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Introduction

• Screenshot from CAISO:
California grid operator

• Y-axis: power demand:
20-30 GW

• Net load = power demand
minus renewable energy

• Note that load is as seen by
the utility, i.e. net of
behind-the-meter rooftop
solar, etc.

• Observe the extreme ramp
between 5 and 8pm: the
Duck Curve

Typical day in 2023 in California (a Friday in May)

Courtesy of CAISO.com
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Another Day

Wednesday in April

• Net load was forecast to be
negative on the day prior

• Realized net load between
10am-4pm was ∼ 6 − 7GW
higher, and never below 5GW

• What’s going on?

Courtesy of CAISO.com

=⇒ Renewable Curtailment
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Sunny California: Too much of a good thing

• Curtailment was 700 GWh in April
2023 (=23 GWh per day or about
5% of total demand)

• In 2022 total solar production
averaged 3409 TWh/month,
curtailed 672 TWh/month or 20%!
(total demand is about 15000 TWh)

• Massive hit on the profitability of
solar farms

• Throwing away incredible amount of
free energy

• Too much power during the day,
then a shortage in late evening

Renewable Curtailment
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BESS: Battery Energy Storage Systems

• Energy Storage is the centerpiece of solving
these problems

• Now a meaningful segment of the power mix
in many regions, experiencing exponential
growth

• Creates many market design challenges

• Storage is the most interesting and
practically relevant application of stochastic
control for renewables

• This talk: short-duration storage (battery
based)

Image by Canary Media, June 1, 2023
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Uses for Battery Storage

• Energy arbitrage: buy low during
mid-day, discharge in the evening

• Peak shaving: provide power at the
highest net-load hour(s)

• Duck curve smoothing: provide
power to reduce the ramp rate

• Supply firming: complement random
fluctuations in renewable generation

• Load shaping: better track preset
load profile

• Curtailment insurance: avoid
renewable curtailment

• Congestion relief: replace spatial
transmission with a temporal one

• Ancillary services

Image from caiso.com
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Ancillary Services

• Regulation-up/down: resources to balance the grid due to short-term fluctuations:
must respond to automatic control signals (on the scale of seconds) to increase or
decrease their operating levels depending upon the need

• (non)-Spinning reserve: standby generation capacity that can be ramped to a
specified load within 10 minutes when dispatched. Mostly for up –only triggered by
contingency events (gen down)

• Frequency regulation: control system frequency close to 60Hz

• Flexible Ramping Product: flexible ramp capability to meet the potential net load
movement in RT dispatch from load and renewables

• FRP targets net load changes between two dispatch intervals (e.g 95% interval based
on historical forecast errors)

• ERCOT Contingency Reserve Service: version of FRP introduced in June ’23
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Ancillary Service Markets

• Rules differ market-to-market

• Asset bid on AS day-ahead: acceptance probability

• If selected, receive a capacity payment

• If needed in RT (deployment probability), receive fees based on opportunity cost

• AS deployment is based on bid capacity, so could bid a partial fraction of the battery
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Interlude presented by ChatGPT: "Battery Storage and Solar Energy"

Solar power, the radiant star,
Its beams of gold stretch near and far.
They dance on panels, silicon’s braid,
Harvesting light, a celestial crusade.

But the sun’s a fickle, wandering sprite,
At dusk she rests, in the veil of night.
Yet fear not, for a hero’s here,
Battery storage, resolute and clear!

In vessels of power, they hold the might,
To store the sun’s gifts, day or night.
When skies turn dark and stars align,
Battery energy surges, a grand design.

No more dependence on fossil fuel,
The future’s bright, a cleaner rule.
With battery storage and solar rays,
We’ll forge a path to greener days.
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Optimizing Battery Storage
Dispatch



Storage Dispatch

Classical: buy low/sell high. Constrained by:

• Maximum (dis)charge rate (MW)

• Battery capacity (MWh)

• Roundtrip efficiency (%)

• Initial and terminal SOC conditions

• Below: synthetic example with OU prices;

• Right: real-life storage dispatch across AS
markets
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courtesy of CAISO.com

IFM=Integrated Forward Market, RUC=Residual Unit Commitment,

FFM=Fifteen Minute Market, RTD=Real Time Dispatch
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Battery Storage as Switching Control

• Inventory It (endogenous)

• Price process/stochastic factors Pt (typically exogenous SDE)

