

Forecasting & Operations for the Rising U.S. Offshore Wind Energy Sector

Ahmed Aziz Ezzat, Ph.D. *Renewables & Industrial Analytics Research Lab Rutgers, The State University of NJ*

aziz.ezzat@rutgers.edu

https://sites.rutgers.edu/azizezzat/

Motivation: The Rise of the U.S. Offshore Wind Energy Sector – Great Promise Ahead

 National Plan:

 30 GW by 2030

 85 GW by 2050

State Plan: 11 GW by 2040 For NJ (Currently, none)

OSW Potential: >2000 GW

(5 major geographical regions)

2

Motivation: The Rise of the U.S. Offshore Wind Energy Sector – Great Promise Ahead

The U.S. Mid/North Atlantic

The largest and first contributor to the U.S OSW goal **\$4.21**в **OCS-A 0544** Source: Bureau of Ocean Energy Management – February 2022 MID-ATLANTIC **Total Lease** Cape Cod Bay Providence, Hartford OFFSHORE DEVELOPMENT **OCS-A** 0537 Auction Joint venture of Shell, EDF Renewables Georges Long Island Soun s285м 6 Bank **OCS-A 0541** Joint venture of EDPR, Engie ATLANTIC SHORES Trenton ¹ s765м offshore wind Physalia Seamount Shell New Energies & EDF Renewables **OCS-A 0538** 5 **s780**м Mytilus Sear Washington, D.C. TotalEneraies Attentive Energy (subsidiary of Total Energies) **OCS-A 0542 OCS-A** 0539 s795м nationalgrid Inventiv**Energy Bight Holding LLC (Joint venture of EWE & NE) \$64** R

Motivation: The Rise of the U.S. Offshore Wind Energy Sector – Great Promise Ahead

Goal: Tailored **Analytics (i.e., DS/OR)** to minimize the uncertainties in operating ultra-scale offshore wind farms.

Case #1: Analytics for Offshore Wind Energy Forecasting **Case #2:** Analytics for Offshore Wind Operations & Maintenance

Rutgers' tailored version of WRF for the U.S. Mid- & North Atlantic

RU-WRF grid Bridgeport points NEW YORK ONew York own son ding Trenton delphia Toms Ri NEW JERSE Planning Dover areas Leased areas

1

DELAWARE

10-min observations from two **NYSERDA buoys in the NY/NJ Bight**

Existing Technology: RU-WRF

- Developed by RUCOOL at Rutgers University 0
- Independently validated by NREL (2020) 0
- Best "Tailored" model in the region. Ο

Goal: To develop AIRU-WRF:

- **AI-powered** 0
- Site-specific 0
- Short-term 0
- **High-resolution** 0
- Accurate 😳 \cap

2

AIRU-WRF:

The <u>AI</u>-Powered <u>Rutgers University Weather Research</u> & <u>Forecasting Model</u>

Modeling $\mu(\mathbf{s}, t; \boldsymbol{\theta}^{\boldsymbol{\mu}})$

NWP biases when downscaling to higher resolutions¹

Multi-type biases found:

- Shift Biases (over- & under- prediction)
- **Temporal Biases** (early/late)
- Spatial Biases (where)
- Nonlinear Biases (complex meteorological drivers)

$\mu(\mathbf{s}, t; \boldsymbol{\theta}^{\boldsymbol{\mu}})$ is essentially a calibration of the NWP...

Key difference: Existing literature mostly focuses on "shift biases," and does not fully link the biases to their driving meteorological conditions^{1,2,3}

^{1,2,3} Y. Gel et al. (2004), Chen, Niya, et al. (2013), Du, Pengwei (2018), Kosovic, Branko, et al. (2020)

Goal is to select $\tilde{\mathbf{Y}}^{\ell}(\mathbf{s}, t)$ and $\tilde{\mathbf{G}}(\mathbf{s}, t)$ so that they comprise features that are both meteorologically relevant & statistically significant.

