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Modelling of income or wealth distributions

Pareto [1897] observes power law tail i.e. f(w) being the PDF of individuals
with wealth/income w ≥ 0, we have∫ ∞

w
f(w∗) dw∗ ∼ w−µ,

is the number of people having income greater or equal than w.

R. Gibrat (1904-1980) proposes a lognormal law
f(w) = exp(−(logw)2)/(

√
πw) for the middle income range.
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Gibrat’s law or law of proportional effects

The simplest microscopic market dynamic that originates a lognormal
behavior was proposed by R.Gibrat in Les inégalités économiques, Paris,
(PhD, 1931) through the multiplicative random process, or "law of
proportional effects"

w → w′ = b(t)w

where b(t) is a nonnegative random variable. This yields log(w) normally
distributed and thus w lognormal.
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The law of proportionnal effects applies in
several domains

(Non exhautive list)

– Distribution of size of firms, of cities ∗

– Distribution of income, of wealth, of consumption †

– Distribution of river flows ‡

∗Gibrat 1931 ; Sutton Jal of Economic Literature 1997
†Gibrat 1931 ; Battistin et al. 2007
‡Gibrat 1932, S. El Adlouni et al 2008
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Part 2 : Binary Microscopic dynamics

Microscopic trade dynamics between agents with money (w, w∗)

w′ = (1− γ)w + γw∗ + ηw

w′∗ = (1− γ)w∗ + γw + η∗w∗

where (w, w∗) denotes the money of two arbitrary agents before the trade
and (w′, w′∗) the money after the trade.

The transaction coefficient γ ∈ (0,1) is constant and η and η∗ are random
variables with the same distribution with variance σ2 and zero mean.

The first term is related to the marginal saving propensity , the second
corresponds to the monetary transaction, and the last are the effects of
speculative trading
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Kinetic equations

The PDF f(w, t) obeys ∗

∂f

∂t
=
∫
IR2

∫ ∞
0

(β(′w,′w∗)→(w,w∗)
1

J
f(′w)f(′w∗)− β(w,w∗)→(w′,w′∗)

ff∗)dw∗ dη dη∗

where (′w,′w∗) are the pre-trading money that generates the couple (w, w∗).
In the equation J is jacobian of the transformation of (w, w∗) into (w′, w′∗)
and β is related to the probability of the interactions.

∗S.C., L.Pareschi, G.Toscani, Jal of Stat. Phys. (2005).
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Continuous trading scaling

For large number of small exchange of money (asymptotics related to
quasi-elastic limit for granular gases ∗) we obtain a linear Fokker-Planck
equation †

∂g

∂τ
=

λ

2

∂2

∂w2

(
w2g

)
+

∂

∂w
((w −m)g) .

∗G. Toscani, M2AN (2000)
J.A. Carrillo, S.C., G. Toscani, DCDS-A (2009)
†J.P.Bouchaud, M.Mézard, Physica A, (2000).
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Equilibrium states

g∞(w) =
(µ− 1)µ

Γ(µ)

exp
(
−µ−1

w

)
w1+µ

, µ = 1 +
2

λ
> 1.

Thus, the obtained stationary distribution exhibits a Pareto power law tail
for large w.

g∞(w) ≈ Cw−(1+µ), w →∞.
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Reversible dynamics
For any time reversible interaction, it is proved ∗ that the corresponding
stationary state of the money distribution function f(w, t) is characterized by
a Boltzmann-Gibbs (exponential) law

f(w) =
exp(−w/w̄)

w̄

Conclusion :

Kinetic theory in economy is a powerful tool and can help to derive
mathematical models of binary interactions which yields to for income
(wealth) distributions with Pareto or Boltzmann-Gibbs law.

One main limitation is that the probability of trading is , by construction,
independant of the agent.

∗L.Pareschi, G. Toscani Jal of Stat. Phys. (2006).
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Part 3 : a simple model of financial market

– We consider now a simple kinetic model that describes the behavior of
a financial market related to the Levy-Levy-Solomon (LLS) microscopic
model. We derive and analyze the model in the case of a single stock ††

– We consider a set of financial agents i = 1, . . . , N . We denote by wi the
money (wealth) of agent i and by ni the number of stocks of the agent.
Additionally we use the notations S for the price of the stock and n for the
total number of stocks.

