
Forecasting & Operations for the Rising 
U.S. Offshore Wind Energy Sector

Ahmed Aziz Ezzat, Ph.D.
Renewables & Industrial Analytics Research Lab

Rutgers, The State University of NJ

aziz.ezzat@rutgers.edu 
https://sites.rutgers.edu/azizezzat/
@AAzizEzzat

Ahmed Aziz Ezzat

mailto:aziz.ezzat@rutgers.edu
https://sites.rutgers.edu/azizezzat/


Source: National Offshore Wind Research & Development Consortium:  Research and Development Roadmap Version 2.0, 2019

Motivation: The Rise of the U.S. Offshore Wind Energy 
Sector – Great Promise Ahead
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National Plan:
30 GW by 2030
85 GW by 2050

State Plan:
11 GW by 2040

For NJ (Currently, none)

OSW Potential:
>2000 GW 

(5 major geographical regions)



Source: Bureau of Ocean Energy Management – February 2022
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OCS-A 0544

Joint venture of Shell, EDF Renewables

$285M
OCS-A 0537

Joint venture of EDPR, Engie

$765M
OCS-A 0538

Attentive Energy (subsidiary of Total Energies)

$795M
OCS-A 0539

Bight Holding LLC (Joint venture of EWE & NE)

$1.1B

OCS-A 0541

Shell New Energies & EDF Renewables

$780M

OCS-A 0542

$645M

$4.21B 
Total Lease 

Auction
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Motivation: The Rise of the U.S. Offshore Wind Energy 
Sector – Great Promise Ahead

The U.S. Mid/North Atlantic
The largest and first contributor to the U.S OSW goal



Goal: Tailored Analytics (i.e., DS/OR) to minimize the 
uncertainties in operating ultra-scale offshore wind farms. 

453 ft
138 m

Great pyramid of Giza
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Motivation: The Rise of the U.S. Offshore Wind Energy 
Sector – Great Promise Ahead

Case #1: Analytics for Offshore Wind Energy Forecasting
Case #2: Analytics for Offshore Wind Operations & Maintenance

Massive scales, 
Harsh environment, 

Under-Explored territories 



E05
39°58’10’’N
72°43’00’’W

E06
39°32’50’’N
73°25’45’’W

Leased 
areas

Planning 
areas

RU-WRF grid 
points
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Rutgers’ tailored version of WRF for 
the U.S. Mid- & North Atlantic

10-min observations from two 
NYSERDA buoys in the NY/NJ Bight

1 2

Existing Technology: RU-WRF
o Developed by RUCOOL at Rutgers University
o Independently validated by NREL (2020)
o Best “Tailored” model in the region. 

Goal: To develop AIRU-WRF: 
o AI-powered
o Site-specific
o Short-term
o High-resolution
o Accurate J 



Meso-scale
Low-frequency, 

coarser-scale variations

Sub-meso-scale
High-frequency, 

finer-scale variation

AIRU-WRF: 
The AI-Powered Rutgers University Weather Research 

& Forecasting Model 

Forecast Variable
(with transformations)
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Numerical Weather Predictions 
are most useful here…

Machine Learning
is most useful here…



Multi-type biases found: 
o Shift Biases (over- & under- prediction) 
o Temporal Biases (early/late)
o Spatial Biases (where)
o Nonlinear Biases (complex meteorological drivers)

NWP biases when downscaling to higher resolutions1

Modeling
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Temporal bias
Early predictionTemporal bias

Late prediction

Shift Bias
Over-prediction

Shift bias
Under-prediction

1More about NWP biases in forecasting: 
Sweeney et al. (2020)



is essentially a calibration of the NWP…
Key difference: Existing literature mostly focuses on “shift biases,” and does not fully link the biases 

to their driving meteorological conditions1,2,3

Modeling

1,2,3 Y. Gel et al. (2004), Chen, Niya, et al. (2013), Du, Pengwei (2018), Kosovic, Branko, et al. (2020) 
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Bias-related 
Features

Numerical Weather 
Predictions

Additive Bias M ultiplicative Bias

Goal is to select                and               so that they comprise features 
that are both meteorologically relevant & statistically significant. 

