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Motivation: The Rise of the U.S. Offshore Wind Energy
Sector — Great Promise Ahead
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Motivation: The Rise of the U.S. Offshore Wind Energy
Sector — Great Promise Ahead

The U.S. Mid/North Atlantic

The largest and first contributor to the U.S OSW goal
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Motivation: The Rise of the U.S. Offshore Wind Energy
Sector — Great Promise Ahead
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Massive scales,
Harsh environment,
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Goal: Tailored Analytics (i.e., DS/OR) to minimize the
uncertainties in operating ultra-scale offshore wind farms.

Case #1: Analytics for Offshore Wind Energy Forecasting
Case #2: Analytics for Offshore Wind Operations & Maintenance 4



Rutgers’ tailored version of WRF for
the U.S. Mid- & North Atlantic
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éxisting Technology: RU-WRF
o Developed by RUCOOL at Rutgers University
o Independently validated by NREL (2020)
o Best “Tailored” model in the region.

Goal: To develop AIRU-WREF:
o Al-powered

o Site-specific

o Short-term
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RUTGERS

AIRU-WREF:

The Al-Powered Rutgers University Weather Research
& Forecasting Model

F(si, ) ZE‘M(Sz',t;W)“? n(s;,t; M)
! \ i o ' 7 g

Forecast Variable Meso-scale : Sub-meso-scale

(with transformations) Lowfrequency, High-frequency,
. So0rserscale variations . finer-scale variation
Numerical Weather Predictions Machine Learning

are most useful here. .. 1s most useful here...



"More about NWP biases in f ing: .
RUTGERS ™" *uceney etar 2020y " Modeling s(s, t; )

NWP biases when downscaling to higher resolutions!
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Multi-type biases found:

Shift Biases (over- & under- prediction)
Temporal Biases (early/late)

Spatial Biases (where)

O
O
O
o Nonlinear Biases (complex meteorological drivers)



RUTGERS Modeling /(s t;0#)

u(s,t;0) is essentially a calibration of the NWP...

Key difference: Existing literature mostly focuses on “shift biases,” and does not fully link the biases
to their driving meteorological conditions!?3
123 Y. Gel et al. (2004), Chen, Niya, et al. (2013), Du, Pengwei (2018), Kosovic, Branko, et al. (2020)

Additive Bias M ultipliclative Bias
A

| 1
~

u(s, t) = 'aTYg(s, t)+ bT(N}(s,lt) + (CTG(S, t) Y(s,t)

RN

Numerical Weather

Bias-related Predictions

Features

v

Goal is to select Yg(s7 t) and (N}(s7 t) so that they comprise features
that are both meteorologically relevant & statistically significant.

We postulate the use of three sets of features, g = {g°, gl g}
» g€ : Exogeneous features (pressure, surface temperature, relative humidity, wind gust)




];QJTGERS "More about estimating geostrophic winds:

Zhu, X. et al., (2014)

Examples of New Constructed featuresg®
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2. Thermal & Pressure Gradients
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RUTGERS Modeling of 1i(s;, t;0H)
With three sets of features, a question of interest is:
Are all features relevant at all times?

* From a physics standpoint: Meteorological drivers of NWP bias
change over space-time - distinct bias types/ magnitudes.

 From an ML perspective: The law of parsimony...

Dynamic Feature Selection
Only select features when they matter!

G(s,t) = {GWy, GST,, U;,, V;3,STPD_;}
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RUTGERS

F<Si7 t)

Forecast Variable
(with transformations)

Back to AIRU-WRF:
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Meso-scale Sub-meso-scale
Low-frequency, High-frequency,
coarser-scale variations % finer-scale variation
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RUTGERS Modeling of 7)(s;,t;0M)
« Assume data has been de-trended, i.e., we have:

Z(s,t) =Y (s,t) — u(s,t)

- We model z(s, ) as a spatio-temporal Gaussian Process (GP):

Z(s,t) ~GP <m(s, t),C(u, w)) E : :
/
. GP covariance % =
GP mean function function (Kernel) = « -
—J T I |
+ Covariance functions (Kernels): e e e e
O(“? w)\A: CO’U{Z(SZ', t]), Z(SZ'/, t]/>}
} Temporal Lag
spatial Lag "~ !~ But, how to select C(u, w)
u=|ls; —sy||

12



RUTGERS More ab;’ftsiz?;{";fg“;ggggjymme”y Modeling of(s;, t; 6")
Prevalent approach to modeling spatio-temporal correlations:

C(u,w) = C*(u) x C'(w)

4 \
Spatial kernel Temporal kernel
Wind Advection and Its impact on _.\_,V\lffsterl I{Vind |
Spatio-Temporal Correlationst: s OPASAMION
cov{Z(s;,t;), Z(sy, t; + At)}
> P P
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0.0
|

Statistical test based on space-time
variograms rejects the hypothesis of
symmetry in the local wind field,
especially in the ~1-3-hour range
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Asymmetry Estimate, a(s;, s;7, u)
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RUTGERS More : Cox, Isham (1988), Salvana & Genton (2022) ) Modeling Of 77(87:7 ‘[/‘7 9’77)

2 Closed-form expressions can be derived (Schlater, 2010

Physically Justifiable Modeling of Spatio-
Temporal Correlations:

The Lagrangian reference framework!:2
C(u,w) =EgC(u—06w), 6 cR?
! K

Spatial lag  Advection Temporal lag
vector

14



RUTGERS

Back to AIRU-WREF:

Y(s,t) = p(s, t:0%) +n(s, t:07) + (s, 1; 6°)
/ e

Wind Speed The Meso-scale The Turbine-scale Unexplained Variability
Low-frequency, coarse-scale High-frequency, fine-scale White Noise
variations variations

15



RUTGERS Back to our case study...

