

The role of wind speed variability in very long-term wind power forecasts

Nina Effenberger

Machine Learning in Sustainable Energy Systems - University of Tübingen

July 2023

Thanks to my collaborators

Rachel White (UBC), Nicole Ludwig (University of Tübingen)

Thanks to the Weather Forecast Research Team

for (intellectual) resources

makes sense

Temporal Downscaling

Is it straight-forward?

Temporal Downscaling

Is it straight-forward?

Assessing wind power potential in the face of climate change

Climate Downscaling: The idea

How much energy will a wind turbine generate over its lifetime? How much wind power potential will we have in the future?

Side note: Climate models

Like a very long weather forecast of low resolution

Temporal Downscaling

Is it straight-forward? A bit.

We often don't have access to very high resolutions

Again, the research question is: How much energy will a wind turbine generate over its lifetime?

 \rightarrow Analyze wind observations and climate projections to see which impact the temporal resolution has!

We want the non-linear projections of wind speeds to be expressive

- Wind speed data is only our proxy for wind energy
- Wind power curves are non-linear
- Wind is a complex, local phenomena

A quick recap

- We want to know how much wind energy a turbine can generate over its lifetime.
- We know that we have wind speed projections that we can use as proxies. Wind energy depends non-linearly on these.
- And: Climate wind speed projections are often only accessible as 3 and 6 hour instantaneous values or 3h, 6h and daily averages.

But which data resolution is the most valuable? And is that resolution high enough?

- Data: 10min averages of wind speed observations at hub-height and at 10 metres and climate projections
- Compare the wind speed distributions of common temporal climate resolutions
 - 3h, 6h, daily, monthly averages
 - 3h, 6h instantaneous values
- Parameterize the data and observe common tendencies
- Project the wind speeds to wind energy

Wind speed distributions

Monthly, daily, six-hourly and three-hourly averages

Wind speed distributions

Daily, six-hourly and three-hourly instantaneous

- Monthly averages are not representative
- All other distributions look similar
- We compare them statistically
- In some minutes: We parameterize the distributions to see how the parameters change when data are averaged/discarded

Statistical analysis: Kolmogorov-Smirnov Tests

Compare the difference of the wind speed CDFs

Across 8 observation stations, 10min data are ...

- ... **always** statistically significant **different** from daily averages and daily instantaneous values
- ... almost always statistically significant different from three-hourly and six-hourly averages
- ... **almost never** statistically significant **different** from three-hourly and six-hourly instantaneous values

The spectral gap - known since 1957

FIG. 1. Horizontal wind-speed spectrum at Brookhaven National Laboratory at about 100-m height. (See table 1 for date and time.)

Remember how the KDE looked like

The Weibull distribution

What happens to the distribution when data is averaged/discarded?

Making the distributional shift visible using a Weibull parameterization

Machine Learning in Sustainable Energy Systems - University of Tübingen

Wind energy generation

Averaging changes the wind energy generation prediction

Daily wind speed observations are not representative

Wind speeds can vary heavily over a day

Temporal Downscaling

Is it straight-forward? A bit more.

Machine Learning in Sustainable Energy Systems - University of Tübingen

Instantaneous values are more valuable than averages

- 1. Wind speed distributions shift when averaging over different time scales (Weibull parameter shift).
- 2. In contrast, instantaneous values of lower resolution very often preserve wind speed distribution statistics (test statistic of Kolmogorov-Smirnov).
- 3. Choose data that is suitable for your research question!