We postulate the use of three sets of features,  
•     :  Exogeneous features (pressure, surface temperature, relative humidity, wind gust)

•     :  Future & lagged values of NWPs à temporal bias correction
•     :  Physically Motivated Features



1. Geostrophic wind1

Examples of New Constructed features

1More about estimating geostrophic winds: 
Zhu, X. et al., (2014) Modeling of 
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2. Thermal & Pressure Gradients



With three sets of features, a question of interest is:
Are all features relevant at all times? 

• From a physics standpoint: Meteorological drivers of NWP bias 
change over space-time à distinct bias types/ magnitudes. 

• From an ML perspective: The law of parsimony… 

Modeling of 
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!𝐆 𝐬, t = GST!", U#, P4

!𝐆 𝐬, t = {GW$, GST", U%", V%&, STPD!%}

!𝐆 𝐬, t = GST% !𝐆 𝐬, t = {GW!%', GST!%, U(, STPD!"}

Dynamic Feature Selection
Only select features when they matter!



Back to AIRU-WRF:
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Meso-scale
Low-frequency, 

coarser-scale variations

Sub-meso-scale
High-frequency, 

finer-scale variation

Forecast Variable
(with transformations)



Temporal Lag
Spatial Lag

• Assume data has been de-trended, i.e., we have: 

• We model              as a spatio-temporal Gaussian Process (GP): 

But, how to select         ? 
W

in
d 

Sp
ee

d 
(m

/s
)

Time (EST)• Covariance functions (Kernels):

GP mean function
GP covariance 

function (Kernel)

Modeling of 
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Prevalent approach to modeling spatio-temporal correlations:

Temporal kernelSpatial kernel

Modeling of 
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Statistical test based on space-time 
variograms rejects the hypothesis of 

symmetry in the local wind field, 
especially in the ~1-3-hour range

Wind Advection and Its impact on 
Spatio-Temporal Correlations1:

1More about spatio-temporal asymmetry
M. Stein, JASA (2005)



The Lagrangian reference framework1,2

Advection 
vector

Spatial lag Temporal lag

Physically Justifiable Modeling of Spatio-
Temporal Correlations: 

Modeling of 1More : Cox, Isham (1988), Salvana & Genton (2022)
2 Closed-form expressions can be derived (Schlater, 2010)

Another place to invoke NWPs
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Back to AIRU-WRF:

The Meso-scale
Low-frequency, coarse-scale 

variations

The Turbine-scale
High-frequency, fine-scale 

variations

Unexplained Variability
White Noise

Wind Speed
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Back to our case study… 

Benchmarks:
(𝕭𝟏) RU-WRF : Physics-based model tailored to the region of interest. 
(𝕭𝟐) GOP        : Hybrid (statistical-physical) approach 
(𝕭𝟑) LSTM : Time Series Deep Learning model - Purely data-driven
(𝕭𝟒) PER        : Persistence forecast – widely used as a benchmark
(𝕭𝟓) ARIMA-X  : Autoregressive time series model – statistical approach

 Evaluations: 
 (𝕰𝟏) Point forecasts  : MAE & RMSE 
 (𝕰𝟐) Probabilistic forecasts : CRPS

Experimental Setup
Data Coverage 6 months (4-month in winter, 2-month in Summer)

Forecast horizon 6 hours x 10-min resolution
= 36 forecasting instances/hour

# of locations 3 locations (E05, E06, ASOW)
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Data 
leads

Physics 
lead

AIRU-WRF leads 
all the way

Result #1: 
Filling the ML-Physics Chasm
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Forecast horizon (hours)
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Driven

Result #2: 
Filling the ML-Physics Chasm



Bias = 0.025Bias = 0.769

19

Forecast Forecast

T
ru

e

RU-WRF AIRU-WRF

Result #3: 
Filling the ML-Physics Chasm
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Joint venture of 
EDPR & Engie