• Terminal condition W (PT , IT )

• Control mt : Itk+1 = Itk + a(mtk )

• Total revenue on [tk ,T ]: v(tk ,Ptk , Itk ,mtk ) :=∑K−1
s=k e−r(ts−tk )[π(Pts , cts(mts+1))∆t − K (mts ,mts+1)] + e−r(T−tk )W (PT , IT )

Solution Approaches:

• PDE/HJB

• Rolling Intrinsic

• Regression Monte Carlo (Warin 2010, Bauerle-Riess 2016, L-Maheshwari 2019)

• Reinforcement Learning (Hure et al, 2020)
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Regr Monte Carlo for Storage: Machine Learning Perspective

• Value function

V (tk ,P, I,m) = sup
mtk

E
[
v(tl ,Ptk , Itk ,mtk )

∣∣∣ Ptk = P, Itk = I,mtk = m
]

• Continuation value: q(tk ,P, I,m) := E
[
e−r∆tV (tk+1,Ptk+1 , I,m)

∣∣Ptk = P
]

• Dynamic Programming equation

V (tk ,Ptk , Itk ,mtk ) = max
m∈J

E
[
π∆(Ptk ,mtk ,m) + e−r∆tV (tk+1,Ptk+1 , Itk+1(m),m)

∣∣∣Ptk

]
• Optimal control m∗

tk+1
(tk ,Ptk , Itk ,mtk ) is the argmax above.

• The pricing model is viewed as stochastic simulator(s) that produces noisy pathwise
observations conditional on the control

• Learn the continuation or q-value q(t ,P, I,m): cost-to-go conditional on next-step
regime m; done recursively over t

• Sub-modules:

• Approximation of the conditional expectation defining q

;

• Evaluation of the optimal control [trivial if m is discrete]
• Evaluation of the pathwise continuation value
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DEA: Dynamic Emulation Algorithm (L-Maheshwari 2020)

• A template for a simulation-based approach to stochastic storage

• Unifies Optimal Stopping RMC and Storage RMC

• A plug-and-play modular algorithm interpreted as a (machine/statistical) learning
problem. Resembles Reinforcement Learning.

• Nests existing literature + offers MANY more choices

• Applied to stylized Gas Storage and Microgrid Control settings

• Solve the storage control problem ⇔ Recursively identify the control map + value
function given a pathwise reward simulator

• Classic RMC: generate forward paths, use the resulting stochastic mesh to solve the
DPE, employ cross-sectional regression for the conditional expectation.

• Key challenge for applying RMC is how to handle the endogenous It – cannot do
forward path simulation

• Inventory path back-propagation and quasi-simulation
• Treat It as a parameter, solve a collection of 1-D problems in Pt

• Control randomization
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Training Design Choices

How to pick the training sites in (P, I):

• Space Filling: explore continuation values throughout the input domain:
• Quasi Monte Carlo sequences (Sobol)
• Latin Hypercube Sampling
• Gridded

• Probabilistic – reflects the distribution of (Pt , Î t)

• Adaptive – target efficient learning of the action boundaries
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(b) 2D randomized
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Realistic Net Load Model



Conditional Simulations

Daily ISO operations:

• Receive weather forecast for tomorrow

• Optimization solver for day-ahead Unit
Commitment (hourly scale)

• Next day: Economic Dispatch based on
realized generation/load (15-min scale)

• Intrinsic stochasticity of renewable
production: forecast errors of 10% for
24-hours out are common and unavoidable

• Wrong-way correlation between renewable
assets: when you need renewables they
are less likely to be there
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Hourly generation over 5 days at a wind farm in

TX.
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ARPA-E PERFORM Data

• Day-ahead forecast + realized generation at
hourly frequency.

• Re-analysis of NWP provided by NREL.

• Directly work in MW (no GHI/wind speed)

• Solar: 226 assets; Wind: 264 assets

• Varying technologies, sizes and production
behavior.

• High degree of locational correlation.

