halted after 4 days. A rough estimate for caching the 14 × 8 problem described above is
approximately nine hours. Note that the caching algorithm scales linearly with the number of
images and linearly with the size of the overlap region. If the computation time is too long, the
caching algorithm is easily parallelizable for a cluster type network.

1.5.3 Results

The optimization code encounters no difficulties fitting Test Case 2. A rough extrapolation
suggests that the 14 × 8 problem with 240 variables would take about one day.

Matlab codes and more details on this work are available online[4]. The authors of this
Section thank Jim Verner for proof-reading and constructive criticism and Jason Nielsen for
help with extrapolation techniques.

1.5.4 Future Work

• One should actually try the fixed reference grid approach of sequentially fitting images.
Global optimization may not be necessary.

• Combine the iterative scheme in Section 1.5.2 with a more effective ordering considered in
Section 1.2.

• Employ a strategy whereby offset variables from images that have enough surrounding
neighbours are removed from the optimization process. One could use this process to
bound the number of parameters in the optimization.

• Throughout this discussion, we have assumed that the images have been pre-processed,
e.g., the images have been rotated correctly. The pre-processing stage can be incorporated
into the cost function.

• Recode our algorithm in a more efficient environment such as C or Fortran.

• The cost function is easily modified to fit two different layers of images. A first step would
be to detect via-ups and via-downs in each image/layer. (A good segmentation algorithm
based on levelsets or wavelets would probably do the job.) One could then calculate the
cost function for each layer, sum them together to create the new cost function, and add
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a penalty term to the new cost function if the vias connect to wires either above or below.
The parameter space for two layers of 14×8 images can be handled by a desktop computer
in a reasonable amount of time.

• This problem can be reformulated to incorporate the power of parallel processing. For
example, the caching routine is easily parallelized.

• For large images, it is not necessary to read in the whole image when optimizing for the
offset errors. In fact, less than 5% of the image is required assuming an overlap width of
100 on 8k × 8k pictures. Incorporating this idea will relax memory constraints.

• Custom tailor a minimizer that pays attention to the pixel scale. It can use sub-pixel infor-
mation if necessary but ideally should not because sub-pixel information is not important.
A first attempt would probably involve a simple algorithm:

1. Calculate an approximation to the Jacobian (finite differences).

2. Calculate an approximation to the Hessian (finite differences).

3. Calculate a search direction based on the Jacobian and Hessian (simple line search).

4. Choose an appropriate step in the search direction - i.e., integer values.

5. Evaluating the Hessian and Jacobian is probably going to be quite expensive, so it’s
probably better to ”Freeze” the Jacobian and Hessian by returning to step 3 and
recalculating a search direction.

• If the images were collected in a hexagonal pattern (i.e., acquisition of images for every
other row is offset by Lx

2
) then one would expect a better alignment due to increased

connectivity.

• A more radical approach would be to incorporate (local) stitching into the circuit gener-
ation code. The code would follow traces, and whenever it encountered the edge of an
image, it would simply do a local stitching with the neighbouring image and continue the
trace onto that image.

1.6 Conclusions

The different solutions presented here require different levels of effort to be implemented, with
corresponding different potential payoff. The graph theory solutions of Section 1.2 provide
improvements on the patterns of sequential stitching currently used. The least squares codes of
Section 1.3 fairly rapidly compute stitching solutions based on the offset data. The simulated
annealing and nonlinear programming codes of Sections 1.4–1.5 are more flexible, because they
can find optimal stitchings based on the image pixel data, but they are computationally much
more demanding.
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Chapter 2

Price Pseudo-Variance,

Pseudo-Covariance, Pseudo-Volatility,

and Pseudo-Correlation Swaps — In

Analytical Closed-Forms

Andrei Badescu1, Hammouda Ben Mekki2, Asrat Fikre Gashaw3, Yuanyuan Hua4,
Marat Molyboga5, Tereza Neocleous6, Yuri Petratchenko5.

Report prepared by Raymond K. Cheng7

with assistance from Stéphan Lawi7 and Anatoliy Swishchuck3.

2.1 Introduction

This problem was brought to us by Ritchie (Yeqi) He of RBC Financial Group. It concerns
the pricing of swaps involving the so-called pseudo-statistics, namely the pseudo-variance, -
covariance, -volatility, and -correlation. These products provide an easy way for investors to
gain exposure to the future level of volatility. Swaps, in this context, are forward contracts in
which the underlying is an interest rate St. They are also path-dependent because the payoffs
depend on the trajectory of St on some time period [Ts, Te] ⊆ [0, T ], where T is the maturity
date. The prefix pseudo is used to indicate that samples of the underlying are taken at discrete
times t0, t1, ..., tn ∈ [Ts, Te]. In the usual complete market framework, the unique prices of these
swaps can be computed as the mathematical expectation of the discounted payoffs under the
measure in which the discounted rate process is a martingale. In this report, we present analytic

1University of Western Ontario
2University of Calgary
3York University
4McGill University
5Moscow State University
6University of Illinois
7University of Toronto
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formulas for these expectations for the pseudo-variance and pseudo-volatility swaps, as requested
by the problem statement. Also, we use Monte-Carlo simulation to experiment with a stochastic
volatility model.

2.2 Definitions

Here we briefly describe the problem presented to us. The bibliography contains references on
variance and volatility swaps. The market we consider consists of the strictly positive underlying
rates S

(1)
t and S

(2)
t satisfying the stochastic differential equation (SDE)

dS
(i)
t

S
(i)
t

= µ
(i)
t dt+ σ

(i)
t dW i

t , t > 0, i = 1, 2

and a numeraire Nt which is a zero-coupon bond df(t, T ). Here dW
(i)
t are standard Wiener

processes (zero mean, unit variance per unit time) with correlation ρtdt. In the cases of the

variance and volatility swaps, we drop the superscripts so for example we write St = S
(1)
t

and µt = µ
(1)
t , etc. We assume that the market is complete, so there exists a unique martingale

measure Q with respect to Nt. First, let us define the following continuously realized (measured)
statistics over an observation period [Ts, Te]:

Σ2
(S)(Ts, Te) =

1

Te − Ts

∫ Te

Ts

σ2
τdτ, (realized volatility-square)

Σ2
(S(1),S(2))(Ts, Te) =

1

Te − Ts

∫ Te

Ts

σ(1)
τ σ(2)

τ ρτdτ, (realized volatility-cross)

σ(S)(Ts, Te) =

√
1

Te − Ts

∫ Te

Ts

σ2
τdτ, (realized volatility)

ρ(S(1),S(2))(Ts, Te) =

∫ Te

Ts
σ

(1)
τ σ

(2)
τ ρτdτ√∫ Te

Ts
σ

(1)
τ

2
dτ

√∫ Te

Ts
σ

(2)
τ

2
dτ

. (realized correlation)

Note that when S
(1)
t ≡ S

(2)
t , the correlation is equal to one and the volatility-cross coincides

with the volatility-square. Here we only consider the simpler case where we approximate the
above quantities by ones that are discretely sampled. Thus, let Ts = t0 < t1 < ... < tn = Te be
the sampling dates, and we define the log-return1 for the underlying rate S as

X
(k)
i = log

(
S

(k)
ti

S
(k)
ti−1

)
, k = 1, 2, i = 1, 2, ..., n

and also denote the arithmetic mean by

X̄(k)
n =

1

n

n∑

i=1

X
(k)
i , k = 1, 2.

1Here log denotes the natural logarithm.
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Now, we can define the following realized pseudo-statistics:

Σ̂2
(S)(n;TS, Te) =

n

Te − Ts

(
1

n− 1

n∑

i=1

(Xi − X̄n)2

)
, (realized pseudo-volatility-square)

Σ̂2
(S(1),S(2))(n;Ts, Te) =

n

Te − Ts

(
1

n− 1

n∑

i=1

2∏

k=1

(X
(k)
i − X̄(k)

n )

)
, (realized pseudo-volatility-cross)

σ̂(S)(n;Ts, Te) =

√√√√ n

Te − Ts

(
1

n− 1

n∑

i=1

(
Xi − X̄n

)2
)
, (realized pseudo-volatility)

ρ̂(S(1),S(2))(n;Ts, Te) =

∑n
i=1

∏2
k=1(X

(k)
i − X̄

(k)
n )

∏2
k=1

√
∑n

i=1

(
X

(k)
i − X̄

(k)
n

)2
. (realized pseudo-correlation)

Based on these pseudo-statistics, we can define the swaps, which are really forward contracts,
by their payoffs at maturity date T ≥ Te:

Vvar(T ) = αvar · I ·
[
Σ̂2

(S)(n;TS, Te) − Σ2
K

]
, (pseudo-variance swap)

Vcov(T ) = αvar · I ·
[
Σ̂2

(S(1),S(2))(n;Ts, Te) − Σ2
K

]
, (pseudo-covariance swap)

Vvol(T ) = αvol · I ·
[
σ̂(S)(n;Ts, Te) − σK

]
, (pseudo-volatility swap)

Vcorr(T ) = αcorr · I ·
[
ρ̂(S(1),S(2))(n;Ts, Te) − ρK

]
. (pseudo-correlation swap)

In the above, αi are the converting parameters, I = ±1 is a long-short index, and Σ2
K , σK and

ρK are the strikes.
The problem is to price the above swaps. The general pricing formula is the mathematical

expectation of the Nt-discounted claim under the unique martingale measure Q:

Vi(0) = EQ

[
N0

NT
Vi(T )

]

= EQ [df(0, T )Vi(T )]

= df(0, T ) EQ [Vi(T )] , i = var, cov, vol, and corr.

Note that the payoffs are path-dependent. Our goal is to find analytic expressions for the above
pricing problems.

2.3 Price Pseudo-Variance & Pseudo-Covariance Swaps

To find the price of a pseudo-variance swap, it is necessary to compute the expected value of
Σ̂2

(S)(n;TS, Te). First, notice that each Xi is independently and normally distributed with mean

αi =

∫ ti

ti−1

(
µt −

σ2
t

2

)
dt,
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and variance

β2
i =

∫ ti

ti−1

σ2
t dt.

Now we compute

EQ
[
Σ̂2

(S)(n;TS, Te)
]

= EQ

[
n

Te − Ts

(
1

n− 1

n∑

i=1

(Xi − X̄n)2

)]

=
n

Te − Ts
· 1

n− 1
EQ

[
n∑

i=1

(Xi − X̄n)2

]

=
n

Te − Ts
· 1

n− 1
EQ




n∑

i=1

(
(αi + βiYi) −

1

n

n∑

j=1

(αj + βjYj)

)2


 ,

where Yi is a normal N(0, 1) random variable. Let ᾱ :=
∑n

k=1 αi be the mean. After some
calculations, the above expression can be written

EQ
[
Σ̂2

(S)(n;TS, Te)
]

=
n

Te − Ts

· 1

n− 1




n∑

i=1

(αi − ᾱ)2 + EQ




n∑

i=1

(
βiYi −

1

n

n∑

j=1

βjYj

)2








=
n

Te − Ts

· 1

n− 1

(
n∑

i=1

(αi − ᾱ)2 +
n− 1

n

n∑

i=1

β2
i

)

=
n

Te − Ts
· 1

n− 1

n∑

i=1

(αi − ᾱ)2 +
1

Te − Ts

n∑

i=1

β2
i

=
n

Te − Ts
· 1

n− 1

n∑

i=1

(αi − ᾱ)2 +
1

Te − Ts

∫ Te

Ts

σ2
τdτ

=
n

Te − Ts
· 1

n− 1

n∑

i=1

(αi − ᾱ)2 + Σ2
(S)(Ts, Te).

We point out that a variance swap can be replicated by a portfolio of options, forwards and
zero-coupon bonds [2].

As pointed out in the problem statement, the pricing of a pseudo-covariance swap can be
reduced to the pricing of a pseudo-variance swap. More specifically, it was argued that the price
of a covariance swap can be written

Vcov(0) =
1

4
αcov · I · df(0, T ) ·

(
EQ
[
Σ̂2

(S(1)·S(2))(n;TS, Te)
]
− EQ

[
Σ̂2

(S(1)/S(2))(n;TS, Te)
]
− 4Σ2

K

)
.

Hence we do not need to price the pseudo-covariance swap directly.

2.4 Price Pseudo-Volatility Swaps

To price the pseudo-volatility swap of strike σK , we need to compute the expected value of the
realized-pseudo volatility σ̂(S)(n;Ts, Te). To get a second-order approximation, we use a Taylor
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expansion of the square root function about some Σ̂0 close to the expected swap value:

EQ
[
σ̂(S)(n;Ts, Te)

]
= EQ

[√
Σ̂2

(S)(n;TS, Te)

]

≈ EQ

[
Σ̂2

(S)(n;TS, Te) + Σ̂0

2
√

Σ̂0

−
(Σ̂2

(S)(n;TS, Te) − Σ̂0)
2

8(Σ̂0)
3
2

]

=
EQ
[
Σ̂2

(S)(n;TS, Te)
]

+ Σ̂0

2
√

Σ̂0

−
EQ
[
Σ̂2

(S)(n;TS, Te) − Σ̂0

]2

8(Σ̂0)
3
2

=
EQ
[
Σ̂2

(S)(n;TS, Te)
]

+ Σ̂0

2
√

Σ̂0

−
VarQ

[
Σ̂2

(S)(n;TS, Te)
]

+
(
EQ
[
Σ̂2

(S)(n;TS, Te)
]
− Σ̂0

)2

8(Σ̂0)
3
2

.

Note that the expected value EQ
[
Σ̂2

(S)(n;TS, Te)
]

is already computed in the previous section,

so here we compute the variance:

VarQ
[
Σ̂2

(S)(n;TS, Te)
]

= VarQ

[
n

Te − Ts

(
1

n− 1

n∑

i=1

(Xi − X̄n)2

)]

=
1

(Te − Ts)2
· n2

(n− 1)2
VarQ

[
n∑

i=1

(Xi − X̄n)2

]

=
1

(Te − Ts)2
· n2

(n− 1)2



EQ

[
n∑

i=1

(Xi − X̄)2

]2

−
(

EQ

[
n∑

i=1

(Xi − X̄)2

])2


 .

After some calculations, the first term in the bracket above can be written

EQ

[
n∑

i=1

(Xi − X̄)2

]2

= EQ

[
n∑

i,j=1

X2
i X

2
j

]
− 2

n
EQ




(

n∑

k=1

X2
k

)2 n∑

i=1

X2
i



 +
1

n2
EQ

[
n∑

i=1

Xi

]4

.

Now, let us denote the coefficients by

A := EQ

[
n∑

i,j=1

X2
i X

2
j

]
,

B := EQ




(

n∑

k=1

X2
k

)2 n∑

i=1

X2
i



 , and

C := EQ

[
n∑

i=1

Xi

]4

.