γiwi = niS

– The essence of the dynamic is the choice of the agent’s portfolio. More
precisely at each time step each agent selects which fraction of money to
invest in bonds and which fraction γ in stocks. We indicate with r the
(constant) interest rate of bonds.

††H.Levy, M.Levy, S.Solomon, Academic Press, New York, (2000)
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The microscopic dynamic

If an agent has invested γiwi money in stocks and (1− γi)wi money in bonds
at the next time step he will achieve

w′i = (1− γi)wi(1 + r) + γiwi(1 + x′),

= wi + wi(1− γi)r + ni(S
′ − S + D′),

where x′ is the rate of return of the stock given by

x′ =
S′ − S + D′

S
.

S′ is the new price of the stock and D′ is a stochastic variable taking into
account the dividends paid by the company at the end of the time period.
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The demand curve

– In practice for any hypothetical price Sh each investor find the optimal
proportion γh

i which maximize his/her expected utility. Thus we have a
demand curve γh

i (Sh) as a function of the price. Typically this demand curve
is a non increasing function of Sh.

– Note that, if we assume that all investors share the same informations and
have the same risk aversion then they will have the same proportion of
investment in stock regardless of their money, thus

γh
i (Sh) = γh(Sh).

– To make the model more realistic typically a source of stochastic noise,
which characterizes all factors causing the investor to deviate from his opti-
mal portfolio, is introduced in the optimal proportion of investments γh(Sh).
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Market clearance

Next, each agent formulates a demand curve

nh
i = nh

i (S
h) =

γh(Sh)wh
i (S

h)

Sh

characterizing the desired number of stocks as a function of Sh and wh
i . This

number of share demands is a monotonically non increasing function of the
hypothetical price Sh.

As the total number of stocks

n =
N∑

i=1

ni

is preserved the new price S′ is given by the market clearance condition
N∑

i=1

nh
i (S

′) = n.

This will fix the value w′ and the model can be advanced in time.
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The kinetic model

Let us define f = f(w, t), w ∈ R+, t > 0 the distribution of money w.
We assume that the percentage of wealth invested γ(ξ) = µ(S(t)) + ξ, where
ξ is a random variable in [−z, z], z = min{−µ(S(t)),1− µ(S(t))} distributed
accordingly to Φ(µ(S(t), ξ) with zero mean and variance ζ2. Here µ(S(t)) is
assumed to be a monotonically non increasing function of the price S(t) ≥ 0
such that 0 < µ(0) < 1.

Note that given f(w, t) the actual stock price S(t) is determined as the
unique solution of the demand-supply relation

S(t) =
1

n
E[γw] =

1

n

∫ ∞
0

∫ z

−z
Φ(µ(S(t)), ξ)γ(ξ)f(w, t)w dξ, dw,

where for simplicity the total number of agents has been normalized
ρ =

∫∞
0 f(w, t)dw = 1. More precisely since γ and w are independent we have

S(t) =
1

n
E[γ]E[w] =

1

n
µ(S(t))w̄(t), w̄(t) =

∫ ∞
0

f(w, t)wdw.
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The equilibrium price
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The new wealth

At the next round, the new wealth of the investor will depend on the future
price S′ and the percentage of money invested γ accordingly with

w′(S′(t), γ, η) = ((1− γ)(1 + r) + γ(1 + x(S′(t), η)))w,

where the expected rate of return of stocks is given by

x(S′(t), η) =
S′(t)− S(t) + D + η

S(t)
.

where η is a symmetric random variable in distributed accordingly to Θ(η)

with zero mean and variance σ2 which takes into account the effects of the
dividends paid by the company. The above equation requires to estimate the
future price S′ which is unknown.
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The new portfolio
The dynamic is then determined by the new fraction of money invested
γ′(ξ′) = µ(S′(t)) + ξ′ where ξ′ is a random variable in [−z′, z′], where
z′ = min{µ(S′(t)),1− µ(S′(t))} distributed accordingly to Φ(µ(S′(t)), ξ′).

We have the demand-supply relation

S′(t) =
1

n
E[γ′w′],

which permits to write the following equation for the future price

S′(t) =
1

n
E[γ′]E[w′] =

1

n
µ(S′(t))E[w′].
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The future price

Now

E[w′] = E[w](1 + r) + E[γw](E[x(S′, η)]− r),

= w̄(1 + r) + µ(S)w̄

(
S′ + D − S

S
− r

)
.