We postulate the use of three sets of features, $g = \{g^e, g^\ell, g^c\}$

• \mathbf{g}^e : Exogeneous features (pressure, surface temperature, relative humidity, wind gust)

 \mathbf{g}^ℓ : Future & lagged values of NWPs o temporal bias correction

 \mathbf{q}^{c} : Physically Motivated Features

¹More about estimating geostrophic winds: Zhu, X. et al., (2014)

Modeling of $\mu(\mathbf{s}_i, t; \boldsymbol{\theta}^{\boldsymbol{\mu}})$

9

Examples of New Constructed features g^c

1. Geostrophic wind¹

RUTGERS

2. Thermal & Pressure Gradients

Modeling of $\mu(\mathbf{s}_i, t; \boldsymbol{\theta^{\mu}})$

With three sets of features, a question of interest is: Are all features relevant at all times?

- From a physics standpoint: Meteorological drivers of NWP bias change over space-time → distinct bias types/ magnitudes.
- From an ML perspective: The law of parsimony...

Back to AIRU-WRF:

$$F(\mathbf{s}_{i}, t) = \mu(\mathbf{s}_{i}, t; \boldsymbol{\theta}^{\boldsymbol{\mu}}) + \eta(\mathbf{s}_{i}, t; \boldsymbol{\theta}^{\boldsymbol{\eta}})$$
Forecast Variable
(with transformations)
$$Meso-scale$$
Low-frequency,
coarser-scale variations

• Assume data has been de-trended, i.e., we have:

$$Z(\mathbf{s},t) = Y(\mathbf{s},t) - \mu(\mathbf{s},t)$$

• We model $z(\mathbf{s}, t)$ as a spatio-temporal **Gaussian Process** (GP):

Prevalent approach to modeling spatio-temporal correlations:

$$C(\mathbf{u}, w) = C^{s}(\mathbf{u}) \times C^{t}(w)$$
Spatial kernel
Temporal kernel
Temporal kernel
Vind Advection and Its impact on
Spatio-Temporal Correlations:
$$cov\{Z(\mathbf{s}_{i}, t_{j}), Z(\mathbf{s}_{i'}, t_{j} + \Delta t)\}$$

$$cov\{Z(\mathbf{s}_{i}, t_{j} + \Delta t), Z(\mathbf{s}_{i'}, t_{j})\}$$
Statistical test based on space-time
variograms rejects the hypothesis of
symmetry in the local wind field,
especially in the ~1-3-hour range

RUTGERS ¹More : Cox, Isham (1988), Salvana & Genton (2022) 2 Closed-form expressions can be derived (Schlater, 2010)

Physically Justifiable Modeling of Spatio-Temporal Correlations:

The Lagrangian reference framework^{1,2}

Modeling of $\eta(\mathbf{s}_i, t; \boldsymbol{\theta}^{\boldsymbol{\eta}})$

Back to AIRU-WRF:

15

Experimental Setup				
Data Coverage	6 months (4-month in winter, 2-month in Summer)			
Forecast horizon	<pre>6 hours x 10-min resolution = 36 forecasting instances/hour</pre>			
# of locations	3 locations (E05, E06, ASOW)			

Benchmarks:		
(\mathfrak{B}_1) RU-WRF	: Physics-based model t	ailored to the region of interest.
(ℬ ₂) GOP	: Hybrid (statistical-phys	sical) approach
(\mathfrak{B}_3) LSTM	: Time Series Deep Lear	ning model - Purely data-driven
(\mathfrak{B}_4) PER	: Persistence forecast –	widely used as a benchmark
(\mathfrak{B}_5) ARIMA-X	: Autoregressive time se	ries model – statistical approach
Evalua	tions:	
(E ₁) Point forecasts		: MAE & RMSE
· -/	ala alaiti a fana anata	

(E₂) Probabilistic forecasts

: CRPS

Result #1: Filling the ML-Physics Chasm

RUTGERS **Result #2: Filling the ML-Physics Chasm** 60 NWP **Physics** Percentage Improvement (%) GOP 50 Data-PER Driven LSTM +Hybrid 40 30 20 10 0 2 3 5 6 4

Forecast horizon (hours)

Result #3: Filling the ML-Physics Chasm

RUTGERS

Result #5: From Wind Speed to Wind Power

✓ Statistical power curves from an operational wind farm (Ding, 2022)
 ✓ Evaluation using Power Curve Error Loss (Hering and Genton, 2010).

Rutgers

Result #6: Scenarios/Trajectories for Decision-Making Under Uncertainty

Operations & Maintenance for Offshore Wind Farms

(\mathbb{C}_1) High maintenance requirements

Transportation costs account for **30-70**% of offshore wind maintenance expenditures.