Experimental Setup

Data Coverage 6 months (4-month in winter, 2-month in Summer)

6 hours x 10-min resolution
= 36 forecasting instances/hour

Forecast horizon

# of locations 3 locations (E05, E06, ASOW)

Benchmarks:
('B,) RU-WRF : Physics-based model tailored to the region of interest.
('B,) GOP : Hybrid (statistical-physical) approach
(B;) LSTM : Time Series Deep Learning model - Purely data-driven
(B,) PER : Persistence forecast — widely used as a benchmark
(‘B;) ARIMA-X : Autoregressive time series model — statistical approach
Evaluations:
(€,) Point forecasts : MAE & RMSE

(€,) Probabilistic forecasts : CRPS

16



RUTGERS

Average hourly MAE at E05
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RUTGERS

Percentage Improvement (%)
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Result #3:
Filling the ML-Physics Chasm
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Result #4:
Filling the ML-Physics Chasm
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RUTGERS

v’ Statistical power curves from an operational wind farm (Ding, 2022)
v’ Evaluation using Power Curve Error Loss (Hering and Genton, 2010).
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RUTGERS

Wind speed [m/s]

Result #6: Scenarios/Trajectories for
Decision-Making Under Uncertainty
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RUTGERS

Operations & Maintenance for Offshore Wind Farms

(C,) High maintenance requirements

Transportation costs account for 30-70%
of offshore wind maintenance expenditures.

(C,) Limited accessibility

,,,,,
aEiel

| 96% of inaccessibility, with up to 6 days of
i consecutive in-access.

(C;) Significant opportunity losses
: cost of failing 1 5MW turbine >> cost of a
= =—— failing 3MW turbine

Potential Solution: Opportunistic Maintenance
1.e., Grouping maintenance actions at time of “opportunity”

23



(1) Transportation-Based Opportunities
Grouping maintenance to maximize the utilization of
transportation/crew resources

Total vessel rentals: 2

ae- /e .
Mﬁ Tlme
T T+5
Planned Planned

maintenance maintenance

24



(1) Transportation-Based Opportunities
Grouping maintenance to maximize the utilization of
transportation/crew resources

Total vessel rentals: 1

M
Time

T T+5
Planned Planned
maintenance maintenance

25



(2) Revenue-Based Opportunities
Grouping maintenance at times of minimal revenue losses

Total revenue loss

—p—
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o
- |
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=
=
g o= o= )
) Time
(a4
T+4 T+7
Planned Planned
maintenance maintenance
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(2) Revenue-Based Opportunities
Grouping maintenance at times of minimal revenue losses

Total revenue loss
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Q

(7]

(7]

(@)
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Q
(2
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Planned Planned
maintenance maintenance
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(3) Access-Based Opportunities
Grouping Maintenance at times of “open” access

Vessel rentals: 3
Risk of failure: high

Q=== >Q====>0
aw= .
A=, =) T+3  T+5
Planned Planned

maintenance maintenance



(3) Access-Based Opportunities
Grouping Maintenance at times of “open” access

Vessel rentals: 1
Risk of failure: low

o
a-

ﬂ;s)_—:%) T+3 T+5

Planned Planned
maintenance maintenance




P. Papadopoulos, D. Coit, A. Aziz Ezzat, Seizing Opportunity.: Maintenance Optimization in Offshore Wind Farms
Considering Accessibility, Production, and Crew Dispatch, IEEE Trans. on Sustainable Energy, 2021.

Total profit

Hourly Maintenance costs Transportation and Crew
f \ revente costs
max S+Zl s =) My pri —Kemy; =@y —V-2,]-Q-0— Q- g
d €L teT
deD

Short-term Short-term

Long-termPM  Long-term CM PM decision ~ CM decision

decision var. decision var. . var.

ld:Z[Hd-péi—K-mii—@-néi—\lf-n(mii—l—nii) —Q-vﬁ Yd € D
i€l

Daily Maintenance Costs Daily Transportation and Crew costs

Daily revenue

# vessel vessel total productio 4 PM #CM  total cost total cost
Method rentals utilization downtime n loss . . reduction
(%) (h) (MWh) actions actions (SK) (%)
HOST 6.8 83.7 131.8 312.6 9.9 1.2 118.9 -
BESN 8.0 74.2 136.7 348.9 9.8 1.3 126.4 5.9%
PBOS 9.4 79.9 137.3 331.1 9.7 1.3 1289 7.8%
TBS 13.3 63.7 156.3 504.0 7.2 3.9 182.4 34.8%
CMS 12.9 81.0 518.8 2624.3 0.0 11.0 4125 71.2%



What happens when you introduce uncertainties?