This gives the identity

S′ =
1

n
µ(S′)w̄

[
(1 + r) + µ(S)

(
S′ + D − S

S
− r

)]
.

Using the equation for the price, we can eliminate the dependence on the
mean wealth and write

S′ =
µ(S′)

µ(S)

[
(1− µ(S))S(1 + r) + µ(S)(S′ + D)

]
S′ =

(1− µ(S))µ(S′)

(1− µ(S′))µ(S)
(1 + r)S +

µ(S′)

1− µ(S′)
D.

Victoria - 2 july 2009 19



Price behavior
The equation for the future price deserves some remarks
– If µ(·) = C, with C ∈ (0,1) constant then

S′ = (1 + r)S +
C

1− C
D

which corresponds to a dynamic of grow of the prices at rate r.
– In the general case if we set

g(S) =
1− µ(S)

µ(S)
S

the future price is given by the implicit equation

g(S′) = g(S)(1 + r) + D

for a given S. The function g(S) is monotonically increasing with respect
to S. This gives the existence of a unique fixed point. Moreover if r = 0 and
D = 0 the unique fixed point is S′ = S and the price is unchanged in time.
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A linear kinetic equation

evolution of the PDF of wealth is given by the linear kinetic equation

∂f(w, t)

∂t
=
∫
IR

∫ z

−z

(
β(′w → w)

1

j(ξ, η, t)
f(′w, t)− β(w → w′)f(w, t)

)
dξ dη.

The value ′w is obtained simply by inverting the dynamics to get

′w =
w

j(ξ, η, t)
, j(ξ, η, t) = 1 + r + γ(ξ)(x(S′(t), η)− r),

where the value S′(t) is given as the unique fixed point of the future price
equation. The presence of the term j in the integral is needed in order to
preserve the total number of agents. β takes the form

β(w → w′) = Ψ(w′ ≥ 0)Φ(µ(S(t)), ξ)Θ(η),
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Properties
The equation in weak form takes the simpler form

d

dt

∫ ∞
0

f(w, t)φ(w)dw =
∫ ∞
0

∫
IR

∫ z

−z
Φ(ξ)Θ(η)f(w, t)(φ(w′)− φ(w))dξ dη dw.

From this follows the conservation of the total number of investors taking
φ(w) = 1. The choice φ(w) = w gives the time evolution of the average
wealth which characterizes the price behavior

d

dt
w̄(t) =

(
(1− µ(S(t)))r + µ(S(t))

S′(t) + D − S(t)

S(t)

)
w̄(t).

If we now set

m(t) = min

{
r,

1

t

∫ t

0

S′(s) + D − S(s)

S(s)
ds

}
, M(t) = max

{
r,

1

t

∫ t

0

S′(s) + D − S(s)

S(s)
ds

}
we have the bound

w̄(0) exp (m(t) t) ≤ w̄(t) ≤ w̄(0) exp (M(t) t) .

Analogous bounds for moments of higher order can be obtained.
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Evolution of the price

d

dt
S =

µ(S)

µ(S)− µ̇(S)S

(
(1− µ(S))r + µ(S)x̄(S′)

)
S,

For a constant µ(·) = C, C ∈ (0,1) we have the explicit expression for the
growth of the wealth (and consequently of the price)

w̄(t) = w̄(0) exp(rt) +
nD

1− C
(exp(rt)− 1).
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Fokker-Planck asymptotics
As for binary trading models, it is difficult to study in details the asymptotic
behavior. Particular asymptotics result in simplified models of Fokker-Planck
type, for which it is easier to analyze their asymptotic behavior

We start from the weak form of the kinetic equation and consider a second
order Taylor expansion of φ around w

φ(w′)−φ(w) = w(r+γ(x(S′(t), η)−r))φ′(w)+
1

2
w2(r+γ(x(S′(t), η)−r))2φ′′(w̃),

where w̃ = θw′ + (1− θ)w, for some 0 ≤ θ ≤ 1.

