Entropic forcing from microscales to megascales

Greg Holloway. Inst Ocean Sciences
Overview -- the problem:
Oceans, lakes and (most) duck ponds are too big.

See 10^{24} to 10^{30} excited degrees of freedom. Get a bigger computer? Even biggees care state vectors of maybe 10^{10}. For every variable resolved, one must guess dependence 10^{15} unknowns. Rethink!
Back to basics: what are the equations of motion?
Back to even more basic: motion of what?

Dependent variables as expectations:

\(y = \text{state vector (temp, salin, veloc, ...)} \) \[y \sim 10^{30} \]

for this \(y \) textbooks give us \(\frac{dy}{dt} = f(y) + g \)

\(dp = p(y)dy : \text{probability actual } y' \text{ within } dy \text{ of } y \)

expectations \(Y = \int y dp, \ R = \int r(y) dp. \) \[Y \] can be small

\(\frac{dY}{dt} = F(Y) + G + \text{“more”}. \) “more” because \(F \neq \int f dp \)

what to do about “more”?
Back to basics: what are the equations of motion?

Back to *even more basic*: motion of what?

Dependent variables as expectations:

\[y = \text{state vector (temp, salin, veloc, ...)} \]

\[y \sim 10^{30} \]

for this \(y \) textbooks give us

\[\frac{dy}{dt} = f(y) + g \]

\[dp = p(y)dy : \text{probability actual } y' \text{ within } dy \text{ of } y \]

expectations

\[Y = \int y dp, \quad R = \int r(y) dp. \]

\[[Y] \text{ can be small} \]

\[\frac{dY}{dt} = F(Y) + G + \text{“more”}. \]

“more” because

\[F \neq \int f dp \]

what to do about “more”? entropy

\[H = -\int dp \log(p) \]
three choices:
a) forget \(\frac{d}{dt} \), forcing, dissip. let \(Y \) maximise \(H \)
b) “more” are such to maximise production of \(H \)
c) “entropic force”: \(\frac{dY}{dt}=F(Y)+G+C\cdot \partial_Y H \)

\(C\cdot \partial_Y H \) has two parts: \(C \) and \(\partial_Y H \). \textit{n.b}: “accessible”

\(C\cdot \partial_Y H \sim C\cdot \partial_Y \partial_Y H \cdot (Y-Y^*)=K \cdot (Y-Y^*) \) where

\(Y^* \) only needs be evaluated at “small” \(\partial_Y H \)

\(\text{(n.b: you still need } K) \)
Arctic Ocean Models Intercomparison Project: To compare models, T and S are simple. Average, make heat or “freshwater” storage, etc. What to do about \(V \)?

Define “topostrophy”

\[
\tau \equiv f \times V \cdot \nabla D,
\]

a scalar that averages like T or S. Normalize

\[
\tau = \frac{\langle f \times V \cdot \nabla D \rangle}{\sqrt{\langle |f \times V|^2 \rangle \langle |\nabla D|^2 \rangle}}
\]

then \(-1 \leq \tau \leq +1\)

Arctic observers refer to prevalent “cyclonic rim currents”, large + \(\tau \)
Interesting, but what is observed?
In plain words --

1) **entropy** \((-\int \log(p)\, dp)\) is “starved” at short scales

2) simplest enstrophy \((\zeta + h)^2 = \zeta^2 + 2\zeta h + h^2\)

3) organizing a little \(\zeta h < 0\) (losing entropy)

4) generates \(\zeta^2\) (=short scales, gaining entropy)

5) hence “**entropic forcing**” drives \(\zeta \Rightarrow -h\)

 or \(\mathbf{V} \Rightarrow -\mathbf{f} \times \nabla D\) or \(\tau > 0\)
Can we estimate topostrophy from current meter records?
17120 CM records, 83087 months later ...
Topostrophy vs. latitude and relative depth
Interesting, but what is observed?
Examples from nanoworld (colloids, ‘machines’, microbiol): The only explicit physics is repulsion among balls, and from walls. “See” attraction. “Entropic forcing” in the lab!
change subject, change scale, change physics:

1. internal waves => “buoyancy range” => “turbulence” => dissip

2. where does downward buoyancy mixing occur?
 puzzle: persistent countergradient fluxes (“PCG”s) -- why?
one integral: total \((KE + PE)\) energy = waves + vortical energy

\(Y^*:\) at each \(\alpha,\beta\) wave energy = 2x vortical, \(KE = 2x PE\)

with forcing & dissip, much more energy at low \(\alpha,\beta\)

\(C \cdot \partial_y H\) meets 2 demands: 1) transfer energy to high \(\alpha,\beta\)

2) seek \(KE = 2x PE\) at each \(\alpha,\beta\)

transfer depends on \(\theta_{kpq} = \left(\mu_k + \mu_p + \mu_q\right)/\left(\left(\mu_k + \mu_p + \mu_q\right)^2 + \left(\omega_k + \omega_p + \omega_q\right)^2\right)\)

\(\mu \ll \omega\) see resonant wave interactions, \(\mu \gg \omega\) see turbulence

\(\theta \approx \tau^{-1}/\left(\tau^{-2} + N^2\right)\) where \(\tau \approx \epsilon^{-1/3} k^{-2/3} \Rightarrow D_U \approx \theta \tau^{-2} k^2 \Rightarrow U \approx N^2 k^{-3} + \epsilon^{2/3} k^{-5/3}\)

transfer of veloc variance (KE) is less efficient than tracer var (PE), \(KE > 2xPE\) at lower \(\alpha,\beta\), \(KE < 2xPE\) at higher \(\alpha,\beta\)

vertical buoyancy flux \(F = w'b'\) converts: \(\partial_t KE = - \partial_t PE = F\)
Figure 3. k^2 x variance spectra.

“BT” = buoyancy variance from T.
“BS” = buoyancy variance from S.
“2B” = 2 x total buoyancy = 2(BT+BS).
“U” = buoyancy variance from U.
Figure 4. FT and FS corresponding to Fig. 3.
Summary

1. See dependent variables as expectations
2. Entropy gradients force expectations
3. *E.g.* eddy forcing mean flow along slopes with secondary upwelling
 E.g. internal waves / vortical => mixing with persistent countergrad fluxes

Outlook

1. Work at less fudge
2. Alternatives (max entropy production, ...?)
3. Further applications (sea ice, ...?)