Opportunistic Maintenance is a double-edged sword!
Small forecast errors can incur large cost implications

* Vessel rentals: 2

« False opportunities: 1

* Missed opportunities: 2
* Risk of failure: high

Time

Missed!

Missed!

Accessibility
—t—

T+3 T+5

Planned Planned
maintenance maintenance
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P. Papadopoulos, D. Coit, A. Aziz Ezzat, STOCHOS: Stochastic Opportunistic Maintenance Scheduling
For Offshore Wind Farms, IISE Transactions, 2022.

short-term profit l()ng—torm profit

Y.
max { |STH Z |LTH
L
8 deD

R
Mt,i,My ;67T g,
prolonged interruptions
A

spot resource contracting
N\

S — Z [Z wis+ Ys-big)+ rCl cay + Co - ag ] }

s’ES 1€L

7

hd

stochastic penalty term

PK-HOST STOCHOS PF-HOST

Vessel rentals 2.36 2.26 4.92 6.72
Production loss (MWh) 101.21 154.59 597.68 1037.24
Revenue loss ($K) 5.10 7.83 29.85 51.64
Total PM tasks 5.00 4.48 2.35 0.00
Total CM tasks 0.00 0.52 2.65 5.00
Maintenance interruptions 0.66 0.64 1.23 1.83
Avg. total cost ($K) 38.92 45.00 86.90 127.91
Cost increase from opt ($K) 0.10 6.14 48.07 89.08
Median total cost ($K) 35.86 42.36 84.11 127.16

32



What if we could influence the degradation process of
OSW turbines by controlling certain turbine settings?

Revenue
loss

Better
maintenance

opportunity

= l
a= Y .
Accessibility
Time
=25, B T+4 T+7T+8

Remaining Remairegnaining
useful life useful lifseful life
WTH1 WT2 WT1 &2

33



Trade-off: alleviate loading and increase the RUL, at the cost of reduced power production, and vice versa

"5' A (17.5, 12.5) Increased
= loading
-] -—
o) 5 12575 I (reduced RUL)
[
a;’ E (7.5,2.5)
o jo)
o c_uu) (2.5, -2.5) -
E (-2.5,-7.5) -
2
>CE (-7.5,-12.5) -
> Reduced loadin
. 4 (-12.5, -17.5) - . 9
Wind speed (increased RUL)
Wind speed
N\
Y < yaw

misalignment

Rotor axis
Wind stream direction =  SSESSS——y -SSR e

Perfect yaw

allgnment =0 yaw Effect on degradation
misa“gn ment *  Potential to alleviate

certain load variations
up to 70% 34




Scaled power

/r
------ —-_———— I
0.8 %l i
""" = : : Day-ahead equivalent RUL gain/loss
E ------ (I 1 - % ~
U 0.6 1 1 1 I 1
_____ 11 1 1 0 0
L T I /\i,s=/\is+ is| E YR E :'Yt,i,j'ﬂ,i,j,s
3 E— 1 . . 24 °
= 0.4 At t teT €T
i E— N I -
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P. Papadopoulos, F. Fallahi, M. Yildirim, A. Aziz Ezzat, POSYDON: Joint Production & Maintenance
Optimization for Offshore Wind Farms, Under Review, 2023.

long -term profit

short-term profit prolonged interruptions

STH LTH
me,isYt,i,j E : E
deD sES i1€Z
RUL gain cycle days lost due th early maintenance
A " N
A 0 0 I
= Ais = /\”s Z Mei — Z()‘i,s —d) md,z,S) ]
teT deD

end of horizon cost

Metric POSYDON STOCHOS DET TBS CMS
Cost (KS) 273.8 398.4 715.0 1215.4
Revenue loss (KS) 121.6 283.5 475.8 999.2
Production loss (GWh) 2.5 5.8 9.7 20.8
Downtime (days) 21.3 32.5 52.0 102.5
Cycle days unused/task 8.9 2.9 17.5 0.0
Preventive tasks 15 7 12 0
Corrective tasks 3 4 8 14
Vessel rentals 14 11 28 20
Attempts per rental 1.3 1.2 1.1 1.1
Successes per rental 1.3 1.0 0.7 0.7 6




True RUL [days]

How Maintenance Actions are Grouped:

Optimization horizon [days]
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The Renewables & Industrial Analytics (RIA)
RA Research Group at Rutgers University

Vision: “Addressing fundamental technical challenges of
#RenewableEnergy through an #Analytics lens”

Research Sponsors:

NJSEDA

ECONOMIC DEVELOPMENT AUTHORITY

alls

COGNITE

Left to right: Feng Ye, Althea Miquela, Aziz Ezzat, Yating Fang, Petros Papadopoulos 38
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