Attentive Energy 
(sub. of Total Energies)

Bight Holding LLC 
(Joint venture of EWE & NE)

1

2

3

Joint venture of Shell 
& EDF Renewables

Shell New Energies 
& EDF Renewables
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InventivEnergy, LLC

Currently showing forecasts at     E06
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Result #4: 
Filling the ML-Physics Chasm



Result #5: From Wind Speed to Wind Power
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ü Statistical power curves from an operational wind farm (Ding, 2022) 
ü Evaluation using Power Curve Error Loss (Hering and Genton, 2010). 
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Correlations ignored (Marginal Densities) Correlations considered (Trajectories)

Result #6: Scenarios/Trajectories for 
Decision-Making Under Uncertainty



Operations & Maintenance for Offshore Wind Farms

(ℂ1) High maintenance requirements
Transportation costs account for 30-70% 
of offshore wind maintenance expenditures. 

(ℂ2) Limited accessibility
56% of inaccessibility, with up to 6 days of 
consecutive in-access. 

(ℂ3) Significant opportunity losses
cost of failing 15MW turbine >> cost of a 

failing 3MW turbine 

23

Potential Solution: Opportunistic Maintenance
i.e., Grouping maintenance actions at time of “opportunity” 



1. Resource-based opportunities

T T+5

Time

Planned 
maintenance

Planned 
maintenance

Total vessel rentals: 2

(1) Transportation-Based Opportunities
Grouping maintenance to maximize the utilization of 

transportation/crew resources
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1. Resource-based opportunities

T T+5

Time

Planned 
maintenance

Planned 
maintenance

Total vessel rentals: 1

(1) Transportation-Based Opportunities
Grouping maintenance to maximize the utilization of 

transportation/crew resources
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2. Revenue-based opportunities

T+4 T+7

Time

Planned 
maintenance

Planned 
maintenance

R
ev

en
ue
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os

se
s

Total revenue loss

(2) Revenue-Based Opportunities
Grouping maintenance at times of minimal revenue losses

26



T+4 T+7
Planned 

maintenance
Planned 

maintenance

R
ev

en
ue

 L
os
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Total revenue loss

2. Revenue-based opportunities
(2) Revenue-Based Opportunities

Grouping maintenance at times of minimal revenue losses
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3. Access-based opportunities

T+3 T+5

Time

Planned 
maintenance

Planned 
maintenance

Accessibility
=

f(        ,         )

Vessel rentals: 3
Risk of failure: high

(3) Access-Based Opportunities
Grouping Maintenance at times of “open” access
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T+3 T+5

Time

Planned 
maintenance

Planned 
maintenance

Vessel rentals: 1
Risk of failure: low

3. Access-based opportunities

Accessibility
=

f(        ,         )

(3) Access-Based Opportunities
Grouping Maintenance at times of “open” access
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Total profit
Hourly 
revenue

Maintenance costs

Short-term 
PM decision 

var.

Short-term 
CM decision 

var.

Transportation and Crew 
costs

Long-term PM 
decision var.

Long-term CM 
decision var.

Daily revenue Daily Maintenance Costs Daily Transportation and Crew costs

P. Papadopoulos, D. Coit, A. Aziz Ezzat, Seizing Opportunity: Maintenance Optimization in Offshore Wind Farms 
Considering Accessibility, Production, and Crew Dispatch, IEEE Trans. on Sustainable Energy, 2021. 

Method
# vessel 
rentals

vessel 
utilization

(%)

total 
downtime 

(h)

productio
n loss 

(MWh)

# PM 
actions

# CM 
actions

total cost 
($K)

total cost 
reduction

(%)
HOST 6.8 83.7 131.8 312.6 9.9 1.2 118.9 -
BESN 8.0 74.2 136.7 348.9 9.8 1.3 126.4 5.9%
PBOS 9.4 79.9 137.3 331.1 9.7 1.3 128.9 7.8%
TBS 13.3 63.7 156.3 504.0 7.2 3.9 182.4 34.8%
CMS 12.9 81.0 518.8 2624.3 0.0 11.0 412.5 71.2%



T+3 T+5

Time

Planned 
maintenance

Planned 
maintenance

forecast

Importance of uncertainty

true
forecast

true

A
cc

es
si

bi
lit

y

Missed! Missed!

