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The equation

We consider the generalized Korteweg-de Vries equation (gKdV)

atu + 6§U + ax(up) = O,
u(0) = up € HA(R),

where u = u(t,x), t € R, x € R and p > 2 is an integer.
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The equation

We consider the generalized Korteweg-de Vries equation (gKdV)

atu + aiu + ax(up) = O,
u(0) = up € HA(R),

where u = u(t,x), t € R, x € R and p > 2 is an integer.

Theorem (Local existence, Kenig, Ponce and Vega '93)

For all uy € HY(R), there exist T* = T*(||uo||41) > 0 and

X7 C C([0, T], H}(R)) such that (gKdV) has a unique solution
u € X7 with u(0) = ug for all T < T*. Moreover, uy — u is a
continuous map from H(R) to C([0, T], H(R)), and if

T* < 400, then limg a7+ ||u(t)| g2 = +o0.
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Conservation laws and Gagliardo-Nirenberg inequality

@ Conservation laws: If u € C([0, T], H}(R)) is a solution of
(gKdV) with u(0) = o, then, for all t € [0, T],

m(u(t)) :/Ruz(t) dx = m(uo),
E(u(t)) = ;/Rug(t) dx — pil/RuPH(t) dx = E(uo).

@ Gagliardo-Nirenberg inequality: For all u € H(R) and for all
p =1, one has

p+3 p—1
4

s <en(f2) (/)"
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Globalization

e For p < 5 (subcritical case), there is global well posedness in
HY(R).

@ For p =5 (critical case), blow up occurs for a large class of
initial data (Martel and Merle '02).

e For p > 5 (supercritical case), the existence of blow up
solutions is an open problem.
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Existence of solitons

The (gKdV) equation admits traveling wave solutions (also called
solitons):
Re x(t,x) = Qc(x — ¢t — xo)

where (c,x0) € R% x R, and Q. satisfies the ordinary differential
equation

Qg + Q(_I-J — CQC,

which has a unique solution (up to translations) if we impose
Q. € HY(R) and Q. > 0.
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Properties of Q.

@ One has )
Qc(x) = cP1Q(Vex)
where Q = @y is given by Q(x) = <2COS:24(-%1X))P1.

Q@ Qc(x) ~ Cpe Vel when x — +o0.
5—p
Q || Qcllz = =7 | QU2
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Previous stability results

@ Solitons are orbitally stable for subcritical gkdV (Benjamin,
Bona, Cazenave and Lions, Weinstein, Grillakis et al.).

@ Solitons are orbitally unstable for critical gKdV (Martel and
Merle) and supercritical gKdV (Bona et al.).

@ Solitons are asymptotically stable (Pego and Weinstein,
Martel and Merle).

@ Sums of decoupled solitons are stable for subcritical gKdV
(Martel, Merle and Tsai).
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Definition of N-solitons

Let N > 1. Given 2N real parameters

O<ag<---<cn, Xx1,...,xy €ER,

N
we denote R(t) = Z Re; x(t)-
j=1

Definition

We call a solution ¢ of (gKdV) an N-soliton if

lim | (t) = R(2)]| 2 = 0.

t—-+o0
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@ One-soliton case
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@ One-soliton case
@ Subcritical and critical cases
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Variational characterization of Q.

Proposition (Weinstein '86)

Suppose that p < 5. If u € H(R) satisfies E(u) = E(Q.) and
m(u) = m(Qc), then there exists a € R such that u = Q.(- + a).
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Variational characterization of Q.

Proposition (Weinstein '86)

Suppose that p < 5. If u € H(R) satisfies E(u) = E(Q.) and
m(u) = m(Qc), then there exists a € R such that u = Q.(- + a).

Suppose that p < 5. If u is a solution of (gKdV) such that

i [0(2) = Rea ()]} =0,

then u = Rc x,.
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@ One-soliton case

@ Supercritical case
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Preliminary remarks

@ Since we consider only one soliton, we can suppose by scaling
invariance that ¢ = 1.

@ The proof of the following theorem is an adaptation for
(gKdV) of previous works of Duyckaerts and Merle '09, and of
the following works of Duyckaerts and Roudenko, on the
L? supercritical nonlinear Schrédinger equation.
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Statement

Theorem (C. '0
Let p > 5.

©Q There exists a one-parameter family (U4) 4. of solutions of
(gKdV) such that, for all A € R,

lim [JUA(t,- + 1) = Qllmn =0,

t—+00

and if A’ € R satisfies A’ # A, then UA # UA.
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Statement

Theorem (C. '09)
Let p > 5.

