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Spatial Downscaling
makes sense https://giscrack.com/tag/spatial-downscaling/
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Temporal Downscaling
Is it straight-forward?
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Temporal Downscaling
Is it straight-forward?
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Assessing wind power potential in the face of climate change
Climate Downscaling: The idea

How much energy will a wind turbine generate over its lifetime?
How much wind power potential will we have in the future?

Turbine Locations
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Side note: Climate models
Like a very long weather forecast of low resolution figure from Sung et al.[2021]
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Temporal Downscaling
Is it straight-forward? A bit.
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Which data resolution do we need?
We often don’t have access to very high resolutions

Again, the research question is: How much energy will a wind turbine generate over its lifetime?

→ Analyze wind observations and climate projections to see which impact the temporal resolution has!
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Power curves
We want the non-linear projections of wind speeds to be expressive

• Wind speed data is only our proxy for wind
energy

• Wind power curves are non-linear
• Wind is a complex, local phenomena
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Now we know the problem
A quick recap

• We want to know how much wind energy a turbine can generate over its lifetime.
• We know that we have wind speed projections that we can use as proxies. Wind energy depends

non-linearly on these.
• And: Climate wind speed projections are often only accessible as 3 and 6 hour instantaneous values

or 3h, 6h and daily averages.

But which data resolution is the most valuable? And is that resolution high enough?

Nina Effenberger Machine Learning in Sustainable Energy Systems - University of Tübingen 11/22



Methods
Outline datasets from Plumley [2022], Ramon et al. [2020]

• Data: 10min averages of wind speed
observations at hub-height and at 10 metres
and climate projections

• Compare the wind speed distributions of
common temporal climate resolutions

• 3h, 6h, daily, monthly averages
• 3h, 6h instantaneous values

• Parameterize the data and observe common
tendencies

• Project the wind speeds to wind energy 120°W 90°W 0°30°W60°W
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Wind speed distributions
Monthly, daily, six-hourly and three-hourly averages
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Wind speed distributions
Daily, six-hourly and three-hourly instantaneous

• Monthly averages are not representative
• All other distributions look similar
• We compare them statistically
• In some minutes: We parameterize the

distributions to see how the parameters
change when data are averaged/discarded
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Statistical analysis: Kolmogorov-Smirnov Tests
Compare the difference of the wind speed CDFs

Across 8 observation stations, 10min data are ...
• ... always statistically significant different from

daily averages and daily instantaneous values
• ... almost always statistically significant

different from three-hourly and six-hourly
averages

• ... almost never statistically significant
different from three-hourly and six-hourly
instantaneous values
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Wind speed spectrum
The spectral gap - known since 1957 Van der Hoven (1957)
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Remember how the KDE looked like
The Weibull distribution
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What happens to the distribution when data is averaged/discarded?
Making the distributional shift visible using a Weibull parameterization
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Dashed lines: variances of instantaneous values.
Solid lines: variances of average values.
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Wind energy generation
Averaging changes the wind energy generation prediction
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Daily wind speed observations are not representative
Wind speeds can vary heavily over a day Stull[2017]
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Temporal Downscaling
Is it straight-forward? A bit more.
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Mind the (spectral) gap
Instantaneous values are more valuable than averages

1. Wind speed distributions shift when averaging over different time scales (Weibull parameter shift).
2. In contrast, instantaneous values of lower resolution very often preserve wind speed distribution

statistics (test statistic of Kolmogorov-Smirnov).
3. Choose data that is suitable for your research question!
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