• Vessel rentals: 2
• False opportunities: 1
• Missed opportunities: 2
• Risk of failure: high

Opportunistic Maintenance is a double-edged sword!
Small forecast errors can incur large cost implications
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What happens when you introduce uncertainties? 



P. Papadopoulos, D. Coit, A. Aziz Ezzat, STOCHOS: Stochastic Opportunistic Maintenance Scheduling 
For Offshore Wind Farms, IISE Transactions, 2022. 

PK-HOST STOCHOS PF-HOST TBS CMS

2.36 2.18 2.26 4.92 6.72
101.21 141.05 154.59 597.68 1037.24
5.10 7.10 7.83 29.85 51.64
5.00 4.53 4.48 2.35 0.00
0.00 0.47 0.52 2.65 5.00
0.66 0.43 0.64 1.23 1.83
38.92 43.43 45.00 86.90 127.91
0.10 4.60 6.14 48.07 89.08
35.86 39.69 42.36 84.11 127.16

Metric

Vessel rentals

Production loss (MWh)

Revenue loss ($K)

Total PM tasks

Total CM tasks

Maintenance interruptions

Avg. total cost ($K)

Cost increase from opt ($K)

Median total cost ($K)
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What if we could influence the degradation process of 
OSW turbines by controlling certain turbine settings?

T+4 T+7
Remaining 
useful life 

WT1

Remaining 
useful life 

WT2

Time

Revenue 
loss

=
f(      ,      )

Accessibility
=

f(        ,         )

Early maintenance!

T+8
Remaining 
useful life 
WT1 &2

Better 
maintenance 
opportunity
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Increased 
loading  
(reduced RUL)

Reduced loading 
(increased RUL)

Wind speed

Ya
w

 m
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Wind stream direction

"𝛾 ←	yaw 
misalignment

Perfect yaw 
alignment = 0 yaw 
misalignment

Wind speed

Po
w

er
 o

ut
pu

t
Trade-off: alleviate loading and increase the RUL, at the cost of reduced power production, and vice versa

Effect on degradation
• Potential to alleviate 

certain load variations 
up to 70% 34



𝑗 =
1

𝑗 = 2

(𝛾()
𝑗 = 3 𝑗 = 4

𝑗 = 5

35

Yaw-Adjusted Wind Power Curves

Yaw-Dependent Degradation Modeling

Discretizing yaw decisions
12

3



P. Papadopoulos, F. Fallahi, M. Yildirim, A. Aziz Ezzat, POSYDON: Joint Production & Maintenance 
Optimization for Offshore Wind Farms, Under Review, 2023. 

POSYDON STOCHOS DET TBS CMS

159.3 273.8 398.4 715.0 1215.4

74.4 121.6 283.5 475.8 999.2

1.5 2.5 5.8 9.7 20.8

11.0 21.3 32.5 52.0 102.5

11.2 8.9 2.9 17.5 0.0

12 15 7 12 0

0 3 4 8 14

7 14 11 28 20

2.0 1.3 1.2 1.1 1.1

1.7 1.3 1.0 0.7 0.7

Metric

Cost (K$)

Revenue loss (K$)

Production loss (GWh)

Downtime (days)

Cycle days unused/task

Preventive tasks

Corrective tasks

Vessel rentals

Attempts per rental

Successes per rental 36



How Maintenance Actions are Grouped:

37



The Renewables & Industrial Analytics (RIA) 
Research Group at Rutgers University

Left to right: Feng Ye, Althea Miquela, Aziz Ezzat, Yating Fang, Petros Papadopoulos

Research Sponsors: 

Vision: “Addressing fundamental technical challenges of 
#RenewableEnergy through an #Analytics lens” 
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