©Q There exists a one-parameter family (U4) 4. of solutions of
(gKdV) such that, for all A € R,

lim [JUA(t,- + 1) = Qllmn =0,

t—+00

and if A’ € R satisfies A’ # A, then UA # UA.
@ Conversely, if u is a solution of (gKdV) such that

im_inf [lu(e) = Q( =)l =0,

then there exist A € R, tp € R and xp € R such that
u(t) = UA(t,- — xp) for t > to.
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Linearized equation around @

If u(t,x) = Q(x —t)+ h(t, x — t) satisfies (gKdV), then h satisfies
dth+ Lh = O(h?),

where Lh = —(Lh), and Lh= —h + h— pQP—1h.
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Linearized equation around @

If u(t,x) = Q(x —t) + h(t,x — t) satisfies (gKdV), then h satisfies
dth+ Lh = O(h?),
where Lh = —(Lh)x and Lh= —hy + h— pQ”_lh.

Theorem (Pego and Weinstein '92)

Let o(L) be the spectrum of the operator L defined on L(R).
Then
o(L)NR = {—ep,0, e} with eg > 0.

Furthermore, ey and —egy are simple eigenvalues of L with
eigenfunctions Y and Y~ which have an exponential decay at
infinity, and the null space of L is spanned by Q'.
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Properties of the family (U*)

Proposition

Let A€ R. If tg = ty(A) € R is large enough, then there exists a
solution UA € C*([tg, +00), H®) of (gKdV) such that, for all

s € R, there exists C > 0 such that

VYt > to, ||UA(t7 el (0)— Ae—eoty—i-”l_lS < Ce— 260t
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Properties of the family (U*)

Proposition

Let A€ R. If to = tp(A) € R is large enough, then there exists a
solution UA € C*([tg, +00), H®) of (gKdV) such that, for all
s € R, there exists C > 0 such that

VYt > to, ”UA(t7 41— Q- Ae—eoty—l-”Hs < Ce— 260t

Proposition

Up to translations in time and in space, there are only three special
solutions: U, U~! and Q. More precisely, one has (for t large
enough in each case):

(a) IfA>0, then UA(t) = U(t + ta,- + ta) for some ty € R.
(b) IfA=0, then U°(t) = Q(- — t).
(c) IfA <O, then UA(t) = UL(t + ta,- + ta) for some ta € R.
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9 Multi-solitons case
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9 Multi-solitons case
@ Subcritical and critical cases
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Previous result 1

Let N>2,0<c < - <cy xt,....x8 ER, R=31L) Re .

Theorem (Martel '05)

Suppose that p < 5. Then there exist To € R and a unique
solution ¢ € C([To, +00), H(R)) of (gKdV/) such that

lim [o(t) — R() = 0.

t—+00

Moreover, for all s > 0, ¢ € C([To, +00), H*(R)) and there exists
As > 0 such that, for all t > Ty and for some v > 0,

H‘P(t) - R(t)HHs(R) < Ase_’yt.

RENEILS

This result is based on refinements of a previous work of Martel,
Merle and Tsai (2002).

A
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@ Supercritical case
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Previous result 2

Let N>2,0<c < - <cy xt,....x8 ER, R=31L Re .

Theorem (Cote, Martel and Merle '09)

Suppose that p > 5. Then there exist To € R, C,09 > 0 and a
solution ¢ € C([To, +00), H') of (gKdV) such that

3/2,

Vt € [To, +00), [lp(t) = R(t)[| < Ce™ %

Remark

This result is also based on refinements of a previous work of
Martel, Merle and Tsai (2002), with an additional topological
argument and using the precise description of the spectrum of L
by Pego and Weinstein (1992).
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Main result

Let N>2,0<c <---<cy, xt,....x8 ER, R=31L, Re .

Theorem (C. '10)

Suppose that p > 5.
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Main result

Let N>2,0<c <---<cy, xt,....x8 ER, R=31L, Re .

Theorem (C. '10)

Suppose that p > 5.

© There exists an N-parameter family (¢A17---7AN)(A1 - Ay)ERN of
solutions of (gKdV) such that, for all (Ay,...,Ay) € RV,

lim [lpay,...ay(t) = R(8)|[ 1 = O,

t——+o0

and if (A/17 OO 7A/N) # (A17 ey AN)! SOA’I,.‘.,A;V # @Al,...,AN-
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Main result

Let N>2,0<c <---<cy, xt,....x8 ER, R=31L, Re .

Theorem (C. '10)

Suppose that p > 5.