Then our formula for the variance can be written

VarQ

[
n∑

i=1

(Xi − X̄)2

]
= A− 2

n
B +

1

n2
C −

(
EQ

[
n∑

i=1

(Xi − X̄)2

])2

.
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Note that the last term has already been calculated in the previous section, so it remains to
find formulas for A,B, and C. Indeed, we spent much of our time to do this and here are the
results:

A =
∑

i

(α4
i + 6α2

iβ
2
i + 3β4

i ) + 2
∑

i<j

(α2
i + β2

i )(α
2
j + β2

j ),

B =
∑

i

(α4
i + 6α2

iβ
2
i + 3β4

i ) + 2
∑

i<j

(α2
i + β2

i )(α
2
j + β2

j ) + 2
∑

i<j

(3αiβ
2
i + α3

i )αj

+ 2
∑

i<j

αi(3αjβ
2
j + α3

j ) + 2
∑

i<j<k

αiαj(α
2
k + β2

k),

C =
∑

i

(α4
i + 6α2

iβ
2
i + 3β4

i ) + 4
∑

i<j

(α3
i + 3αiβ

2
i )αj + 6

∑

i<j

(α2
i + β2

i )(α
2
j + β2

j )

+ 12
∑

i<j<k

(α2
i + β2

i )αjαk + 4
∑

i<j

αi(α
3
j + 3αjβ

2
j ) + 12

∑

i<j<l

αj(α
2
j + β2

j )αl

+ 12
∑

i<j<l

αiαj(α
2
l + β2

l ) + 24
∑

i<j<k<l

αiαjαkαl.

In the above, we have again used the notation that each random variable Xi follows a normal
distribution with mean αi and variance β2

i .
Further, it can be shown that

EQ
[
Σ̂2

(S)(n;TS, Te)
]
→ Σ2

(S) and VarQ
[
Σ̂2

(S)(n;TS, Te)
]
→ 0,

as n → ∞. This means that Σ̂2
(S)(n;TS, Te) is an asymptotically unbiased and consistent esti-

mator of Σ2
(S)(Ts, Te).

2.5 Numerical Simulation

Following the idea of [1], we consider for the numerical simulations, a stochastic volatility model
of the CIR type:

dσ2
t = κ(θ2 − σ2

t ) dt+ γσt dW
(2)
t . (2.1)

Similar to the previous section, once discretized in time, Xt becomes a stochastic process taking
random values, Xi, normally distributed with mean αi and variance β2

i , at each time step:

Xi = log

(
Si

Si−1

)
∼ N(αi, β

2
i ).

The parameters are related to the Xt process through the following equations:

αi = EQ [Xi] =

∫ ti

ti−1

µtdt−
1

2
EQ

[∫ ti

ti−1

σ2
t dt

]
,

β2
i = VarQ [Xi] = EQ

[∫ ti

ti−1

σ2
t dt

]
.
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In order to evaluate the expectation and the variance of the Xt process, two different ways
are being used. The first one is the application of the Monte-Carlo technique directly on the
discretized σ2

t process, whose behaviour is given by (2.1). The second one is the application of
the Monte-Carlo technique on the discretized process Xi = log(Si/Si−1).

The advantage of using the CIR model is that it yields an exact solution for the expectation
and the variance of the Xt process (cf.[1]). Hence, the numerical results can be easily verified.

All simulations are generated over 1000 time steps. For the results in Table 2.5, only 100
scenarios are considered, since the idea of the simulations is more to give an illustration and
improve our understanding of the processes than to provide a numerical proof. The values of
the parameters are set to κ = 10, θ2 = 0.2, σ0 = 0.2 and γ = 0.75. Note that γ = 0 yields a
deterministic volatility (see Figure 2.5).

Expectation Variance
Exact 0.1281 0.0019
MC σ2

t 0.1287 0.0022
MC (log St)

2 0.1280 0.0021

Table 2.1: Exact and numerical results for the expectation and variance of Xt.

Although the relatively low number of scenarios, the numerical results match the exact
solutions within some reasonable error range.

2.6 Another Approach

Here we describe another approach in finding the expectation and variance. The idea is to work
with the bond-discounted rate process S∗

t in the martingale measure Q. Let (Ω,F ,Ft, P ) be a
probability space with Ft being filtration. We define the discounted St process by

S∗
t =

St

Bt
,

where Bt is the deterministic bond price at time t satisfying dBt = rtBt dt. It is known that the
unique martingale measure Q for the discounted rate process S∗

t is given by the Radon-Nikodym
derivative

dQ

dP
= exp

(∫ T

0

rt − µt

σt

dWt −
1

2

∫ T

0

(
rt − µt

σt

)2

dt

)
. (2.2)

Under this martingale measure, the driftless process S∗
t satisfies dS∗

t = σtS
∗
t dW

∗
t , where W ∗

t

given by

W ∗
t = Wt −

∫ t

0

rs − µs

σs
ds, 0 ≤ t ≤ T

is a standard Wiener process on the probability space (Ω,F ,Ft, Q). We also have

d logS∗
t = −σ

2
t

2
dt+ σt dW

∗
t .
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Figure 2.1: Monte-Carlo simulation, for the log-returns Xt and the stochastic volatility σ2
t .

Then, the log-return for the discounted process S∗
t can be written

X∗
i := log

S∗
ti

S∗
ti−1

= −1

2

∫ ti

ti−1

σ2
t dt+

∫ ti

ti−1

σt dW
∗,

and it follows a normal distribution with mean

αi := EQ [X∗
i ] = −1

2

∫ ti

ti−1

σ2
t dt

and variance

β2
i := VarQ [X∗

i ] =

∫ ti

ti−1

σ2
t dt.

Thus, X∗
i has the representation X∗

i = αi + βiY , where Y is a standard normal N(0, 1). We
note that

EQ
[
(X∗

i )2
]

= α2
i + β2

i and EQ
[
(X∗

i )4
]

= α4
k + 6α2

iβ
2
i + 3β4

i .

Now, we compute the expected value of the pseudo-volatility-square, first neglecting the
mean X̄∗

n := 1
n

∑n
i=1X

∗
i :

EQ
[
Σ̂2

(S)(n;TS, Te)
]

= EP
[
Σ̂2

(S)(n;TS, Te)MT

]
.
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Here MT is defined in the right-hand side of (2.2). If we use Taylor expansion for MT , then we
obtain the formula demonstrated below. We propose to calculate EQ for the discounted process
S∗

t , which simplifies some calculation in the case of St:

EQ
[
Σ̂2

(S∗)(n;TS, Te)
]

=
n

(Te − Ts)
· 1

(n− 1)

n∑

i=1

EQ
[
(X∗

i )2
]

=
n

(Te − Ts)
· 1

(n− 1)

n∑

i=1

(
α2

i + β2
i

)

=
n

(Te − Ts)
· 1

(n− 1)

n∑

i=1

(
1

4
β4

i + β2
i ).

If we do not neglect X̄∗
n, then we obtain the more general expression

EQ
[
Σ̂2

(S)(n;TS, Te)
]

=
n

(Te − Ts)
· 1

(n− 1)

n∑

i=1




(
−1

2
β2

i +
1

2n

n∑

j=1

β2
j

)2

+
n− 1

n
β2

i



 .

In the risk-neutral world, the process St satisfies the SDE

d logSt =

(
rt −

σ2
t

2

)
dt+ σt dW

∗
t .

This means that under the measure Q the log-return Xi is normally distributed with mean

αi =

∫ ti

ti−1

(
rt −

σ2
t

2

)
dt

and variance

β2
i =

∫ ti

ti−1

σ2
t dt.

In this case our formula becomes

EQ
[
Σ̂2

(S)(n;TS, Te)
]

=
n

(Te − Ts)
· 1

n− 1

n∑

i=1



(
αi −

1

n

n∑

j=1

αj

)2

+
n− 1

n
β2

i


 ,

which is the same as in Section 2.3.
To compute the variance, we need to find the the following expectation:

EQ

[(
Σ̂2

(S)(n;TS, Te)
)2
]

=
1

(Te − Ts)2
· n2

(n− 1)2

(
n∑

i=1

EQ
[
(X∗

i )4
]
+ 2

∑

i<j

EQ
[
(X∗

i )2(X∗
j )2
]
)

=
1

(Te − Ts)2
· n2

(n− 1)2

(
n∑

i=1

(α4
i + 6α2

iβ
2
i + 3β4

i )

+ 2
∑

i<j

(
α2

iα
2
j + α2

iβ
2
j + 2β2

i α
2
j + 3β2

i β
2
j + 2αiαjβiβj

)
)
.

Since αi = −1
2
β2

i , the above expression can be simplified.
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2.7 Conclusion

During the short week, our group has obtained closed-form formulas for the expectation and
variance of the realized pseudo-volatility-square, as requested by the problem:

EQ
[
Σ̂2

(S)(n;TS, Te)
]

(Question 1)

VarQ
[
Σ̂2

(S)(n;TS, Te)
]

(Question 2)

Although these formulas are complicated, they can be (carefully) implemented on a computer to
compute prices of pseudo-variance, pseudo-covariance, and pseudo-volatility swaps in real time.
This is the advantage of formulas over (quasi-) Monte-Carlo simulation and is highly desired by
market practitioners.

In theory, we should be able to obtain the answer for question three as well, that is, to
compute the covariance of different combinations of

A1(n) := Σ̂2
(S(1))(n;TS, Te),

A2(n) := Σ̂2
(S(2))(n;TS, Te),

A12(n) := Σ̂2
(S(1)·S(2))(n;TS, Te), and

A1/2(n) := Σ̂2
(S(1)/S(2))(n;TS, Te).

However, we did not have time to complete this task, so this can be part of future work. Also,
we did not have the opportunity to verify the appropriateness or validity of our results with our
industry representative Ritchie He of RBC Financial Group, since he was away for the last days
of the week.
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Chapter 3

Determining Geological Properties by a

Hybrid Seismic–Magnetotelluric

Approach

Rita Aggarwala1, Sean Bohun2, Colin Farquharson3, Hugh Geiger1, Yuanyuan Hua2, Huaxiong
Huang4, Michael Lamoureux1, Jack Macki5, Zheng Meng6, Kai Muenzer7, Doug Oldenburg3,

Robert Piche8, Yongji Tan9,

Report prepared by Hugh Geiger and Michael Lamoureux

3.1 Introduction

Of all the geophysical techniques, controlled-source reflection seismology is the preferred method
for oil and gas exploration in the Canadian foothills, as it provides the best resolved images of
structures at depth and can provide detailed information about subsurface rock properties such
as elastic or acoustic impedance contrasts. Unfortunately, good quality seismic data cannot
always be acquired over subsurface targets. The overburden can attenuate or scatter the seis-
mic signal, preventing the signal from reaching the target zone and/or from returning to the
detectors. The recorded signal might be swamped by noise, occasionally from external sources
(such as production equipment), but more typically generated by interaction of the propagating
wavefield with complicated near-surface conditions. In other cases, access to the surface over the
target area is restricted and the resulting data set provides limited information about the target

1University of Calgary
2Pennsylvania State University
3University of British Columbia
4York University
5University of Alberta
6Rice University
7Shell Canada
8Tampere University of Technology
9Fudan University
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and/or the overburden, both necessary prerequisites for high resolution imaging of impedance
contrasts in the subsurface.

The controlled source audio magnetotelluric technique (CSAMT) is another viable geophys-
ical tool for imaging subsurface structure. Unfortunately, electromagnetic waves propagating in
conducting media satisfy the diffusion equation, and hence the best possible resolution of sub-
surface conductivity structure using the MT method is typically much worse than for seismic
waves propagating in an elastic media. However, great strides have been made over the last
decade in the acquisition, processing, interpretation and inversion of 2D and 3D MT data. It
might be possible to collect high quality MT data in areas where the seismic data are of poor
quality. In situ well logs that measure rock properties at the target and in the overburden show
that the structural boundaries separating zones of different conductivity correspond exactly with
major contrasts in elastic impedance. Thus, an inversion of the MT data constrained by a priori
information obtained from seismic and well data or a joint inversion of both data sets together
could provide a better image of the subsurface structure than the seismic alone.

Shell Canada posed a series of questions for consideration, all variations on a similar theme.
These questions can be grouped in order from more general to more specific.

1. Could MT help to better define the geology, in comparison to using a regional geological
model, in areas of poor seismic?

2. Can a geological model be produced by joint tomographic inversion of both data types?

3. Which would be favorable conditions for the application?

4. What kind of computing power is likely to be involved?

5. Given the recent advances in the acquisition, processing, interpretation and inversion of
MT data and the associated improvement in lateral resolution, is there an emerging op-
portunity to combine MT with seismic in areas of complex geology?

6. What are the theoretical and practical issues involved in combining surface seismic and
surface MT data by joint tomographic inversion in areas where seismic alone cannot suf-
ficiently explain the subsurface in the Canadian Foothills.

7. Is common inversion of seismic and magnetotelluric data an option for gas exploration in
the heavy structured thrust belt environment of the Canadian Foothills?

To properly address questions 4–7 would require an expert knowledge of 2D and 3D MT and
seismic reflection methods, as well as software for forward modeling and inversion. Our group
determined that these resources were not readily available, or if available could not be utilized
in the short time span available. Therefore, we decided to focus our efforts on question 1–3.
We limited our investigation to a simple 1D earth model where regional seismic and well logs
suggest discrete layers, each with constant seismic velocity and constant electrical conductivity.
In addition, the well logs provide rough estimates of velocity and conductivity for use as a
starting point in the seismic and MT inversions.

To the best of our knowledge, there are no previous works that attempt a joint inversion of
both MT and seismic data, although our joint inversion scheme closely follows the generalized
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3.2. JUSTIFICATION FOR 1D EARTH MODEL 41

methodology proposed by Lines et al. (1988). Ellis (1999) shows that joint inversion of airborne
EM data and pole-pole dc resistivity data can effectively reduce non-uniqueness in EM inversion.
Sasaki (1989) shows that joint 2D inversion of MT and dipole-dipole resistivity can effectively
improve the resolution compared to that from either of the separate inversions. More typically,
a-priori information from seismic and well data are introduced as constraints on the lateral
roughness of boundaries between abrupt changes in conductivity, and on the smoothness of
conductivities within layers (Smith et al. 1999). Newman et al. (2002) have published the
most comprehensive investigation to date of seismic-constrained MT inversion. In addressing
a complex 3D subsalt imaging problem, they apply constraints that include fixed and floating
boundaries as well as fixed values and/or lower bounds for conductivities above and within the
salt. Routh and Oldenburg (1999) discuss the specific problem of 1D inversion for CSAMT,
while Li et al (2000) examine 1D inversion for CSAMT with azimuthal anistropy.

In this paper, we focus more on the magnetotelluric problem, as it is somewhat less well-
known. A deeper understanding of this model will be important to further studies in the
feasibility of joint seimic-MT inversions.

3.2 Justification for 1D earth model

Although our 1D earth model is a gross simplification of the complex 2D and 3D geologic
structure typical of the Canadian Foothills, an investigation of the joint inversion problem for
1D earth structure is necessary and useful. Most 2D and 3D MT inversion schemes require a
reasonable starting model. The usual practice is to create the starting model from a profile of
constrained 1D MT inversions. A robust procedure for the 1D inversion problem is unlikely to
yield subsurface models suitable for oil and gas exploration, but might yield an intermediate
model suitable for 2D and 3D MT inversions. A very similar argument applies to the seismic
imaging problem, but it is worthwhile discussing in detail as there are important differences
between the two.