(\mathbb{C}_2) Limited accessibility

56% of inaccessibility, with up to **6** days of consecutive in-access.

(\mathbb{C}_3) Significant opportunity losses

cost of failing **15**MW turbine >> cost of a failing **3**MW turbine

Potential Solution: Opportunistic Maintenance i.e., Grouping maintenance actions at time of "opportunity" (1) Transportation-Based Opportunities Grouping maintenance to maximize the utilization of transportation/crew resources

Total vessel rentals: 2

(1) Transportation-Based Opportunities Grouping maintenance to maximize the utilization of transportation/crew resources

Total vessel rentals: 1

(2) Revenue-Based Opportunities Grouping maintenance at times of minimal revenue losses

(2) Revenue-Based Opportunities Grouping maintenance at times of minimal revenue losses

(3) Access-Based Opportunities Grouping Maintenance at times of "open" access

Vessel rentals: 3 Risk of failure: high

(3) Access-Based Opportunities Grouping Maintenance at times of "open" access

Vessel rentals: 1 Risk of failure: low

P. Papadopoulos, D. Coit, A. Aziz Ezzat, *Seizing Opportunity: Maintenance Optimization in Offshore Wind Farms Considering Accessibility, Production, and Crew Dispatch*, **IEEE Trans. on Sustainable Energy**, 2021.

What happens when you introduce uncertainties?

Opportunistic Maintenance is a double-edged sword! Small forecast errors can incur large cost implications

P. Papadopoulos, D. Coit, A. Aziz Ezzat, *STOCHOS: Stochastic Opportunistic Maintenance Scheduling* For Offshore Wind Farms, **IISE Transactions**, 2022.

Metric	PK-HOST	STOCHOS	PF-HOST	TBS	CMS
Vessel rentals	2.36	2.18	2.26	4.92	6.72
Production loss (MWh)	101.21	141.05	154.59	597.68	1037.24
Revenue loss (\$K)	5.10	7.10	7.83	29.85	51.64
Total PM tasks	5.00	4.53	4.48	2.35	0.00
Total CM tasks	0.00	0.47	0.52	2.65	5.00
Maintenance interruptions	0.66	0.43	0.64	1.23	1.83
Avg. total cost (\$K)	38.92	43.43	45.00	86.90	127.91
Cost increase from opt (\$K)	0.10	4.60	6.14	48.07	89.08
Median total cost (\$K)	35.86	39.69	42.36	84.11	127.16

What if we could influence the degradation process of OSW turbines by controlling certain turbine settings?

Trade-off: alleviate loading and increase the RUL, at the cost of reduced power production, and vice versa

P. Papadopoulos, F. Fallahi, M. Yildirim, A. Aziz Ezzat, POSYDON: Joint Production & Maintenance Optimization for Offshore Wind Farms, Under Review, 2023.

end of horizon cost

Metric	POSYDON	STOCHOS	DET	TBS	CMS
Cost (K\$)	159.3	273.8	398.4	715.0	1215.4
Revenue loss (K\$)	74.4	121.6	283.5	475.8	999.2
Production loss (GWh)	1.5	2.5	5.8	9.7	20.8
Downtime (days)	11.0	21.3	32.5	52.0	102.5
Cycle days unused/task	11.2	8.9	2.9	17.5	0.0
Preventive tasks	12	15	7	12	0
Corrective tasks	0	3	4	8	14
Vessel rentals	7	14	11	28	20
Attempts per rental	2.0	1.3	1.2	1.1	1.1
Successes per rental	1.7	1.3	1.0	0.7	0.7

How Maintenance Actions are Grouped:

A The Renewables & Industrial Analytics (RIA) Research Group at Rutgers University

Vision: "Addressing fundamental technical challenges of #RenewableEnergy through an #Analytics lens"

Research Sponsors:

Left to right: Feng Ye, Althea Miquela, Aziz Ezzat, Yating Fang, Petros Papadopoulos

Forecasting & Operations for the Rising U.S. Offshore Wind Energy Sector

Ahmed Aziz Ezzat, Ph.D. *Renewables & Industrial Analytics Research Lab Rutgers, The State University of NJ*

aziz.ezzat@rutgers.edu

https://sites.rutgers.edu/azizezzat/