@ There exists an N-parameter family (90A1,---7AN)(A1 . Ay)ern Of
solutions of (gKdV) such that, for all (A1,...,An) € RV,
im (o, an(t) = R(®) =0,
and If (A/17 c oo 7A/N) # (A17 IR0 AN)! SOA’I,.‘.,A;V # SDA]_,...,AN-
@ Conversely, if u is a solution of (gKdV) such that

lim—too [Ju(t) — R(t)|| ;2 = 0, then there exists
(Al, e ,A/\/) € RN such that u = PAL,...,Ay-
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Key proposition for the construction

For all j € [1, N], we denote

ViH(tx) = 6 Y E(VGx - gt —xg) and ¢ = e

Note that
O<eg<e<- - <ey.

Proposition (Perturbation along one soliton)

Let j € [1,N], Aj € R, and ¢ be any N-soliton of (gKdV). Then
there exist ty > 0 and a solution u € C([to, +00), H*) of (gKdV)
such that

Vit > to, Ju(t) —p(t) — Aje—ef’fyj+(t)||H1 < e (gt

for some v > 0.
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Construction of @4, . a,

Let (Aq,...,An) € RN and fix ¢ an N-soliton constructed by
Céte, Martel and Merle.

© Applying the key proposition with ¢, there exists ¢4, solution
of (gKdV) such that, for all t > to,

oa (t) — o(t) — At Y (¢)]| p < e~ (@t
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Construction of @4, . a,

Let (Aq,...,An) € RN and fix ¢ an N-soliton constructed by
Céte, Martel and Merle.

© Applying the key proposition with ¢, there exists ¢4, solution
of (gKdV) such that, for all t > to,

oa (t) — o(t) — At Y (¢)]| p < e~ (@t

@ But g4, is also an N-soliton. Thus, there exists ¢4, 4, such
that, for all ¢t > ¢},

||90A1,A2(t) - SDAl(t) - A2e_e2ty2+(t)||Hl < e—(eg—f—v)t_
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Construction of @4, . a,

Let (Aq,...,An) € RN and fix ¢ an N-soliton constructed by
Céte, Martel and Merle.

© Applying the key proposition with ¢, there exists ¢4, solution
of (gKdV) such that, for all t > to,

oa (t) — o(t) — At Y (¢)]| p < e~ (@t

@ But g4, is also an N-soliton. Thus, there exists ¢4, 4, such
that, for all ¢t > ¢},

||<)0A1,A2(t) - SDAl(t) - A2e_e2ty2+(t)||Hl < e—(eg—f—v)t_

@ Similarly, for all j € [2, N], we construct by induction a
solution pa, . a; of (gKdV) such that

H‘PAl,mAj(t) - ¢A17-~~7Aj71(t) - Aje_ejth—F(t)HHl < e_(ej+7)t-

V. Combet Multi-soliton solutions for the supercritical gkdV equations



Multi-solitons case Subcritical and critical cases Supercritical case Classification

Construction of @4, . a,

Let (Aq,...,An) € RN and fix ¢ an N-soliton constructed by
Céte, Martel and Merle.

© Applying the key proposition with ¢, there exists ¢4, solution
of (gKdV) such that, for all t > to,

oa (t) — o(t) — At Y (¢)]| p < e~ (@t

@ But g4, is also an N-soliton. Thus, there exists ¢4, 4, such
that, for all ¢t > ¢},

||<)0A1,A2(t) - SDAl(t) - A2e_e2ty2+(t)||Hl < e—(eg—f—v)t_

@ Similarly, for all j € [2, N], we construct by induction a
solution pa, . a; of (gKdV) such that

H‘PAl,mAj(t) - ¢A17-~~7Aj71(t) - Aje_ejth—F(t)HHl < e_(ej+7)t-
© Finally, @4, .. a, constructed by this way satisfies the theorem.
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Construction of @4, . a,

Suppose that @4

AL = PALLL A By construction, we have

N N
Par,..ay(t) = (t) + Z Akeieth:—(t) + Z z(t)
k=1 k=1

N N
Py, (1) = o(t) + Y Ae™ Y, (1) + Y (1),
k=1 k=1

with [|zx(t)]| o + |Z&(8) || 2 < e~ (&Mt Thus, by difference, we
have e | A; — Al| < Ce(e1tMt and so Al = Ar.
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Construction of @4,