Conventional seismic imaging is achieved by migrating the data. Migration is best described
as a data processing step that convolves a space-time filter with the seismic data. The image
can be created in a single pass, or in a series of passes that iteratively reshape the data towards
the desired image. In short, then, the subsurface reflectivity model is obtained by migration,
not inversion. However, one of the most important parameters controlling the behaviour of
these filters is velocity. Hence, we require a reasonable velocity model of the subsurface, and
it is towards this end that our inversion efforts are directed. In fact, one of the attractions of
seismic migration is that a well-focused image of the subsurface can often be obtained with a
very approximate velocity model (Geiger 2001). Thus, the output from our inversion process –
a simple 1D layered velocity model – can be considered as an intermediate product in the quest
for more detailed 2D and 3D velocity models, and these in turn as parameters controlling the
behaviour of the migration operators.
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3.3 Basic seismic wave theory

It is well known (e.g. Wapenaar and Berkhout, 1989) that acoustic and elastic wavefields satisfy
the scalar wave equation. Although earth materials are elastic, most industry applications of the
seismic reflection method only consider propagation of compressional waves, whose behaviour is
adequately described by the acoustic wave equation for pressure. In an isotropic (i.e. material
properties do not depend on direction of wave-propagation), source-free region, pressure P
satisfies the homogeneous wave equation in the frequency domain:

(∇2 + k2)P = 0 (3.1)

where k = ω
√
ρ/K is the wave number for frequency ω, density ρ , and adiabatic compression

modulus K. Equation (3.1) is a scalar Helmholtz equation that describes the propagation of
acoustic waves in real earth materials.

For a plane wave propagating along the z axis (positive down), equation (3.1) has solution

P = P+eikz + P−e−ikz. (3.2)

If we express the time dependence of the harmonic wave for positive frequencies explicitly as
e−iωt, i.e.

P = P+ei(kz−ωt) + P−e−i(kz−ωt), (3.3)

we see that the first and second terms on the RHS of equations (3.2) and (3.3) represent down-
going waves (for z positive) and upgoing waves (for z negative), respectively. The phase velocity
ω/k =

√
K/ρ ≡ ν is only a function of the material properties and is independent of frequency,

thus the acoustic wave propagation is non-dispersive. Note as well that, in a homogeneous
media, propagating acoustic plane waves do not suffer attenuation. These properties are the
fundamental reason for the superior resolution of the seismic methods.

3.4 Forward modelling of seismic reflection data

In essence, reflection seismology is a remote-sensing technique based on the principles of echolo-
cation. An energy source at the surface of the Earth introduces sound waves that propagate
through the various rock layers in the subsurface. Abrupt changes in the density and adiabatic
compression moduli – which typically correspond to layer boundaries or structural discontinu-
ities – impede the transmission of the sound waves. At each impedence constrast, or ‘reflector,
a small fraction of the propagating energy is reflected or diffracted and returns to the surface
as a faint echo of the source. Receivers that measure acoustic pressure or particle motion de-
tect these ‘reflection events. The corresponding amplitudes are digitally recorded as time series
known as ‘seismograms. Because the signal propagates without significant dispersion or attenu-
ation (other than geometrical spreading effects), an impulsive source will generate seismograms
with well defined reflection events. The seismograms can be processed to create an image or
representation of the subsurface.

A high-frequency approximation to the forward modeling operator (known as ray theory)
can accurately describe wave propagation as a linear superposition of traveltime-delayed and
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amplitude-scaled copies of the source signal, one for each raypath linking a given source with a
subsurface reflector element and back to a receiver. Because the experiment is bandlimited, the
infinitely many raypaths to all possible subsurface reflectors can be approximated by a finite
subset (by discrete sampling of each subsurface reflectors). This subset of raypaths can be
further reduced by the application of stationary phase, with the result that the vast majority of
the recorded signal comes from specular reflections where the angles of incidence and reflection
at a given reflector element are equal. For simple earth models such as the 1D layer case,
the forward modeling problem for one source and receiver reduces to calculation of a single
traveltime along a piecewise straight raypath. In most applications, the amplitude correction is
ignored, or approximated by an estimate of the geometrical spreading along the raypath. We
adopt this methodology to forward model the seismic data.

3.5 Inversion of seismic data

The fundamental inverse problem for seismic reflection consists of estimating acoustic or elastic
impedance contrasts (angle dependent reflectivity) as a function of position (Gray, 1997 and
Bleistein et al, 2001). However, as discussed above, the image is conventionally produced by
migration (data processing) rather than via a true mathematical inversion. Our interest is in
obtaining a velocity model that represents useful parameters for the migration model. In our
model here, we examine the seismic data and pick travel times, which represent the arrival times
for give seismic signals returning after relection from geological layers. These travel times are
then used as inputs to the inversion problem for the velocity model.

3.6 Basic electromagnetic wave theory

Consider Maxwells equations in the frequency domain for an isotropic, source-free region with
the constitutive relations ~D = ε ~E, ~B = µ ~H, and ~J = σ ~E:

~∇× ~H = (σ − iωε) ~E (3.4)

~∇× ~E = iωµ ~H (3.5)

~∇ · ~H = 0 (3.6)

~∇ · ~E = 0 (3.7)

for frequency ω, magnetic permeability µ, dielectric permittivity ε, and electrical conductivity
σ. The inverse of conductivity is known as electrical resistivity ρ = σ−1, which should not be
confused with density above.

In a homogeneous, isotropic, source-free region, both the electric field ~E and magnetic field
~H can be shown (e.g. Ward and Hohmann, 1988) to satisfy the homogeneous wave equation in
the frequency domain

(∇2 + k2) ~E = 0 (3.8)

(∇2 + k2) ~H = 0 (3.9)
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where k is the propagation constant or wave number, defined as k2 = iωµσ at low frequencies
where conduction currents predominate over displacement currents. Equations (3.8) and (3.9)
are vector Helmholtz

For a plane wave propagating along the z-axis (positive down), equations (3.8) and (3.9)
have solutions

~E = ~E+eikz + ~E−e−ikz, (3.10)

~H = ~H+eikz + ~H−e−ikz. (3.11)

Expanding k = α+ iα , where α is the positive real quantity
√
ωµσ/2, and expressing the time

dependence of the harmonic wave for positive frequencies explicitly as e−iωt, we see that the first
terms on the RHS of equations (3.10) and (3.11) represent downgoing waves (for z positive)

~E+eikze−iωt = ( ~E+e−αz)ei(αz−ωt), (3.12)

while the second terms on the RHS of equations (3.10) and (3.11) represent upgoing waves (for
z negative)

~E−e−ikze−iωt = ( ~E−eαz)e−i(αz+ωt, (3.13)

In both cases, the electromagnetic waves attenuate as they propagate. In addition, the phase
velocity ω/α =

√
2ω/µσ is frequency dependent, even in common earth materials where conduc-

tivity and permeability are independent of frequency. Hence, electromagnetic waves propagating
in materials with non-zero conductivity are dispersive. Dispersion and attenuation are the rea-
sons for the lack of resolution of electromagnetic prospecting methods.

3.7 Forward modelling of magnetotelluric data

From the vanishing of the divergences (equations (3.6) and (3.7)), the fields lie completely in
the x-y plane, so that

~E = (Ex, Ey, 0), (3.14)

~H = (Hx, Hy, 0). (3.15)

From the curl equation (3.5), the components of the two fields are related by

Hx(z) = − kn

ωµ
(E+n

y eiknz − E−n
y e−iknz) (3.16)

Hy(z) =
kn

ωµ
(E+n

x eiknz − E−n
x e−iknz) (3.17)

where the subscript n indicates a specific layer in a layered media with conductivities σn. Equa-
tions (3.16) and (3.17) are only valid within the limits of the layer with index n.

In the Tikhonov-Cagnaird approach, the wave impedance is defined as

Zxy(z) =
Ex(z)

Hy(z)
(3.18)

Zyx(z) =
Ey(z)

Hx(z)
= −Zxy(z) (3.19)

π



3.7. FORWARD MODELLING OF MAGNETOTELLURIC DATA 45

i.e. the ratio of orthogonal components of the electric and magnetic fields. Note that the wave
impedance will be a complex quantity, and thus have both amplitude and phase.

For a homogeneous half-space, there are no upgoing waves. Substituting the downgoing x-
component of equation (3.10) and the downgoing portion of equation (3.17) into equation (3.18)
yields

Zxy =

√
−iωµ
σ

. (3.20)

Similarly, substituting the downgoing y-component of equation (3.11) and the downgoing portion
of equation (3.16) into equation (3.19) yields

Zyx = −
√

−iωµ
σ

. (3.21)

For normally conducting rocks µ = µ0, thus the observed impedance is dependent only on
frequency and the electrical conductivity in the earth. It is not dependent either on the strengths
of the individual components of the electromagnetic field or the measurement depth z. Thus
measurements taken at the surface of the earth (z = 0+ ) are sufficient to determine conductivity
(or its inverse, resistivity). The resistivity of the half-space can be determined from the field by

ρ =
1

σ
=

1

ωµ

|Ex|2
|Hy|2

=
1

ωµ

|Ey|2
|Hx|2

. (3.22)

For layered media, Tikhonov and Cagniard both showed (see e.g. Zhdanov and Keller, 1994,
p262-269) that the impedance measured at the surface of the earth can be expressed as

Z1D =

√
−iωµ
σ1

CN , (3.23)

where CN is the layered earth correction factor for the plane wave impedance for the layered
earth as a whole. CN is a function of the layer thicknesses and propagation constants in the
subsurface, found by matching continuity conditions at each layer interface z = hn (both Hx

and Ey, or Hy and Ex are continuous acrross layer interfaces).

Cagniard defined an apparent resistivity ρa in terms of the observed wave impedance at the
earth’s surface as

ρa =
1

ωµ
|Z|2, (3.24)

a quantity often used instead of the wave impedance Z1D.
For the 1D magnetotelluric method, the ideal data set consists of measurements of the

orthogonal horizontal components of the electric and magnetic field over a range of frequencies,
and occasionally the vertical magnetic field (see discussion of tipper vector below). This allows
determination of both amplitude and phase of the impedance. The phase of the impedance,
although not been discussed above, is a valuable measurement because it can help constrain
1D inversions in the presence of noise and static shifts. However, it is often sufficient to have
measurements of the apparent resisitivity over a range of frequencies, as we will assume here.
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3.8 Inversion of magnetotelluric data

The fundamental inverse problem for MT consists of estimating conductivity as a function of
position (Hohmann and Raiche, 1988; Whittall and Oldenburg, 1991). MT is considered a clas-
sical geophysical inverse problem. The MT inverse problem is non-linear and ill-posed. For any
real subsurface distribution of conductivity and finite data set, the problem is underdetermined
(more model parameters than data). In order that a solution of any sort can be achieved, the
subsurface is simplified so that the problem is overdetermined (more data than model param-
eters). Thus there are a number of possible solutions, all of which might fit the data equally
well. An additional contribution to non-uniqueness is the presence of random noise in the data,
although repeatable geologic noise can manifest itself as static shifts (bias) in measured field
components, resulting from near surface inhomogeneities (Wannamaker, 1999; Garcia and Jones,
2002), as well as fine-scale variations in resistivity-depth profiles as seen in well logs (White et
al., 2001).

All MT inversions are constrained in some sense. The constraints might include careful
preprocessing and/or the selection of subsets from the available data (Agarwal et al., 1993;
Oldenburg and Ellis, 1993; Berdichevsky et al., 1998; Pedersen and Gharabi, 2000), choice of
a particular class of models (e.g. smoothest model: Constable et al., 1987; Smith and Booker,
1988, or minimum blocky model: Fischer and Weibel, 1991), selection of a means for searching
the model space to find the best fit model (Weaver and Agarwal, 1993; Grandis et al. 1999,
Siripunvaraporn and Egbert, 2000), and the introduction of a priori bounds that limit or guide
the fitting process (Whittall, 1986; Mackie and Madden, 1993; Smith et al. 1999; Newman et
al. 2002) .

3.9 Practical considerations for 1D MT

In most cases, the earth cannot be adequately described by a 1D model. However, reasonable
1D inversions might still be desirable, if only to provide a good starting model for further 2D and
3D inversions. In addition, even in areas where a 1D model might be appropriate, near surface
inhomogeneities distort the measured electric and magnetic fields and bias the calculation of
impedances and apparent resistivities.

In areas of lateral inhomogeneity and/or anisotropy, the electric field in one direction may
depend on magnetic field variations parallel to, as well as perpendicular to, its direction. The
impedance is a tensor (see, e.g. Vozoff, 1991), given by

[
Ex

Ey

]
=

[
Zxx Zxy

Zyx Zyy

] [
Hx

Hy

]
(3.25)

or, equivalently,
E = ZH. (3.26)

In a 2D subsurface where geologic strike is parallel to the x-axis and perpendicular to the y-axis,
the diagonal elements Zxx and Zyy are zero, and Zxy 6= −Zyx. Impedance Zxy corresponds
with an incident electric field along x, which is often referred to as the transverse electric (TE)
mode. The Ex field of the TE mode induces no boundary or space charges and so there are
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no boundary charge effects. Impedance Zyx corresponds with an incident electric field along y,
which is often referred to as the transverse magnetic mode or TM mode. The Ey field of the
TM mode crosses boundaries, so that charges are induced, and anomalies persist to arbitrarily
long periods. Thus the TM impedance is more sensitive to near-surface resistive structures than
the TE impedance. Agarwal et al. (1993) examine the two common effective impedances which
are rotationally invariant in the x-y plane:

Zave =
1

2
(Zxy − Zyx), (3.27)

Zeff = (ZxxZyy − ZxyZyx)
1/2. (3.28)

These are valid for any orientation of the acquisition geometry relative to geologic strike, al-
though they conclude that the TE impedance is more suitable for 1D inversions in 2D media
(e.g. to generate a starting model for 2D inversions).

Near lateral conductivity changes, ~∇× ~E has a vertical component, thus Hz is not zero and
the ~H vector is tipped out of the horizontal plane. A vertical magnetic transfer function or
tipper (A,B) can be defined as

Hz = AHx +BHy. (3.29)

The tipper has both amplitude and phase and is frequency dependent. Given a 2D structure
with strike, the tipper can help resolve ambiguity in strike and show which side of a contact is
more conductive (Vozoff, 1991).

In general, near-surface inhomogeneities introduce galvanic distortion effects that can be
described by distortion matrices that relate the regional electromagnetic fields to the measured
(superscript D) distorted fields (see Garcia and Jones, 2002; Li et al., 2000):

ED = PE (3.30)

HD = QhE = I + QhZ (3.31)

HD
z = [(A,B) + QzZ]H (3.32)

where I is the identity matrix, and P , Qh and Qz are real valued and frequency-independent
distortion matrices:

P =

(
Pxx Pxy

Pyx Pzz

)
,Qh =

(
Qxx Qxy

Qyx Qzz

)
, and Qz =

(
Qzx Qzy

)
. (3.33)

When the EM fields are measured in an arbitrary coordinate system relative to the geologic
strike, the observed impedance ZD is related to the desired regional 2D impedance Z2D by

ZD = R(θ)(I + P)Z2D(I + QZ)−1RT(θ), (3.34)

where R(θ) is the Cartesian rotation tensor, and T denotes transpose. Theoretical and practical
aspects of the decomposition are discussed in McNeice and Jones (2001), Garcia and Jones
(2002), and Wannamaker (1999) (as well as references therein).
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3.10 Workshop Model

At the IPSWorkshop, we choose to investigate a simple one-dimensional model, to get some
idea of how the the joint seismic/magnetotelluric inversion might proceed. We consider a hybrid
seismic-magnetotelluric method for determining geological properties using a one-dimensional
three-layer model. We assume that the medium under consideration has three horizontal layers,
each of them is homogeneous with constant layer thickness hn, resistivity ρn and seismic velocity
vn, n = 1, 2, 3 from top down, and layer three has infinite thickness, i.e., h3 = ∞.