• Aim: generative model for scenarios of realized
generation across all renewable assets NREL ERCOT dataset
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Building a Statistical Engine for Renewable Generation

• Model jointly forecast and actuals

• Data are vectors of dim 24 (no time-series)

• Multiple statistical challenges to resolve:
• Data scarcity for correlation estimation
• Point masses
• Non-gaussian, highly heteroskedastic

distributions
• Layers of seasonality – raw data is fundamentally

non-stationary
• Spatial dependence

Blue Bell solar farm:

Baffin wind farm:
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Calibration

• Convert raw MWh into production ratios

• Estimate mean- and max-generation for each hour/day of the year

• Standardize different days to make them comparable for inferring correlations

• Handle point masses through conditional inference

• Several calibration layers to account for seasonality, asset characteristics and
non-Gaussianity

• To handle varying number of active hours across assets work in a transformed PCA
factor space

Scalability to hundreds of assets is the secret sauce
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Hierarchical Clustering

• Estimation of large covariance matrices
is inherently unstable

• With only a few hundred data points,
can only reliably estimate a small matrix

• Imposing structure is necessary
(sparsity, regularization, hierarchy)

• Do this by recursively by clustering
assets based on empirical correlations

• Cluster via simulated annealing (search
in the high-dimensional space of
potential clusters)

• Correlate wind vs solar vs load at the
top level

Overall wind clusters (4 levels total)
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Simulated Annealing

• At each hierarchy level: employ simulated annealing to build clusters

• Repeatedly propose to (i) split an existing cluster into 2 or (ii) move one asset from its
cluster to another

• Energy function E(C) :=
∑

C∈C

[
1 + κ

|C|−1

∑
i,j∈C

(
1 − ρ2

i,j

)]
• Accept proposals based on the resulting change ∆E and current temperature

schedule: Accept w.p.1 if ∆Eℓ < 0, otherwise with prob. exp(−Tℓ∆Eℓ)

More comments:

• Correlation degradation is inevitable with regularization. Ensure that preserve very
high correlations (some assets are essentially adjacent to each other and have
correlation of > 99%)

• Current method does not make any explicit use of geographical patterns

• Clustering can be date-dependent
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Simulations

• Clusters yield the calibrated high-dim
covariance matrix

• Populate with multivariate Gaussian
samples

• Reverse all the steps to obtain
simulations joint across hours + assets

• Runs on the sub-second scale per
scenario (once clustering is done)
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More Simulations

Scenarios are joint: can aggregate scenario-by-scenario
Far West has 48 wind farms. Total load is over 8 ERCOT zones.
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Temporal Correlation

Empirical correlation matrix across the active hours of April 13, 2018

Adamstown solar (13 active hours) Amazon wind farm.
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Putting it Together: First Pass

• Fixed database of 1000 net load scenarios from above engine

• Different distribution for each day (relies on 2018 data/day-ahead forecasts)

• Hourly frequency (soon 15-min dispatch intervals)

• 4MWh battery with 1 MW charge rate and 92% round-trip efficiency

• Participates in regulation control throughout the day (random effect added to
inventory)

• Sole objective of energy arbitrage

• Zero initial and terminal SOC

• DEA solver with Gaussian Process surrogates on (Pt , It)

25



Sample Inventory Paths on 4 different days
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Bells and Whistles

• Multi-dimensional state:
• Several factors (load, wind, solar, possibly zonal values, ...)
• Cycling restriction (swing-like optionality)

• Payoff structure:
• Function of current price (function of load)
• Function of change in load (ramp)
• Randomized due to deployment probability, regulation-up/down signal, etc.
• Spatial structure: battery location vs the grid

• Need a flexible, dim-agnostic storage optimizer

• Run the solver hundreds of times on an intra-day basis
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The Big Picture

• Level 1: optimizing battery operations by a single asset owner (price-taker)

• Level 2: optimal bidding strategy (how to allocate between AS and energy arbitrage) –
economic value of storage across time and across market products

• Level 3: aggregate behavior of batteries at system level (mean field game)

• Level 4: market design + regulation + encouraging socially beneficial behavior
(principal-agent)

• A nexus of complicated numerical tasks (with multi-layer engineering characteristics)
and modeling tasks
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Market Failure: Sep 7, 2022

Batteries began discharging in the middle of
the afternoon, when there was still plenty of
solar power and other supplies available to
meet electricity demand. That depleted the
cushion before it was more critically needed
in the early evening, when the state was on
the brink of rotating blackouts as demand hit
an all-time record and solar supplies started
dropping as the sun set.... The reason for
Tuesday’s earlier-than-expected deployment
of batteries likely has to do with market sig-
nals. The way the California power market
is set up now, energy storage systems are
called upon to dispatch by the grid operator
when the wholesale power price hits a cap
of $1,000 a megawatt-hour...
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