Victoria - 2 july 2009 24



Asymptotic limit

Consider r → 0. In order for such limit to have a sense and preserve the
characteristics of the model, we must rescale the time τ = rt, assume that

lim
r→0

σ2

r
= ν, lim

r→0

D

r
= δ, (Perpetuity)

Note that the above limits imply that limr→0 S′ = S.
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Fokker-Planck equation
Standard computations yields to Fokker-Planck equation

∂

∂τ
f =

∂

∂w

[
−A(S(τ), δ)wf +

1

2
B(S(τ), ν)

∂

∂w
w2f

]
,

with

A(S, δ) = 1 + µ(S)

(
(κ(S)− 1) +

µ(S)(κ(S)− 1) + 1

1− µ(S)

δ

S

)
B(S, ν) = (µ(S)2 + ζ2)ν/S2,

and

κ(S) =
µ(S)(1− µ(S))

µ(S)(1− µ(S))− µ̇(S)
≤ 1

We remark that even for the Fokker-Planck model the mean wealth is
increasing with time.
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Lognormal behavior
In order to search for self-similar solutions we consider the scaling

f(w, τ) =
1

w
g(χ, τ), χ = log(w).

Then g(χ, τ) satisfy the linear convection-diffusion equation

∂

∂τ
g(χ, τ) =

(
B

2
−A

)
∂

∂χ
g(χ, τ) +

B

2

∂2

∂χ2
g(χ, τ),

which admits the self-similar solution

g(χ, τ) =
1

((2π)(2τ + 1))1/2
exp

(
−

(χ + (B/2−A)τ)2

B(2τ + 1)

)
.

Reverting to the original variables we obtain the lognormal asymptotic
behavior of the model

f(w, τ) =
1

w((2π)(2τ + 1))1/2
exp

(
−

(log(w) + (B/2−A)τ)2

B(2τ + 1)

)
.
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Part 4 - Numerical results
Performed using Monte Carlo simulations

– In all the numerical tests we use N = 1000 agents, n = 10000 shares, a
riskless interest rate r = 0.01 and an average dividend growth rate D =

0.015.
– Initially each investor has a total wealth of 1000 composed of 10 shares, at

a value of 50 per share, and 500 in bonds.
– The random variables ξ and η have been supposed distributed accordingly to

a truncated normal distribution so that negative wealth values are avoided
– We compare the results obtained with one single run of the simulation with

a direct solution of the price equation.
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Test 1
We assume that the agents simply follow a constant investments rule
µ(S(t)) = C, with 0 < C < 1 constant. As a consequence of our choice of
parameters we have C = 0.5.
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Test 2
µ(S(t)) monotone decreasing function of the price S(t). More precisely we
take

µ(S(t)) = C1 + (1− C1)e
−C2S(t)

with C1 = 0.2 and C2 = 0.01.
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Test 3

Compare Boltzmann model and Fokker-Planck model. To this end, we
consider the self-similar scaling and compute the solution for the values
r = 0.001, D = 0.0015 with ξ and η/S(0) distributed with standard deviation
0.05. Constant value of µ = 0.5 at different times t = 50,200,500

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5
x 10−3

w

f(w
,t)

Test 3. Distribution function at t = 50,200,500. The continuous line is the
lognormal Fokker-Planck solution.
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Test 3- Gini coefficient

We compute the Lorentz curve L(F (w, t)) defined as

L(F (w, t)) =

∫ w

0
f(v, t)v dv∫ ∞

0
f(v, t)v dv

, F (w, t) =
∫ w

0
f(v, t) dv,

Gini coefficient G ∈ [0,1] is defined by

G = 1− 2
∫ 1

0
L(F (w, t)) dw.

measures inequality in the wealth distribution. A value of 0 corresponds to
the line of perfect equality.
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Test 3- Gini coefficient
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Test 3. Lorentz curves. Gini coefficients are G = 0.1, G = 0.2 and G = 0.3

respectively.

Inequalities grow in time due to the speculative dynamics.
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Conclusions

– We have derived a simple linear kinetic model which describes a financial
market under the assumption that the strategy of investments is given as a
function of the price.

– The model is able to describe the exponential grow of the price of the stock
and of the wealth above the rate produced by simple investments in bonds.

– The long time behavior of the model has been studied in the Fokker-Planck
approximation. It leads to lognormal wealth distribution

– In order to produce the effect of market booms, cycles and crashes, the
distribution of investments should be a function of time µ(S(t), t).

– S.C. , L. Pareschi, C. Piatecki, J. Stat. Phys. (2009)
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