3.10.1 Seismic method

Forward problem. Seismic signals are produced at certain location on the surface of the top
layer (z = 0) and reflections of the signals from the interfaces of layers (z = h1, h2) are recorded
at different locations. Suppose that the distance between the source and the jth receiver is 2xj,
then Tn,j, the time for the signal to reach the receiver j, after nth reflection, can be computed
as

T1,j =

√
x2

j + h2
1

v1
, (3.35)

T2,j =

√

2

(
h1

v1

+
h2 − h1

v2

)(
1 +

2x2
j

h1v1 + (h2 − h1)v2

)
(3.36)

where vn are the seismic velocities in layer n.

Inverse problem. In practice, the situation is the opposite. We can record the travel time Tn,j

at location j and often the layer thickness and seismic velocity are not known. The question is
how to find hn and vn based on the values of Tn,j.

The solution of the inverse problem is typically non-unique and sometimes unstable. The
main challenge is to find the correct solution or an approximation efficiently.

3.10.2 Magnetotelluric method

Forward problem. Assume that the electric-magnetic field satisfies the Maxwell equations
and the traveling wave solution satisfies

∇× ~E + iµω ~H = 0, ∇× ~H − σ ~E = 0 (3.37)

where ω is the frequency of the wave, σ = ρ−1 is the conductivity and µ is the permeability
of the medium. The equations are equivalent to the Helmholtz equations for ~E and ~H when
there are no sources/sinks inside the domain (i.e., both ~E and ~H are divergence-free) and in our
one-dimensional setting they are

d2En

dz2
+ k2

nEn = 0, (3.38)

d2Hn

dz2
+ k2

nHn = 0 (3.39)
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where En and Hn are the x and y components of the vector fields ~En and ~Hn in layer n,
respectively and k2

n = −iσnµω.
The solutions for En and Hn can be obtained as

En = An exp(iknz) +Bn exp(−iknz), (3.40)

Hn =
kn

ωµ
(An exp(iknz) −Bn exp(−iknz)) . (3.41)

When H1 (or E1) is given, the coefficients An and Bn can be determined by matching conditions
at each layer interface z = hn (both Hn and En are continuous across the layer interfaces). Note
that B3 = 0 since otherwise the solution will grow unbounded as z → ∞. And each solution
En and Hn can be expressed by H1 (or E1), the layer thickness hn, the conductivities σn, and
the frequency of the wave. In particular, the ratio of the electric and magnetic field strengths
at the surface (z − 0) are uniquely determined by hn and σn as

Z ≡ E1

H1

∣∣∣∣
z=0

=
ωµ

k1

1 −
√

σ2

σ1
R tanh(ik1h1)

√
σ2

σ1
R− tanh(ik1h1)

(3.42)

where

R =
1 −K23 exp(i2k2H21)

1 +K23 exp(i2k3H21)
, K23 =

k2 − k3

k2 + k3

, H21 = h2 − h1.

A more conventional quantity called the apparent resistivity

ρapp =

∣∣∣∣
i

ωµ
Z2

∣∣∣∣ (3.43)

is normally used instead of the ratio Z.

Inverse problem. Again, often we can measure the apparent resistivity ρapp corresponding
to various frequencies. To obtain the geological information such as the layer thickness hn and
resistivity ρn = σ−1

n based on ρapp is of more practical importance.

3.10.3 A Hybrid Seismic-Magnetotelluric Approach

In practice, there are situations when one set of data (seismic or magnetotelluric) is more difficult
to obtain than others. It will be of interest to explore the feasibility of a hybrid approach which
combines both data.

We consider the following approach for the inversion of seismic and magnetotelluric data by
minimizing the objective function

J =
∑

n,j

w1
n,j

(
Tm

n,j − T c
n,j

)2
+
∑

j

w2
n,j

(
ρm

app(ωj) − ρc
app(ωj)

)2
(3.44)

where Tm
n,j and ρm

app are measured traveling time for the seismic signal and apparent resistivity,
T c

n,j and ρc
app are the computed values using (3.35), (3.36) and (3.43).

In the following, we present numerical experiments which illustrate the importance of the
initial guess and the weight functions w1 and w2. In general the results suggest that we should
always over-estimate the layer thickness for the initial guess. And it is necessary to use a staged
procedure in order to find the correct solutions.
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3.11 Numerical Experiments

To test the hybrid approach, we replace the measured data Tm
n,j and ρm

app by the exact solutions
obtained using (3.35), (3.36) and (3.43) based on the following parameter values: h1 = 400,
h2 = 4000, v1 = 6332, v2 = 4114, ρ1 = 8000, ρ2 = 40, ρ3 = 8000 and µ = 10−7. We assume
that the seismic data is recorded at nine locations with distance between the source and receiver
varying between 1000 and 5000 with equal increments:

2xj = 1000 +
j − 1

8
4000, j = 1, ...9.

The magnetotelluric data is recorded at the surface (z = 0) for 25 frequencies varying between
0.001 and 500 exponentially

ωj = 0.001

(
500

0.001

) j−1
24

, j = 1, ...25.

The minimization is carried out using the matlab routine fminsearch with maximum it-
eration number set at 2000, maximum number of function evaluations at 10000, convergence
criteria for the function value at 10−8. Table 3.1 listed the results for various computations with
initial guess h1 = h2 = 10000, v1 = iv2 = 10000, ρ1 = 6000, ρ2 = 600, and ρ3 = 6000. We
have chosen equal weights for both the seismic and magnetotelluric data in the functional J
in (3.44) with two parameters w1 and w2. For two of the computations (w2 = 100 and 1000),
the program is re-started using the results from the previous calculation as initial guess since
some of the corrected values are obtained after the first attempt. It can be seen that the hybrid
approach is effective when appropriate weights are chosen. Even though the first iteration does
not yield all the correct solution, a second attempt does recover the rest of the solution for the
case of w2 = 100. However, for w2 = 1000, the iteration diverges (second row from the bottom)
and it converges only after taking the absolution value of the results from the first attempt as
an initial guess (first row from the bottom).

3.12 Conclusions

Both seismic imaging and magnetotellurics are well-developed technologies with a rich research
literature and history of development; in our one-week exercise, we could only expect to touch
on some basic ideas of the methods and make some initial attempts to understand both methods
and link them in a hybrid approach. With numerical experiments, we were able to demonstrate
a basic understanding of both forms of inversion for a 1D earth model, and make some inves-
tigations on joint inversion using a weighed least squares technique. Even this simple method
demonstrates promise for combining both seismic and MT data to give an effective inversion
method. Weighting for the least squares is significant for balancing the contribution of data
from the two methods. A more realistic experiment would involve real data from a 2D seismic
and MT survey, but using the same methodology of least squares.

It is worth noting that an extensive literature on seismic and MT imaging methods exists,
and a familiarity with this work is critical to making further progress on joint inversion. We
include a representative sample of some key research articles in the bibliography below.
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Table 3.1: Effect of the weights w1 and w2 on the solution of the inverse problem using the
hybrid approach. For comparison purpose, the seismic only (w2 = 0) and magnetotelluric only
(w1 = 0) inversion are also included.

w1 w2 h1 h2 v1 v2 ρ1 ρ2 ρ3

1 0 -400 4061 6332 4455 - - -
0 100 0 3738 - - 0 39 8745
1 10 -398 4062 6330 4455 8001 51 20387
1 100 400 4000 6332 4114 322 38 20285

400 4000 6332 4114 8000 40 8000
1 1000 397.7 3998.6 6330 4114.1 -4256.3 40.1 7523.5

399.2 3999.5 6331.3 4114 -2.143×1012 40 7828.4
400 4000 6332 4114 8000 40 8000
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Chapter 4

A Seismic Inversion Problem for an

Anisotropic, Inhomogeneous Medium

Dhavide Aruliah1, Mikalai Birukou2, Neville Dubash3, Leslie Fairbairn4, Jeff Grossman5,
Katherine Hegewisch6, Namyong Lee7, Robin Swain8, Carlos Trenado9,

Industrial Contacts:Gary Billings10, Michael Slawinski (Mentor)8, Chad Wheaton (Mentor)8,

4.1 Introduction

In the petroleum industry, many geoscientists rely on information provided by seismic data.
Based on the interpretation of seismic data, geophysicists and geologists attempt to identify and
target areas of economic importance, specifically hydrocarbon traps. We wish to extract from
the data as much information as possible.

A key factor in the successful processing and interpretation of seismic data is knowing certain
rock physics properties, in particular the elastic moduli of the section of earth through which
seismic waves propagate. One means of attempting to quantify the rock physics properties is
through a vertical seismic profile (VSP), wherein seismic sources are located on the surface and
receivers are placed in a well-bore.

Traditionally, only traveltimes were measured at the receivers, but technological advances
now allow measurement of the polarization angles (i.e., particle displacement) as well. This
provides an additional piece of information towards a practical means of accurately determining
the physical parameters that characterize the medium.

1University of Toronto
2University of Waterloo
3University of British Columbia
4Simon Fraser University
5University of Calgary
6Washington State University
7Minnesota State University
8Memorial University
9New Mexico State University

10Talisman Energy
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Source (0,0)

Receiver (X,Z)
− uniform
− anisotropic

Layer of Interest

H

x Θ

Point of Refraction

Upper Medium

− elliptically anisotropic
− vertically nonuniform

In this report, we consider the propagation of seismic waves through a medium that can be
subdivided into of two distinct parts. The upper part is assumed to be azimuthally symmetric,
linearly nonuniform with increasing depth, and the velocity dependance with direction consistent
with elliptical anisotropy. The lower part, which is the layer of interest, is assumed to also be
azimuthally symmetric, but uniform and nonelliptically anisotropic. Despite nonellipticity, we
assume the angular dependance of the velocity can be described by a convex curve.

Our goal is to produce a single source-single receiver model which uses modern seismic
measurements to determine the elastic moduli of the lower media. Once known, geoscientists
could better describe the angular dependance of the velocity in the layer of interest and also
would have some clues at to the actual material composing it.

4.2 Formulation of the Problem

We begin by assuming that the area of study consists of layered sedimentary rocks. Rotational
symmetry in such a case effectively reduces problem to two dimensions. Since, in the case of
rational symmetry, energy will propagate between source and receiver in a vertical plane, we
can define our coordinate system such that our x and z coordinate axes contain the plane of
propagation.

We start with a vertical cross section of the earth with a seismic source on the surface and a
receiver located below. We define the horizontal offset between source and receiver to be X, and
the vertical offset to be Z. That is, we define the source to be at the origin of our coordinate
system, (0, 0), and the receiver to be at the location (X,Z). Furthermore, we assume that the
subsurface is divided into two distinct media with the depth to the interface between them to
be H. Finally, we define the horizontal offset between the source and the point of refraction of
the seismic ray to be x.
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4.2.1 Assumptions

We assume that the seismic source is of high frequency with a wavelength shorter than all
characteristic lengths in the layers of interest. With this assumption, it follows, from asymptotic
ray theory, that the signal travels along a ray, which is a trajectory of the stationary traveltime.
Thus, we assume that the rays obey the variational principle of Fermat.

We also assume that the medium through which the seismic waves propagate is a perfectly
linear elastic continuum. Hence the stress-strain relationships are described by Hooke’s law.

4.2.2 Upper Medium

We consider the upper medium, 0 ≤ z ≤ H, to be horizontally stratified {(i.e., sedimentary
rocks)} and both vertically nonuniform and elliptically anisotropic. Vertical nonuniformity is
often the result of varying compaction of the subsurface and manifests itself as a linear increase
in {vertical} velocity with depth. That is, Vz(z) = a+ bz. In the case of elliptical anisotropy we
can define a single parameter, χ, that describes the relationship between vertical and horizontal
velocity1. Specifically,

χ =
V 2

x − V 2
z

2V 2
z

. (4.1)

Combining the effects of both nonuniformity and anisotropy results in a ray velocity profile2 of
the form

V (z,Θ; a, b, χ) = (a + bz)

√
1 + 2χ

1 + 2χ cos2(Θ)
(4.2)

where a, b, and χ are predetermined.
Then, by applying Noether’s Theorem it can be shown that the ray form of Snell’s Law leads

to the expression for the ray parameter

p =
2x√

(x2 + (1 + 2χ) z2) (4a2 (1 + 2χ) + 4ab (1 + 2χ) z + b2 (x2 + (1 + 2χ) z2))
. (4.3)

Applying the variational principle of Fermat, given the above assumptions, the traveltime
function3 of a ray traveling from a source at (0, 0) to a point (x,H) is

t1(x, z; a, b, χ) =
1

b
ln

∣∣∣∣∣
1 +

√
1 − p(x)2a2(1 + 2χ)

1 +
√

1 − p(x)2(a + bz)(1 + 2χ)

∣∣∣∣∣ . (4.4)

It has been assumed that the parameters a, b and χ, which characterize the upper medium,
are known. These values are obtained by considering traveltimes from source to receivers located
in the upper medium, and applying a best-fit method (e.g., conjugate-gradient optimization) to
the traveltime expression, t1.

1Thomsen, L.,(1986) Weak Elastic Anisotropy, Geophysics, 51, pp. 1954 - 1966.
2Affarwala, B., et. al., (1997) Inversion of Anisotropic Velocity Parameter. Proceedings of the first PIMS

Industrial Solving Workshop, PIMS, pp. 76-89.
3Slawinski, M., Wheaton, C., personal communication. 2002
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Θ

θ

4.2.3 Layer of Interest

We consider the layer of interest, H ≤ z ≤ Z, to be uniform, perfectly elastic, and transversely
isotropic. Uniformity implies that all rays will be straight lines from the refraction point to
the receiver. Elasticity and transverse isotropy imply that under Hooke’s Law, which give the
relationship between stress, σ, and strain, ε, via the elastic moduli, Cij,

σi = Cijεj, i, j ∈ [1, ..., 6],

there will be five independent elasticity constants. Furthermore, if we focus solely on compressional-
wave data, this number further reduces to four. In other words, only C11, C13, C33, C44 will be
independent and need to be solved for in this particular case.

In the equations above, we have made reference to the ray angle, Θ. However, the angle that
is measured in field observations is not the ray angle. In fact, in the presence of anisotropy there
are three distinct angles associated with wave propagation which must be carefully distinguished.
The first is the ray angle, Θ, which is associated with the direction of energy propagation. In the
case of uniform media where raypaths are straight, it is equal to the angle between the vertical
and the radian to a point on the wavefront (see Figure 2). If we were to {then} construct a
perpendicular to the wavefront at end of the radius, the angle between the perpendicular and
the vertical would be the phase angle, θ. Thirdly, we have the displacement (or polarization)
angle, φ, which describes the direction of particle displacement as the wavefront propagates.
This last angle is obtained by measuring three orthogonal displacements at the receiver. It can
be shown that both the ray and polarization angles, Θ and φ, respectively, are related to the
phase angle by the following expressions4,

tan(Θ) =
tan(θ) + 1

v
∂v
∂θ

1 − tan(θ)
v

∂v
∂θ

(4.5)

4Arnold, V.I., (1989) Mathematical Methods of Classical Mechanics (2nd ed.): Springer-Verlag, pp. 248 -
252.
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tan(φ) =
ρv2 − C44 sin2(θ) − C33 cos2(θ)

(C13 + C44) sin(θ) cos(θ)
(4.6)

Our goal is to formulate and solve an inverse problem, in which a, b, χ,X, Z, T ,and φ are the
inputs and the elasticity constants, C11, C13, C33, C44, of the layer of interest are the outputs.

4.3 Method of Solution

4.3.1 Solving the Forward Problem

Before we attempt to tackle the inverse problem, we consider the forward problem. By starting
with the forward problem we will be able to generate input values for the inverse problem while
at the same time knowing what outputs the inverse should give. We begin by fixing the values
of a, b, and χ for the upper medium. Also, we set the refraction point, x, the mass density of
the lower layer of interest, ρ, the elastic moduli, Cij, and the total traveltime, T,from source
to receiver. Using the equations above, we are then able find the refraction point, x, and the
polarization angle, φ.

First, we calculate the horizontal ray slowness, p, in the upper medium by substituting the
refraction point (x,H) into equation (4.3)

p(x) =
2x√

(x2 + (1 + 2χ)H2)(4a2(1 + 2χ) + 4ab(1 + 2χ)H + b2(x2 + 1 + (1 + 2χ)H2

and also the traveltime in the upper medium using equation (4.4)

t1(x, z; a, b, χ) =
1

b
ln

∣∣∣∣∣
1 +

√
1 − p(x)2a2(1 + 2χ)

1 +
√

1 − p(x)2(a + bz)(1 + 2χ)

∣∣∣∣∣ .

By Snell’s law, the tangential component of phase slowness, p, will be conserved across the
interface. If θ and v(θ) are the phase angle and phase velocity, respectfully, for the lower layer
we have

sin(θ)

v(θ)
= p.

The phase velocity5, v(θ), is given by

v2(θ) =
(C33 − C11) cos2(θ) + C11 + C44 +

√
∆

2ρ
(4.7)

with

∆ = [(C11 − C33) cos2(θ) − (C11 + C44)]
2

− 4[C33C44 cos4(θ) − (2C13C44 − C11C33 + C2
13) cos2(θ) sin2(θ) + C11C44 sin4(θ)].

5Daley, P.F. & Hron, F., 1977. Reflection and Transmission Coefficients for Transversely Isotropic Media,
Bull. Seism. Soc. Am., 67, 661-675.
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At this point we can solve for the phase angle and thereby the phase velocity in the lower
medium. Once we have the phase velocity, we can solve for the ray angle using equation (4.5),

tan(Θ) =
tan(θ) + 1

v
∂v
∂θ

1 − tan(θ)
v

∂v
∂θ

.

We then substitute the phase angle into the ray velocity expression, can find the ray velocity,
V , using

V 2(θ) = v2(θ) +

(
∂v

∂θ

)2

. (4.8)

Since the layer of interest is uniform, the ray path is a straight line and the ray velocity in
the direction of the ray angle will be constant. Thus the traveltime, t2, in the layer of interest is

t2 =

√
(X − x)2 + (Z −H)2

V (Θ)
(4.9)

and the total travel time, T , is
T = t1(x) + t2(x).

Substituting the phase angle into expression (4.6) we get the polarization angle, φ,

tan(φ) =
ρv2 − C44 sin2(θ) − C33 cos2(θ)

(C13 + C44) sin(θ) cos(θ)
.

4.3.2 Solving the Inverse Problem

Next we attempt to solve the inverse problem directly by combining the expressions described
above into a system of equations. Since the rays will be straight in the lower medium we can
reexpress the equations above to get the following system of nonlinear equations,

X − x

Z −H
− tan(θ) + 1

v
∂v
∂θ

1 − tan(θ)
v

∂v
∂θ

= 0 (4.10)

T −
√

(X − x)2 + (Z −H)2

V (θ)
− t1(x) = 0

p(x)v(θ;Cij) − sin(θ) = 0

tan(φ) − ρv2 − C44 sin2(θ) − C33 cos2(θ)

(C13 + C44) sin(θ) cos(θ)
= 0.

Unfortunately we have the problem of an underdetermined system with six unknowns
(x, θ, C11, C13, C33, C44) but only four equations. However, the industrial contacts on the team
tell us that reasonable estimates of C33 and C44 are not completely out of reach. Therefore we
proceed with the added the restriction that C33 and C44 are both known.
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This system can now be solved using either Jacobi Iteration or the Conjugate-gradient
Method. Results

As a starting point for the forward problem, we used the following the parameter values
which are typical in actual settings,

a = 2000 C11 = 3.13e10 Z = 1154.46
b = 0.3 C13 = 0.34e10 X = 1057.03
χ = 0.2 C33 = 2.25e10 H = 700.
ρ = 2310 C44 = 0.65e10

Using the forward problem, we generated the corresponding values of T, φ. Then, we used our
inverse problem code to try to regenerate the values for x, C11, C13, C33, C44. For exact values of
the input values, T, φ, the system converged to the correct values of Cij. Unfortunately however,
for even small perturbations of the inputs (consistent with experimental error) a solution was
often not possible and when solutions were found, they tended to be widely different from the
true values. Due to the time constraints of the workshop we were not able proceed with an in-
depth error analysis. However, it was noted that provided the experimental errors were random
(as opposed to systematic) a collection of outputs obtained by considering numerous source-
receiver setups, could be used to estimate the true Cij’s. By taking the best fit for each set of
estimates of Cij, the results tended to be reasonably close to the true values.

4.4 Future Work

Through our work on this problem we feel that our progress was marked by “raising more
questions than answers”. As a starting point for future or continued work on this project we
would suggest that an in-depth error analysis be performed. By doing so, hidden redundancies
in the formulations and suitable initial/boundary conditions may be identified to combat the
sensitivity to errors and non uniqueness of solutions.

More importantly, however, we feel that the problem would be best approached by consid-
ering not one, but two sources on the surface (Figure 3). By doing so this would result in eight
equations in eight unknowns, negating the need for a priori knowledge of C33 and C44.
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Receiver

Upper Medium

− elliptically anisotropic
− inhomogeneous

− homogeneous
− weakly anisotropic

Lower Medium

Source 1
Source 2

Θ1 Θ2

Adding a second source to equations (4.10) would give,

0 =
X − x1

Z −H
−

tan(θ1) + 1
v1

∂v1

∂θ1

1 − tan(θ1)
v1

∂v1

∂θ1

(4.11)

0 =
X − x2

Z −H
−

tan(θ2) + 1
v2

∂v2

∂θ2

1 − tan(θ2)
v2

∂v2

∂θ2

0 = T1 −
√

(X − x1)2 + (Z −H)2

V1(θ1)
− t1(x1)

0 = T2 −
√

(X − x2)2 + (Z −H)2

V2(θ2)
− t2(x2)

0 = p1(x1)v1(θ1;Cij) − sin(θ1)

0 = p2(x2)v2(θ;Cij) − sin(θ2)

0 = tan(φ1) −
ρv2

1 − C44 sin2(θ1) − C33 cos2(θ1)

(C13 + C44) sin(θ1) cos(θ1)

0 = tan(φ2) −
ρv2

2 − C44 sin2(θ2) − C33 cos2(θ2)

(C13 + C44) sin(θ2) cos(θ2)
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4.5 Sample File Used to Run Simulations

Throughout the coding of the equations presented above, a combination of MatlabTM and
MapleTM code was used (depending on who owned the laptop we were using at the time).
Following is the coding done using Maple TM to manipulate the input values as stated above.
The first code was used to input values to be solved for in the inverse model, and generate data
for the inverse model.

>restart:Digits:=40:
Forward Model where Cij’s Known and Refraction Point (xr,zr)

Known.
>
># In this program we leave the Z of the receiver position a free parameter and solve for it

in the process. We only set the horizontal offset of the receiver with respect to the refraction
point, which we fix. The origin is assumed to be at the source.

># Enter in the input values and solve for receiver location, total traveltime, and polarization
angle at receiver

>a:=2000: b:=0.8: chi:=0.3: zr:=800: roe:=2310: # zr=depth of interface/refraction point.
>C11:=3.13*10ˆ10: C13:=0.34*10ˆ10: C33:=2.25*10ˆ10: C44:=0.65*10ˆ10:
&&&&&&&&&&&&&&&&&&&&&&&&&&&
>X:=2600: xr:=1154.46: # X=receiver depth, xr= refraction point.
&&&&&&&&&&&&&&&&&&&&&&&&&&&
>
># Traveltime in the upper medium
>p:=2*xr/sqrt((xrˆ2+(1+2*chi)*zrˆ2)*(aˆ2*(4+8*chi)+4*a*b*(1+2*chi)*zr+bˆ2*(xrˆ2+(1+2*chi)*zrˆ2))):
>t1:=(1/b)*ln( (a+b*zr)/a * (1+sqrt(1-pˆ2*aˆ2*(1+2*chi)))/(1+sqrt(1-pˆ2*(a+b*zr)ˆ2*(1+2*chi)))):

>

># Calculate the phase velocity and its derivative with respect to phase angle, theta
>Delta:=((C11-C33)*cos(theta)ˆ2-(C11+C44))ˆ2-4*(C33*C44*cos(theta)ˆ4-(2*C13*C44-C11*C33+C13ˆ2)*

cos(theta)ˆ2*sin(theta)ˆ2+C11*C44*sin(theta)ˆ4):

>v:= sqrt((C11+C44+(C33-C11)*cos(theta)ˆ2+sqrt(Delta))/(2*roe)):

————————————————————————————————–
The Phase Angle for the ray traveling down from the refraction point (xr,zr):
will have problems if p*v >1. arcsin will then be complex (ie, Shadow Zone.) When you fix

the refraction point, snell’s law must have a solution for theta (a phase angle must exist). Since
you are using p, conserved from upper medium, combined with v(theta) for the lower medium,
if your refraction point is such that your angle of incidence is beyond the critical angle, snell’s
law will not have a solution in the lower medium because there will be NO TRANSMITION.

>eqn:=theta=arcsin(p*v):
>theta:=fsolve(eqn,theta,0..Pi/2);
————————————————————————————————–
>
># Solve for the Ray Angle from refraction point to receiver at (X,Z).
>rayang:=arctan((tan(theta)+1/v*dv)/(1-tan(theta)/v* dv)):
>rayangle:=evalf(%):
>
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># Calculate the polarization angle along the ray in the lower medium

>phi:=arctan( (roe*vˆ2-C44*sin(theta)ˆ2-C33*cos(theta)ˆ2)/((C13+C44)*sin(theta)*cos(theta))):

>

># Solve for the Ray velocity

>rayvelocity:=sqrt(vˆ2+dvˆ2):

Solve for the traveltime in the lower medium, t2.

——————————————————————————————–

Start by fixing the offset of x-coordinate of the receiver position from the refraction point,
xr, than calculate the traveltime and z-position of receiver.

>xo:=X-xr:

——————————————————————————

>w:=xo/sin(rayangle):

>t2:=w/rayvelocity:

>Z:=zr+xo*cot(rayangle):

>T:=t1+t2:

=====================================================

Data to be used for the inverse problem is as follows,

C33, C44 Values;

>C33:=C33; C44:=C44;

Receiver location,

>X,Z:=X,Z;

Total Traveltime...

>TravelTime:=T;

And Polarizaton at the receiver is....

>phi:=phi; evalf(phi*180/Pi);

=======================================================

Inverse Code Should Give,

>xr:=xr; C11:=C11; C13:=C13;

The second code that is presented is a formulation of the inverse problem which relies on
MapleTM ’s “fsolve” numerical solver to determine the values of the elastic moduli.
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Inverse Model for Traveltimes and Polarization Angles for 1 Source / 1
Receiver Setup.

>

># List the Input Data for the inverse problem.

>restart:

>Digits:=40:

>a:=2000: b:=0.8: chi:=0.3: zr:=700: roe:=2310:

>C33:=2.25*10ˆ10: C44:=0.65*10ˆ10:

>X := 1057.0356:

>Z := 729.57398:

>T1 := .48321603:

>phi1 := 1.24456:

>p1:=2*xr1/sqrt((xr1ˆ2+(1+2*chi)*zrˆ2)*(aˆ2*(4+8*chi)+4*a*b*(1+2*chi)*zr+bˆ2*(xr1ˆ2+(1+2*chi)*zrˆ2))):

>Delta1:=((C11-C33)*cos(theta1)ˆ2-(C11+C44))ˆ2-4*(C33*C44*cos(theta1)ˆ4-(2*C13*C44-C11*C33+C13ˆ2)*
cos(theta1)ˆ2*sin(theta1)ˆ2+C11*C44*sin(theta1)ˆ4):

>v1:=sqrt((C11+C44+(C33-C11)*cos(theta1)ˆ2+sqrt(Delta1))/(2*roe)):

>dv1:=diff(v1,theta1):

>t1a:=(1/b)*ln(abs((a+b*zr)/a*(1+sqrt(1-p1ˆ2*aˆ2*(1+2*chi)))/(1+sqrt(1-p1ˆ2*(a+b*zr)ˆ2*(1+2*chi))))):

># System of Equations to solve for C11,C13,C33,C44,xr1,theta1

>eqn1:=v1*p1-sin(theta1)=0:

>eqn2:=T1-sqrt(((X-xr1)ˆ2+(Z-zr)ˆ2)/(v1ˆ2+dv1ˆ2))-t1a=0:

>eqn3:= tan(phi1)=( (roe*v1ˆ2-C44*sin(theta1)ˆ2-C33*cos(theta1)ˆ2)/((C13+C44)*sin(theta1)*cos(theta1))):

>eqn4:= (X-xr1)/(Z-zr)=((tan(theta1)+1/v1*dv1)/(1-tan(theta1)/v1*dv1)):

>sys:=[eqn1,eqn2,eqn3,eqn4]:

>sols:=fsolve({eqn1,eqn2,eqn3,eqn4},{xr1,C11,C13,C33,C44,theta1});

>assign(sols);

>xr1:=xr1; C11:=C11; C13:=C13; C33:=C33; C44:=C44;
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Chapter 5

Mathematical Surface Matching of

Maps of the Human Torso
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5.1 Introduction

Scoliosis is a fairly common condition that usually appears during adolescence. It involves
mild to severe deformations of the spine. Doctors and patients are interested in measuring the
progression of the disease. Internal changes in spine angles and twists can be seen from X-rays,
but surface (appearance) changes are often of primary concern to adolescent patients. Measuring
the amount of surface change can be a difficult problem. Natural growth, changing body shape,
and progression of the disease all factor into forming the shape of the patient’s torso. Separating
these effects, and extracting the change due to scoliosis alone, is challenging. In an effort to
quantify the changes due to scoliosis, Capital Health acquires three-dimensional (3D) surface
scans of a subject’s back every 3 to 6 months using a laser scanner [1]. The problem addressed
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in this paper is how best to use this data to obtain useful measures for both the doctor and
patient.

There are two separate approaches to extract useful information from the data. The first
involves making direct measurements on each individual scan and comparing these measure-
ments over time. The second approach is to compare successive images of the back, noting the
differences between them. The first approach is simpler, and some measurements of this type
have already been implemented by Capital Health. However, these measures are extracted from
a 2-dimensional (2D) representation of the data. It is hoped that measures that make use of the
3D data may be more informative. The second approach involves aligning two successive 3D
back surfaces to each other. Capital Health currently implements this alignment operation man-
ually [1], and thus measurements taken from these alignments are not completely reproducible
due to human error.

Two main issues were taken into account in this project: the reproducibility of the results,
and stringent time constraints. In particular, user influence should be removed from each step
of the data processing, and results should be obtained within three minutes of acquiring the
scan.

The report begins with a description of the data collection, followed by a description of the
data processing required to align two back surfaces. A section is devoted to calculating the
cosmetic score, a measure of deformity of the back. The paper concludes with a few suggestions
for improvements on data collection and use.

5.2 Experimental design and data collection

Patients with scoliosis are examined every 3 to 6 months. Laser surface scanning is a part of
this examination, and the entire procedure takes only a few minutes.

Before the scan takes place, several steps are followed. Patients are dressed in a gown
and their shoes are removed. The patient is asked to stand normally within a standard frame
apparatus, their arms extended to 90◦ holding onto two poles. The frame has four adjustable
guides: one on each hip, and one aligned with the front of each shoulder. The function of the
guides is simply to assist the patient in holding the same position during the scan. Although
the guides are not used as a measuring device, the nurse records the guide settings.

The laser scanner is approximately 2 metres away from the patient. Once the patient is
positioned in the frame, the nurse adjusts the field of view of the camera by selecting one of
three zoom settings. The normal setting is 0.72, with 0.6 and 0.8 being used occasionally. To
minimize patient motion due to breathing, the patient is asked to take a deep breath and hold
it during the scan. The scan takes 0.6 seconds, so patient movement within a single scan is
minimal.

For some scans, the nurse places 5 fiducial markers on the patient’s back before the patient
is placed in the frame: one on the middle of the back of the neck, one on each scapula (at the
inferior tip of the shoulder blade), and one on each lower back dimple (the slight indentations on
either side of the lumbar spine). Since the markers are placed on easily-identifiable physiological
landmarks, we expect their placement to be consistent.

Each scan results in the collection of two different sets of data. The first is a TIFF image,
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a digitized photograph of the patient’s back. This image contains colour information as well
as position information. The second set of data is a cloud of 3D data points (approximately
200 × 200) that corresponds directly to the TIFF image. Although the scanner is designed to
detect the exposed back and arms of the patient, it also tends to detect several other objects
within the scanner’s range. Automatically stripping the raw data of these extraneous structures
was one of the main challenges faced by our group.

5.3 Cropping

The first processing step on the data is to select the portion of data that is relevant for analysis.
Each back image (here “image” refers to a set of 3D coordinates) not only includes points
describing the surface of the patient’s back, but also some points corresponding to the frame,
the patient’s head, clothing, etc. These points are to be removed by a cropping procedure
described below.

Our cropping procedure involves only the first two coordinates of each point. As such, it
is a 2D cropping procedure. We will denote the first two coordinates by x and y, respectively.
Figure 5.1 illustrates an example of an initial (uncropped) image viewed in the xy-plane.
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Figure 5.1: Surface data before cropping. This broken 3D surface is projected onto the xy-plane.

The first step of the cropping algorithm is to eliminate the clouds of points which are not
connected to the body of the patient. Two points are not connected if there is a large enough
space between them where there is no data point. Hence, we need to define what large enough
means. Let Ymax be the largest Y -coordinate among the points in the data set. Similarly, define
Ymin, Xmax and Xmin. Now define

εx :=
Xmax −Xmin

130
and εy :=

Ymax − Ymin

130
.
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We will say that two sets of points are disconnected from each other if there is an empty rectangle
of size εx × εy between them.

Although the image may not always be centered, the axis x = 0 always runs through the
back. We search for a point (x, y) which satisfies

0 ≤ x ≤ εx , Ymin ≤ y ≤ Ymin + εy .

Once we find one, we look to the right of this rectangle to see if we can find a point (x, y) which
satisfies

εx ≤ x ≤ 2εx , Ymin ≤ y ≤ Ymin + εy .

We continue moving to the right by steps of size εx until we find a rectangle containing no data
points. When this occurs, we eliminate all the points which are further to the right of this empty
rectangle. The y-value is incremented by εy, and the procedure is repeated on the next line (i.e.
Ymin + εy ≤ y ≤ Ymin + 2εy). Lines are processed one at a time until Ymax is reached. Then, we
repeat all the previous steps, this time moving to the left of x = 0, i.e for the points satisfying
x ≤ 0. Figure 5.2 shows the dataset from figure 5.1 after cropping.
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Figure 5.2: Surface data after the first cropping stage. The remaining piece is a single connected
component.

At this point, we consider the dataset to be a connected cloud of points. However, it still
contains points corresponding to the neck of the patient. To eliminate these points, we simply
clear all rows that are shorter than 1/3 of the width at the shoulders. This finalizes our cropping
procedure. Figure 5.3 illustrates the final result for our example.
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Figure 5.3: Surface data after the final cropping stage. The protruding neck is no longer present.

5.4 Initial Surface Alignment

Recall that our analysis of the progression of scoliosis involves the comparison between two scans
acquired at different times, typically 3 to 6 months apart. Once the two images are cropped,
we need to align them to allow direct comparison. A good initial guess is essential to get
convergence of the alignment fine-tuning phase (see section 5.5). In each alignment phase, we
seek an R

3 → R
3 coordinate transformation that best aligns one image to the other. To simplify

the problem, we consider only a subset of all possible affine maps, along with translations. This
simplification is valid because the degrees of freedom for patient motion are limited by the effects
of normal growth, the positional frame, and the nature of scoliosis. The set of affine maps that
we will consider for the initial alignment are those that are a composition of rotations in the xy-
plane (about the z-axis), dilatations for changes in growth and width (scaling along the y-axis
and x-axis respectively), and translations in directions x, y and z.

Keeping one of the images fixed, the second is transformed via this affine map to best fit
the first image. To establish an initial estimate of the appropriate affine map, we can use the
coordinates of corresponding points from each of the two images. That is, each location on the
patient’s back is sampled in both scans. However, the coordinates of this point may be different
in each scan. The affine map is chosen to best match these coordinates.

Since the patient is standing upright and positioned in a fixed frame, it can be assumed that
the rotation in the xy-plane is very small, and therefore can be approximated by a y-axis shear
in the direction of the x-axis. This simplification enables one to represent the affine map (using
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homogeneous coordinates) with the matrix,

M =




ν1 ã 0 t1
0 ν2 0 t2
0 0 1 t3
0 0 0 1




where ν1 and ν2 are the x and y scaling parameters, t1, t2 and t3 are translation parameters,
and ã = aν1, where a is the shear coefficient.

The system of linear equations given by the matrix M can be rewritten as




ν1 ã 0
0 ν2 0
0 0 1








x
y
z



 +




t1
t2
t3



 =




x′

y′

z′



 .

Since the unknown parameters are ν1, ν2, ã, t1, t2 and t3, we transform this system into



x 0 y 1 0 0
0 y 0 0 1 0
0 0 0 0 0 1







ν1

ν2

ã
t1
t2
t3




=




x′

y′

z′ − z


 .

We have six unknowns, so we need at least six equations. Since the third row of the matrix
does not depend on (x, y, z), it can appear only once (otherwise, a singular system will result).
Hence, three reference points are needed to estimate all the motion parameters. If we denote
by (x1, y1, z1), (x2, y2, z2) and (x3, y3, z3) the coordinates of these three points in the first scan,
and (x′1, y

′
1, z

′
1), (x′2, y

′
2, z

′
2) and (x′3, y

′
3, z

′
3) the coordinates of the three corresponding points in

the second scan, we obtain the following system:




x1 0 y1 1 0 0
x2 0 y2 1 0 0
x3 0 y3 1 0 0
0 y1 0 0 1 0
0 y2 0 0 1 0
0 y3 0 0 1 0
0 0 0 0 0 1







ν1

ν2

ã
t1
t2
t3




=




x′1
x′2
x′3
y′1
y′2
y′3

z′1 − z1




.

This system is over-determined with seven equations for six unknowns. However, Matlab auto-
matically returns the linear least squares solution. Thus we obtain directly the six parameters
that give the best initial fit.

To get a good initial guess, it is very important that the three points be located far apart.
One option for locating corresponding points in a pair of scans is to locate the fiducial markers.
A Matlab program was developed to automatically detect the position of the markers located on
the dimples. The markers used for the scans available to us were (bolt) washers, taped onto the
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Figure 5.4: Automatic marker detection on the lower back. The spikes in the nearly-flat surface
indicate the location of the markers on the back surface (also shown).

patient’s skin. These markers are difficult to detect in the 3D surface by visual inspection since
they appear as minuscule Heaviside steps in the z direction. However, since they are attached
in regions where the torso surface is relatively smooth, they can be detected easily by applying
a two-dimensional second-order finite difference stencil,

∆z(x, y) = z(x− h, y) + z(x + h, y) + z(x, y − h) + z(x, y + h) − 4z(x, y) ,

to the regions on the torso where the markers are likely to be found. The first difference
eliminates a linear trend, while the second difference eliminates a quadratic trend in the data.
Since the washers manifest themselves in the 3D cloud of data as annular Heaviside functions,

f(x, y) = H
(
r2 − (x− x0)

2 − (y − y0)
2
)
−H

(
r1 − (x− x0)

2 − (y − y0)
2
)
,

the second-order differencing eliminates the local quadratic curvature of the torso but does not
eliminate the washer-induced Heaviside roughness. Hence, by plotting |∆z(x, y)| across the
relevant regions, the presence of the markers is indicated by large spikes in curvature amplitude.
Figure 5.4 shows a portion of the lower back surface, along with |∆z(x, y)|.

Although the above method for finding corresponding points appears to be effective, points
were selected manually for this preliminary study. Two points were selected in the outer part
of the shoulders, and one point was selected in the middle of the lower back (between the two
dimples).

To illustrate the initial fitting, figure 5.5 shows the initial alignment of two surfaces for the
same patient, acquired a few months apart.
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Figure 5.5: Initial alignment of two scans acquired a few months apart. The red surface was
aligned to the green surface using the 3-point method outlined in section 5.4.

5.5 Final Surface Alignment

Fine-tuning of the alignment between the two back surfaces is done by adjusting the align-
ment parameters to minimize a given cost function. Such automatic surface matching has been
demonstrated on teeth [2]. Some implementation decisions were made based on the feasibility
of performing the optimization on the computers available to us during the workshop.

The automatic re-alignment (registration) method consists of 3 main parts: transformation,
cost function, and optimization scheme.

5.5.1 Transformation

The human body is capable of moving into many different positions. The progression of scoliosis
accounts for some particular kinds of motion. However, the objective of registration is to remove
the effects of body position that are not due to scoliosis. The manual re-alignment process was
used to correct a certain subset of typical mis-alignments [1]. In particular, manual alignment
allowed the operator to scale, rotate and translate the surfaces. Once the scale factors, rotations
and translations are chosen, applying the transformation to a cloud of 3D data points is trivial.
However, comparing two clouds of data points that are not sampled at the same locations is
quite difficult. Initially, we compared the surfaces by resampling one surface onto the same
grid as the other using Matlab’s griddata function. The griddata function performs linear
interpolation using a Delaunay triangulation. This method proved to be too slow, since the
automatic optimization method required many such comparisons.

Instead of treating the mesh as a general 3D cloud of data points, we converted it to a
gray-level image. Such an image uses gray-level to indicate the height of the surface over
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the corresponding (x, y) point. Since the surface has a bounded xy domain, a value of zero
is assumed anywhere that the surface was not defined. One of the main differences between
representing the data as an image instead of a point cloud is that the point cloud data need
not be a function, since it can have two points with the same (x, y) coordinates, but different z
values. An image can only represent a function. This does not appear to be a major restriction
since the original data is range data (which has to be a function), and the alignment rotations
tend to be rather small. The advantage to using the image representation is that there are very
efficient resampling techniques for regularly gridded image data.

Similar to the subset of affine maps used in section 5.4, the set of transformations used in the
final alignment algorithm has 6 parameters (although they are not the same 6 parameters as in
section 5.4): translation along the x- and y-axes, scaling along the x- and y-axes, rotation about
the z-axis, and rotation about the x-axis. The rotation about the z-axis, the translations and
the stretches are all simple 2D image manipulations. However, the rotation about the x-axis is
not. Since we expect the x-axis rotation to be quite small, we can approximate it with a shear
in the z-direction along the y-axis. This operation is equivalent to adding a y-gradient to the
image. All of these operations are essentially 2D, and can be done quickly using built-in Matlab
routines.

In this 2D image-based transformation framework, we still use griddata to obtain the initial
image representation from the cloud of points. All subsequent manipulations are done on the 2D
image. One issue, however, is that griddata assumes the xy-domain of the surface of interest
is the convex hull of all the points. This is a natural assumption to make in general, but does
not apply in this context. Figure 5.6 shows the image representation of a torso surface. Notice
that the region inside the line joining the waist and the outer edge of the arms is not treated
as background, even though it is clearly not part of the back (see figure 5.3 for comparison).
This is a property of the interpolation method used in griddata. Further pre-processing to
insert background points in that region may solve the problem. However, for this study, the full
convex hull was used.

5.5.2 Cost Function

A measure of goodness-of-fit must be established in order to perform automatic alignment. For
this study, we chose to use the sum of squared residuals between the image representations of
the two back surfaces. There are many other cost functions that can be utilized, but none others
were implemented for this report.

It should be noted that the sum of squares cost function is sensitive to outliers. The original
range data was a cloud of points with z-values between 1400 and 1700. Using these values
directly in the gray-level images caused the background to have a very different value from the
foreground. As a result, non-overlapping regions between the convex hulls of the two images
resulted in extreme outliers, causing very large errors. Thus, the fit was dominated by the
amount of overlap. Since the background value of zero was chosen arbitrarily, choosing a different
background value could reduce this effect. Equivalently, translating both surfaces so that their
minimum z-value is mapped to zero vastly reduces the drastic impact of the distant background.
This practice was adopted for our study.
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Figure 5.6: Image representation of back surface data. The image has been slightly enhanced
to show the nonzero regions between the arms and the waist.

5.5.3 Optimization

The procedure for finding the optimal set of 6 motion parameters was off-loaded to Matlab’s
optimization toolbox. In a first attempt, we fed the cost function to the unconstrained minimiza-
tion procedure, fminsearch. However, because of the number of parameters, the optimization
was very slow and did not always converge to the expected minimum.

To restrict the search, it is easy to find bounds for the motion parameters, and so we used
the routine fmincon instead. Since we have already performed an initial alignment, the optimal
value for each parameter in the final adjustment should be very small. For example, we required
that the translations be less than half the range of the data in each direction. The rotations
should be limited by 45 degrees. As for the shear corresponding to the forward bending of the
patient, we have derived bounds by assuming that the depth of each point should not change
by more than the z-range of the data. These bounds are quite loose and could be made tighter.

Figure 5.7 shows the difference between the two back images before and after final alignment.
The degree of misalignment is noticeably reduced after the final alignment phase.

5.6 Cosmetic Score

Although the severity of cosmetic deformation may not always be highly correlated with the
severity of spinal deformation, quantization of the cosmetic severity is sought by patients making
adjustments to living in their society. Investigation into the relationship between the cosmetic
deformation and the spinal deformation is not a focus of the present study, though it may prove
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Figure 5.7: Difference images before (left) and after (right) final alignment. The lighter regions
show areas of misalignment.

to be useful in future work.
A single, dimensionless number known as the 2-dimensional cosmetic score is currently cal-

culated as a weighted average of:

• the (scaled) angle between a line joining the two scapula bones (where markers are placed)
and a line parallel to the ground

• the (scaled) difference between the angles that the right and left shoulder silhouettes make
with a line parallel to the ground

• the waist asymmetry index calculated as a function of several different distances measured
from markers to a vertical center line (also determined from markers).

A high cosmetic score is associated with more severe cosmetic deformation.
The dimensionless property of the cosmetic score is appealing, as it is thought to be invariant

to an individual’s growth over time and positioning in the frame apparatus, and thus the surface
alignment issues discussed in previous sections are not of concern here. The simple score is
based on the measurement of seven locators on the back, and can be automated easily using,
for example, reflective markers that can be detected once cropping has been completed.

The current 2D cosmetic score does not take into account twisting or related depth informa-
tion available through the 3D laser scan. Generalizing the 2D cosmetic score to three dimensions,
while preserving the invariance property of the score, is simple. Possible measurements that may
be included in the calculation of a 3D cosmetic score are:

• the twist angle between the line connecting the scapula markers and the line connecting
shoulders

• the twist angle between the line connecting the scapula markers and the line connecting
dimples in the lower back
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• the twist angle between the line connecting shoulders and the line connecting dimples in
the lower back.

Since marker position can be obtained in three dimensional Euclidean space, these angles
can be measured easily and incorporated into a generalized 3D cosmetic score. Furthermore,
automated marker localization will make the calculation of this score fast and reproducible.
Additional measures of importance may be considered with clinical input from medical experts
familiar with the disease.

Perhaps a more interesting and revealing exploration is a comparison between the current
2D score and a generalized 3D score. A “perfect” 2D score can obviously be associated with
an imperfect 3D score. Also of interest is be the predictive ability of the final cosmetic score.
Determining the formula for the score requires not only determining which measurements are
most important in describing the severity of cosmetic deformation, but also verification by an
experiment that can incorporate errors associated with operator variation, repeated measure-
ments over time, and so on. Finally, an investigation comparing the cosmetic scores for scoliosis
patients with normal (scoliosis-free) and post-operative individuals will be informative and im-
portant in determining the utility of the ideas currently in use as well as those being presented
here.

5.7 Conclusions

We have shown that, in principle, the data processing required to crop and align the surfaces
can be done automatically, and within the 3-minute time window, as required. However, there
are simple procedural modifications that can make this processing more robust and practical.

The scanner zoom settings are not standardized between visits. In the future, the scanner
settings should be recorded and then reused in successive visits, minimizing the need for the
alignment algorithm to accommodate for large scale changes.

The markers should be designed so that they are more easily detected in the surface data.
Markers with a deeper cross-section, or with reflective properties could be used to create a very
distinct and noticeable bump on the 3D surface. Once these markers can be found automatically,
efficiently, and robustly, they should be used to automate the initial alignment procedure.

In addition to what was demonstrated in this study, further study using more degrees of free-
dom in the motion model may yield important results. A particular subset of motion parameters
(eg. a twisting along the spine, or y-axis) could be used to model the deformation caused by
scoliosis, thereby enabling the alignment algorithm to quantify the progression of scoliosis with
motion parameters. It should be noted, however, that the particular types of motion used in this
study could be implemented on the 2D image representation of the back data. A deformation
such as twisting could be more difficult to implement on the 2D images.

Data from various physiological features and the location of markers might be useful for cal-
culating a 3D cosmetic score that represents the severity of observable deformity. This 3D score
will likely contain more specific information than the currently used 2D score. A study should be
conducted to evaluate various forms of the 3D score and determine what particular mixture of
measurements best encapsulates the deformity, and is least susceptible to measurement/operator
error.
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Chapter 6

Resistance Monitoring

Lyudmyla Barannyk1, Matthew Bolton3, Roger Donaldson3, Ian Frigaard3, Jeff Gilmore4, Ying
Han5, Huaxiong Huang6, Heather Lehr7, Bruce McGee13, Anuj Mubayi8, Tim Myers9,

Anthony Pierce3, Bidhan Roy10, Tetyana Segin1, Quinze Zou11

Report prepared by Rex Westbrook12 & C. Sean Bohun2.

6.1 Introduction

MacMillan McGee Corp. is involved in the removal of soil contaminants using a process in which
a set of electrodes is placed in the soil and the soil is heated by passing a current through it.
The electrical conductivity of the soil, and hence the heat generated, is enhanced by pumping
heated water in at some of the electrodes and removing it at a well (or set of wells). The heated
water also provides some convected heating, which in the case of soil, far exceeds the conductive
heating.

The problem considered was that of estimating the temperature field in the region of interest,
the contaminated region, using measurements of electrical potential and current and also of
temperature, at accessible points such as the wells and electrodes and the soil surface. These
measurements in conjunction with the field equations for the electrical potential and temperature
provide a mathematical “Inverse Problem”. There is a known empirical relationship between
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2The Pennsylvania State University
3University of British Columbia
4Simon Fraser University
5McGill University
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7University of Texas at Austin
8University of Texas at Arlington
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86 CHAPTER 6. RESISTANCE MONITORING

temperature and electrical conductivity so that knowledge of one at any given place and time
also determines the other.

On the timescale considered, essentially days, the equation for the electrical potential is
static. At any given time the potential V satisfies the equation ∇ · (σ ∇V ) = 0. Time enters
the equation only as a parameter since σ is temperature and hence time dependent.

The problem of finding σ when both the potential V and the current density σ∂V/∂n are
known on the boundary of the domain is a standard inverse problem of long standing. See for
example Kohn and Vogelius [4]. It is known, with some restrictions on smoothness, that a unique
solution σ exists in spaces of dimension n ≥ 2. (In one dimension only the harmonic mean of σ
can be determined). It is also known that the problem is ill posed and hence that an accurate
numerical solution will be difficult especially when the input data is subject to measurement
errors. There is much literature on both theoretical and numerical aspects of the problem but
we were not able to find a recent comprehensive survey.

In Section 6.5 we examine a possible method for solving the electrical inverse problem which
could possibly be used in a time stepping algorithm when the conductivity changes little in each
step.

Since we are also able to make temperature measurements there is also the possibility of
examining an inverse problem for the temperature equation. There seems to be much less liter-
ature on this problem, which in our case is essentially, a first order equation with a heat source.
(We neglect thermal conductivity, which is small compared with the convection). Combining the
results of both inverse problems might give a more robust method of estimating the temperature
in the soil.

Removing soil contaminants using the combined techniques of electrical heating and fluid
injection changes the medium in a predictable fashion. On occasion, this method of contaminant
removal breaks down and the properties of the medium itself can suffer a sudden change. It is
important to be able to detect not only if this situation arises, but also where in the medium
the method breaks down.

The equations for the problem are given in the following section.

6.2 Equations

The basic equations of our problem are an energy equation, a quasi-static electrical equation
and a porous medium equation. The electrical equation for the potential V is:

∇ · (σ∇V ) = 0 (6.1)

where σ is the electrical conductivity. The equations for the fluid flow, D’Arcy’s law and
incompressibility, are:

~u = −k
µ
∇ p, ∇ · ~u = 0 (6.2)

where ~u is the fluid velocity, p is the pressure, µ is the kinematic viscosity and k is the perme-
abilty. For the energy balance with Joule heating as a source term we have [2]:

∂

∂t
(ρacaT ) + ~u · ∇(ρwcwT ) = ∇ · (κa ∇T ) + σ |∇V |2 (6.3)
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ρaca 2.5 × 106 J/m3/◦C
ρwcw 4.2 × 106 J/m3/◦C
κa 1 J/s/m/C
T0 100◦C
T 10 − 100◦C
V 100 − 200 volts
σ 0.1 − 0.01 /Ω/m
|~u| 0.3 m/day
φ 0.3
Sw 0.5 − 1
a 3 /◦C

Table 6.1: Some typical numerical values for this problem. Note that 1 watt sec = 1 Joule and
that for this problem, a typical length is 10 m. A typical time for the process is 60 days.

where T is the temperature, ρ is the density, c is the specific heat, κ is the thermal conductivity,
with the subscripts a and w denoting average and water respectively. The average values are
computed as ρaca = φρwcw + (1− φ)ρscs, κa = φκw + (1− φ)κs where the subscript s is for soil
and φ is the volume fraction of water.

In addition to these equations we have an empirical relation between the conductivity σ and
the temperature T

σ = σw
φαn

Pα
S2

w f(T ) + (1 − φ)σs (6.4)

where Sw is the water saturation, σs is a constant depending on the soil type, and αn and Pα

are empirically obtained constants. The function f(T ) is found to be linearly dominated and
is taken to be f(T ) = 1 + a(T − T0). Typically f increases by a factor of three for a 100◦C
increase in temperature from T0. Some typical numerical values, supplied by Bruce McGee, are
indicated in Table 6.1.

We now scale the energy equation (6.3) by writing

~x′ = ~x/L, t′ = t/τ, ~u′ = ~u/U, σ′ = σ/σ0, V ′ = V/V0, T ′ = (T − T0)/4T

to obtain the scaled equation (dropping primes):

λ
∂

∂t
T + ~u · ∇(T ) = ε∇ · (∇T ) + γσ |∇V |2 (6.5)

where λ, ε, γ are constants given by

λ =
ρacaL

Uτρwcw
, ε =

κa

ULρwcw
, γ =

σ0V
2
0

ULρwcw4T
.

If we take L = 10 m, τ = 20 days, U = 0.3 m/day, V0 = 100 volts, σ0 = 0.1 /Ω/m and
4T = 20◦C we find,

λ ' 1, ε ' 0.7 × 10−2, γ ' 1/3.
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Also with these scalings f(T ) = 1 + αT with α = a4T and we write σ = σ̃f(T ) with σ̃ and α
being O(1).

Boundary conditions for the problem are that the potential or current flow is given at all
electrodes and at the soil surface. Both being zero at infinity. For the fluid, pressure or velocity
is given at input and output wells. For the temperature we assume a known temperature at
input wells.

The small value of ε indicates the dominance of convection over conduction in the equations
and neglecting conduction gives a first order equation for T . This means that the temperature
along the characteristics is governed by either an initial temperature or a fluid temperature at a
fluid input. If these temperatures are not compatible, thermal shocks could appear. The small
conduction would smooth these shocks in an internal boundary layer of thickness ε1/2. Boundary
layers might also occur at output wells but we avoid these by assuming that the temperature at
output wells is that of the emerging fluid. In other words we do not apply temperature boundary
conditions at output wells.

6.3 A one dimensional example

We consider a one-dimensional problem with two electrodes that coincide with the input and
output wells. As boundary conditions we take constant current at the electrodes and a given
temperature at the input well. We will assume constant scaled ambient temperature zero as the
initial condition. In the one-dimensional case the velocity vector ~u becomes a constant which
we take to be 1. We also assume that σ̃ and α are constant.

The potential equation:
∂

∂x

(
σ
∂V

∂x

)
= 0 (6.6)

may be integrated to give I = σ∂V/∂x = I(t) a function of time only. With the given boundary
condition I is constant in both space and time. To find V we must first solve for T to obtain σ.
V may then be found by another integration.

With I constant, the scaled energy equation (6.5) becomes:

∂T

∂t
+
∂T

∂x
=

I2

3σ̃(1 + αT )
. (6.7)

This equation may be solved by the method of characteristics. We solve the equation on the
domain t > 0, 0 < x < L. The boundary conditions are T = 0 on t = 0, (ambient physical
temperature T0) T = g(t), t > 0 on x = 0. The characteristic equations are:

dt

ds
= 1,

dx

ds
= 1,

dT

ds
=

K

1 + αT
where K =

1

3

I2

σ̃
. (6.8)

These equations must be solved in two distinct regimes. Fluid already in the soil will be
initially at temperature T = 0. This fluid moves with unit speed and at any particular time,
since all the fluid will have been subjected to the same amount of heating, the temperature will
be the same. The appropriate initial conditions for a particle initially at x0 are, t = 0, T = 0,
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x = x0. Since the input well is at x = 0 there will be a front at x = t, and this solution will
apply for x > t. Fluid that has been injected at the input well at time ti will enter the system
with a temperature T = g(ti), and its temperature will increase as it moves away from the well.
This fluid will remain behind the front and boundary conditions are t = ti, T = g(ti), x = 0.
The solution is:

T (x, t) =





1

α
(
√

1 + 2αKt− 1), x > t

1

α

[√
(1 + αg(t− x))2 + 2αKx− 1

]
, x < t.

(6.9)

If g(0) 6= 0, T will be discontinuous on x = t. A smooth solution may be obtained by in-
cluding the small conductivity term and introducing an interior layer by means of a substitution
ξ = (t − x)/ε1/2. Even when g(0) = 0 the derivatives of T will be discontinuous so that a
boundary layer will again be required in order to obtain a smooth function T . The change in
T , however, will only be of order ε1/2 in this case.

For a specific example we assume fluid is injected at a constant temperature T1 > 0 so
that g(t) = T1 for t > 0. The potential difference V between the electrodes is given by V =

I
∫ L

0
1/σ dx. This and the temperature at x = L can be measured. The potential difference is

given by:

V (L, t) =





L− t√
1 + 2αKt

+
1

αK

[√
(1 + αT1)2 + 2αKt− (1 + αT1)

]
, 0 < t < L

1

αK

[√
(1 + αT1)2 + 2αKL− (1 + αT1)

]
, t > L.

(6.10)

The temperature at x = L is given by:

T (L, t) =






1

α
(
√

1 + 2αKt− 1), 0 < t < L

1

α

[√
(1 + αT1)2 + 2αKL− 1

]
, t > L.

(6.11)

Measurement of these quantities would allow the calculation of the only unknown quantities
α and σ̃. It would also give some indication of whether the assumption that α and σ̃ are constant
is a reasonable one.

The quantities above are calculated using α = 0.4, K = 1.25, L = 1 and T1 = 0.5. Since
T1 6= 0 there is a temperature front along the characteristic x = t. In Figure 6.1 we show the
overall resistance which with constant current is just V . We see that V becomes constant after
the front reaches x = L. In Figure 6.2 we show the temperature as a function of both time and
position. The movement of the front is clear.
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Figure 6.1: Overall resistance.

Figure 6.2: Temperature as a function of space and time.
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If we prescribe the potenal V at the electrodes the current I becomes a function of time
which is determined by integrating the potential equation (6.6) with respect to x from x = 0 to
x = L. If we take the potential difference between the electrodes to be 1, we find

I(t) = 1/

∫ L

0

1

1 + αT (x, t)
dx. (6.12)

The equation (6.7) then becomes non-local and an analytic solution is no longer possible. The
equation can however still be solved numerically. With constant σ̃ the results are similar to
those for the case of constant current.

In some numerical examples we look at the effects which occur in the current flow and
temperature at the well (both measurable quantities) due to an anomaly in the conductivity
where we assume that σ̃ has a piecewise change over a region beginning at a specified time. We
find that in this simple case of a single anomaly measurements at the boundary are enough to
show the time at which the anomaly occurs, its location and its magnitude. With more than
one anomaly information may be obtained but there is a loss of uniqueness.

Numerical solutions have been found for an anomaly occurring at time 30 days over the
region between 4 and 5 metres. In Figure 6.3 we show graphs of the overall resistance and
in Figure 6.4 the output temperature for the case with and without an anomaly which is an
increase in scaled conductivity σ̃ from 1.0 to 1.5. Notice that the overall resistance drops at the
time the anomaly occurs. The temperatures in the cases with and without anomaly also start
to separate at this time. There are also noticeable changes in the temperature at the times that
the characteristics through the ends of the anomalous region reach the output well. Since the
speed of propagation along the characteristics is known this enables us to locate the anomaly.
The percentage change in the resistance at the jump allows us to estimate the percentage change
in σ̃.

In Figures 6.5, 6.6 we show similar graphs with an anomaly which is a decrease in scaled
conductivity σ̃ from 1.0 to 0.7.
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Figure 6.3: Overall resistance anomalous increase in conductivity.

Figure 6.4: Temperature (Zoomed). Anomalous increase in conductivity.
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Figure 6.5: Resistance. Anomalous decrease in conductivity.

Figure 6.6: Temperature (Zoomed). Anomalous decrease in conductivity.
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6.4 The three dimensional case

We make here a few remarks extending the one-dimensional case. These have not been developed
but could be the basis for further analysis. The equations for the fluid flow are not coupled to
the other equations and the fluid flow is essentially determined by the boundary conditions at
the wells. These are Dirichlet, if the pressure head is given, or Neumann, if the velocity is given.

In the case where the permeability, viscosity and electrical conductivity are constant, the
pressure head and the electrical potential both satisfy the Laplace equation, if the boundaries
and boundary conditions match (i.e. both Dirichlet or both Neumann) the fluid streamlines and
the current streamlines will coincide. These streamlines are also characteristic curves for the
energy equation and since they will begin and end at a well the energy equation (6.3) may be
integrated along a streamline to give:

T2 − T1 =

∫ r2

r1

I2(r)

σ

1

ρwcwu(r)
dr (6.13)

where r is the distance along a streamline and u(r) is the fluid speed along the streamline.
Subscripts 1 and 2 refer to the wells at the beginning and end of the streamline. The temperature
T1 can be controlled, sudden changes in T2, which should be local due to the small thermal
conductivity, would indicate an anomaly along the corresponding streamline (characteristic).

Both the compressibility and potential equation can be integrated along a stream tube to give
constant volumetric flow Q =

∫
∂A
~u · ~n dA and constant total current flow I =

∫
∂A
σ∇V · ~n dA

along a stream tube (here ∂A is a surface perpendicular to the stream tube). These also can be
monitored at the wells.

In conditions of steady state temperature one can use the incompressibility equation (6.2)
and the potential equation (6.1) to reduce the energy equation (6.3) to:

∇ ·
(
~uT − 1

ρwcw
σV∇V

)
= 0. (6.14)

Integrating this along a stream tube we see that
∫

∂A

(
~uT − 1

ρwcw
σV∇V

)
· ~n dA = C (6.15)

is also constant along a thin stream tube. At a well this is essentially

QT − 1

ρwcw
V I.

By monitoring these quantities at the two wells we should be able to detect the occurrence of
anomalies in the conductivity. Collating this with the temperature measurements might allow
us to pinpoint any anomalies in both time and space.

6.5 The inverse potential problem.

As stated in the introduction, by making a series of impedance measurements about the bound-
ary of the well site an image of the conductivity distribution can be determined. This is com-
plicated by the fact that not all of the boundary is available for measurement. If however we
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concentrate on sudden changes in conductivity, a detailed image is not required and what follows
may be considered rather as a first step in their detection.

6.5.1 Solution of the forward problem and a discussion of the resolv-

ing power

To simplify the inverse problem we consider a vertical section of soil of thickness w and cylindrical
cross section of radius r0. The domain is surrounded with N equally spaced electrodes and we
assume that a given electrode can either supply current or monitor voltage. Electrodes extend
the width of the section and do not overlap ensuring that the width of an electrode, 2a, satisfies
the bound 2aN < 2πr0. For a given set of electrodes there are many possible applied current
patterns. Our assumption will be that a current of I is applied between two of the electrodes and
the remainder of the electrodes monitor the resulting voltage at the boundary of the domain.

The forward problem is given a conductivity, σ(r, θ, z), to determine the potential ϕ(r, θ, z)
satisfying

∇ · (σ∇ϕ) = 0 (6.16)

and the boundary condition

J(θ) = σ
∂ϕ

∂r

∣∣∣∣
r=r0

=





I

2aw
, α− a

r0
≤ θ ≤ α + a

r0

− I

2aw
, β − a

r0
≤ θ ≤ β + a

r0

0, all other θ.

(6.17)

The angles α, β are the angular positions of the electrodes. An estimate of the sensitivity of
the potential to changes in the conductivity can be determined by assuming the conductivity is
piecewise constant

σ =

{
σ0, r1 ≤ r ≤ r0
σ1, 0 ≤ r < r1.

(6.18)

Since both the potential and the current are continuous at r = r1 one has the conditions

ϕ|r=r−1
= ϕ|r=r+

1
, σ1

∂ϕ

∂r

∣∣∣∣
r=r−1

= σ0
∂ϕ

∂r

∣∣∣∣
r=r+

1

. (6.19)

Solving (6.16) with (6.18)-(6.19) with the constraints that ϕ is periodic in θ and constant
with respect to z yields

ϕ(r, θ) = ϕ0 +

∞∑

k=1

fk(r)[ak cos(kθ) + bk sin(kθ)]

where

fk(r) =





(
1 +

σ0 − σ1

σ0 + σ1

)(
r

r1

)k

, 0 ≤ r < r1
(
r

r1

)k

+

(
σ0 − σ1

σ0 + σ1

)(r1
r

)k

, r1 ≤ r ≤ r0.

(6.20)
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Figure 6.7: Resolving power for various configurations.

Applying the boundary condition (6.17) yields the following expression for the potential on the
boundary of the domain

ϕ(r0, θ) = ϕ0 +
Ir0
σ0aw

∞∑

k=1

1 + µρ2k

1 − µρ2k

1

k2
sin

(
ka

r0

)
[cos k(θ − α) − cos k(θ − β)]

where µ = (σ0 − σ1)/(σ0 + σ1) and ρ = r1/r0.
Denote ϕ as the potential at r = r0 when σ1 = σ0. Using this definition one can define the

resolving power as

δ =
ϕ− ϕ

ϕ
=

∞∑

k=1

[
1 + µρ2k

1 − µρ2k
− 1

]
1

k2
sin

(
ka

r0

)
[cos k(θ − α) − cos k(θ − β)]

∞∑

k=1

1

k2
sin

(
ka

r0

)
[cos k(θ − α) − cos k(θ − β)]

.

Figure 6.7 plots max |δ(θ)| as a function of ρ in the case of N = 16 electrodes. In addition,
a = 0.1, r0 = 1 and σ1/σ0 = 0.9. Illustrated are cases where the current is applied at adjacent
electrodes (β − α = π/8), electrodes at right angles (β − α = π/2) and opposite electrodes
(β − α = π). Clearly with an anomaly centered at r = 0 current applied at opposite electrodes
is the most sensitive.

6.5.2 An iterative technique for solving the inverse problem

The method implemented for solving the inverse problem is to use the sensitivity theorem usually
attributed to Geselowitz [3]. For a given region of conductivity σ an application of current I
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applied between electrodes A and B generates a potential field ϕ(σ) inside the volume. The
potential between electrodes C and D is denoted ϕCD. By applying the same current between
electrodes C and D one obtains the potential ψAB between electrodes A and B. One may note
that

φCD(σ) =
1

I

∫

Ω

σ∇φ(σ) · ∇ψ(σ) dΩ = ψAB(σ).

If the conductivity of the region changes to σ + ∆σ then the change in the transfer impedance
between electrodes A, B and C, D is

∆Z = φCD(σ+4σ)− φCD(σ) = φCD(σ+4σ)− ψAB(σ) = −1

I

∫

Ω

∆σ ∇ψ(σ) · ∇φ(σ+ ∆σ) dΩ.

(6.21)
To solve the inverse problem one assumes a conductivity distribution σ and solves the corre-
sponding forward problem obtaining ϕ. Taking the difference between the calculated ϕ(σ) and
the measured ϕ(σ + 4σ) yields ∆Z. In principle we can use this information to solve for ∆σ
and find the conductivity distribution.

Consider a mesh {Ωk}M
k=1 consisting of M elements each having its own conductivity σk. In

this way one may approximate the conductivity distribution as a finite sum of characteristic
functions

σ =
M∑

j=1

σjχ(Ωj), χ(Ωj) =

{
1, (x, y) ∈ Ωj

0, otherwise.

We refer to the collection of conductivities, {σj}M
j=1, as the vector ~σ ∈ R

M . The corresponding
discrete version of the sensitivity theorem (6.21) becomes

∆Z = −
M∑

j=1

∆σj

∫

Ωj

(∇ϕ · ∇ψ) dΩj. (6.22)

In this way ∆Z refers to the difference in voltage between electrodes C and D when the input
electrodes are A and B and the conductivity changes from σ to σ + ∆σ.

During the inversion process a number of different current injection patterns are applied. If
for example there are E electrodes and current is applied at adjacent electrodes then there are
E−1 patterns and therefore a total of (E−1)×(E−1) readings.1 This collection of measurements

on the boundary over the class of chosen patterns generates the vector ∆ ~Z = ~ζ− ~ϕ ∈ R
N . Here

~ζ is the vector of measured voltages and ~ϕ is the vector of the calculated potentials for the
current conductivity distribution σ. The final form of the (6.22) is

∆~Z = S∆~σ (6.23)

where the S is an N ×M matrix whose elements are

Sij = −
∫

Ωj

(∇ϕi · ∇ψi) dΩj (6.24)

1This assumes the capability of measuring the voltage at the injection electrodes.
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the result in cell j obtained when applying pattern i. Current applied to the electrode pair A, B
generates ϕi while current applied at C, D generates ψi. Because of symmetries N = E(E−1)/2.
One of the difficulties with the reciprocity theorem is that STS is ill conditioned and may be
singular if N ≤ M . Another problem encountered in using the reciprocity theorem is that
one cannot use a basic FEM package to solve the forward problem. Direct access to the basis
functions of each cell is required to compute S.

Because the problem is ill posed, Tikhonov regularization is used to determine the conductiv-
ity. With this method, rather than solving (6.23), one attempts at the kth iteration to minimize
the functional

f(∆~σk) =
∥∥∥S∆~σk − (~ζ − ~ϕk)

∥∥∥
2

+ λ ‖F~σk‖2 (6.25)

which indicates a trade off with obtaining a solution to S∆~σk = ~ζ− ~ϕk and not letting ‖F~σk‖ get
too large. Typically F is chosen to penalize solutions with properties that one wants to avoid.
In our case, we want to avoid solutions with discontinuities so F is a smoothing operator. Since
the current implementation is a Laplacian operator, F is an M ×M matrix with Fij = −1 if
node i is connected to node j (i 6= j) and Fii = number of elements connected to node i. If one

lets the regularization parameter λ → 0 one obtains a generalized solution of S∆~σk = ~ζ − ~ϕk.
We now detail the algorithm used to generate the solution.

Step 1: The first step is to determine an appropriate estimate for a homogeneous conductivity.
This is accomplished by setting the conductivity of each cell to one and generating the
solutions of the forward problems

∇ · (∇ϕ0) = 0,
∂ϕ0

∂n

∣∣∣∣
∂Ω

= ~J

where each of the applied current patterns, ~J , are used in turn. The effective homogeneous
conductivity σ0 is chosen to minimize

∥∥∥∥~ϕ0
1

σ0
− ~ζ

∥∥∥∥
2

. (6.26)

Solving (6.26) gives the least squares solution

σ0 =
~ϕ0 · ~ϕ0

~ϕ0 · ~ζ
.

Every cell is set to this initial conductivity giving the constant initial vector ~σ0 = {σ0}M
i=1.

The iteration parameter k = 1.

Step 2: The next step is to generate perturbations in the conductivity. At this point we solve the
forward problems

∇ · (σk−1∇ϕk) = 0, σk−1
∂ϕk

∂r

∣∣∣∣
∂Ω

= J ;

for the E−1 current patterns and generate the vectors ~ϕk by appending the collection the
boundary values at the electrodes for each of the applied patterns (as done in Step 1). For
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Figure 6.8: Initial anomaly and reconstructed solutions for two values of λ.

all subsequent steps the forward solution in all of the cells is required and not just those
corresponding to electrodes. Using the forward solutions one computes the sensitivity
matrix, S, from expression (6.24). At this point ∆~σk is chosen to minimize (6.25) and as
a result, satisfies

(
STS + λF TF

)
∆~σk = ST (~ζ − ~ϕk) + λF TF~σk−1.

Step 3: The updated conductivity is set to ~σk = ~σk−1 + ∆~σk and we check the stopping criterion.
If ‖∆~σk‖ ≥ ε then k 7→ k + 1 iterate S, ~σk, ~ϕk and return to Step 2. Otherwise the loop
terminates.

For the numerical simulations we chose N = 16 electrodes and a homogeneously conductive
region of σ = 1 with a small conductive anomaly with σ = 0.9. The mesh has M = 279
nodes. Figure 6.8 displays the original anomaly and two reconstructed solutions corresponding
to λ = 1 × 10−4 and λ = 10 respectively.

Clearly the cylindrical geometry is an idealization of the actual geometry. However, the
promising results of the reconstructed solutions shown here indicate that detecting sudden
large-scale changes in conductivity is certainly feasible. Moreover, for a given configuration
of electrodes, estimates can be obtained for the size of the smallest detectable anomaly of a
given strength.

6.6 Summary

Effort was focussed on the detection of sudden localised anomalies in the conductivity and
progress was made on a simple one dimensional model for the coupled problem and on a two di-
mensional model of the uncoupled potential problem. These investigations showed some promise
and could be developed further.
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Since substantial literature exists on the potential problem, further work should begin with
a thorough literature search. The MacMillan McGee problem may present some novel aspects.
Since measurements will only be made on an actual decontamination process, multiple current
inputs will not be available. Measurements will also only be available at electrodes, wells and
the soil surface so that the effect of boundary conditions at “infinity” should be considered. This
all adds to the illposedness (see Cheney, Issacson and Newell [1])

The use of temperature as well as potential measurements for the inverse problem might also
prove fruitful. This would require an efficient algorithm for the numerical solution of the three
dimensional coupled forward problem.

Changes in overall resistance similar to that found in the one dimensional example have been
observed in practice and it would be interesting to measure temperatures at the output wells to
see whether effects predicted by the one dimensional case do actually occur and whether they
are spatially localised.
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