Suppose that @4

L AL = AL Ay By construction, we have

N N
Pay,an(t) = (t) + > Ace* Y (1) + ) zi(t)
k=1

k=1

PA

N
! —et + >
ety (£) = ZA Y 2 AL,

with [|zx(t)]| o + |Z&(8) || 2 < e~ (&Mt Thus, by difference, we
have e~ 1t|A; — Aj| < Ce (7t and so A] = A;. Next, we write

N N
Paran(t) = pa(t) + D Ae 5T E(6) + > (1)
k=2

N N
par (1) = e (t) + DA™Y, (8) + ) Zi(t),
k=2 k=

and we obtain similarly A, = A, and so on.
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9 Multi-solitons case

@ Sketch of the proof of the classification of multi-solitons
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Convergence at small exponential rate v

Let p>5, N2>22,0<¢ < ---<cpn, x1,---,xy € R. Denote
R; = ch,xj, R = Zszl R; and ¢ the multi-soliton used for the
construction. Let u be a solution of (gKdV) such that

im_[Ju(t) = R(®)]n = 0.
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Convergence at small exponential rate v

Let p>5, N2>22,0<¢ < ---<cpn, x1,---,xy € R. Denote
R; = ch,xj, R = Zszl R; and ¢ the multi-soliton used for the
construction. Let u be a solution of (gKdV) such that

im_[Ju(t) = R(®)]n = 0.

There exist 7y, tg, C > 0 such that, for all t > ty,

lu(t) = R(£) | < Ce™".
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Convergence at small exponential rate v

Let p>5, N2>22,0<¢ < ---<cpn, x1,---,xy € R. Denote
R; = ch,xj, R = Zszl R; and ¢ the multi-soliton used for the
construction. Let u be a solution of (gKdV) such that

im_[Ju(t) = R(®)]n = 0.

There exist 7y, tg, C > 0 such that, for all t > ty,

lu(t) = R(£) | < Ce™".

Let e = u — . Then there exist C,tyg > 0 such that, for all t > ty,
le(®)llin < Ce".
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Adjoint of L,

Let ¢ > 0. We define
Lca= —0x(Lca), Lea= —833 +ca— pr‘la,

and
ec = c>?ey >0, YE(x) = c Y2y E(Vex).

Lemma

Let ZCjE = g Yci. Then the following properties hold:
(i) Le(0xZF) = Fe ZE.
(i) (Yo', Z5) = (Y5, 25) =0, (25, Q) = (Z, Q) =0, and
(Y5, Zo)=(¥Ye,Z20) =1
(ii) There exist 0. > 0 and C > 0 such that, for all v. € H*,

(Leve, ve) = oellvellfn—Clve, Z8)* = C(ve, Z5) = C(ve, QL)*. |
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Convergence at exponential rate e;

Let e = u— . Then there exist C, tyg > 0 such that, for all t > ty
le(®)llin < Ceer.

Proof. For j € [1, N], we recall that ¢; = e,
Ri(t,x) = Qg (x — ¢t — x;) and Y, (t x) = chi(x—cjt—@).
We also denote Zj-i(t,x) = chj[(x — ¢jt — x;) and
0F(0) = [=0ZF(0), al) = (1),

Finally, we define £(t) = &(t) +ZJ 13i(t) R (t) with
aj(t) = —[|Qg ‘_2 J e(t)Rix(t), so that

t
&R < Ce =0
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Estimates

We can find the following estimates, for all j € [1, N] and all
t > ty:

d _
ST gay(0)] < GOl
~ — 2
JE(6) I < Ce 2 sup (¢ + Clla(o)|

|3(D)] < Ce™ ™ [le(®) g + ClE() |

N
le()ll g < CIE@) g + C Y lai(2)-
j=1
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Induction

Recall that we already have ||e(t)| 2 < Ce™ " with 9 = . Now,
we prove that if ||e(t)||n < Ce™F with v < 9 < e1 — 7, then
()l < Cre=tott
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Induction

Recall that we already have ||e(t)| 2 < Ce™ " with 9 = . Now,
we prove that if ||e(t)||n < Ce™F with v < 9 < e1 — 7, then
()l < Cre=tott
@ We have for all j € [1, N, |(e_efsajr(s))’
and so by integration on [t, +00): ]ajr(t)

| < Ce—(&+r0+7)s.
| < Ce= (o)t
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Induction

Recall that we already have ||e(t)| 2 < Ce™ " with 9 = . Now,
we prove that if ||e(t)||n < Ce™F with v < 9 < e1 — 7, then
()l < Cre=tott
@ We have for all j € [1, N, |(e_efsajr(s))’] <
and so by integration on [t, +00): ]ajr(t)| < Ce= (ot
@ Similarly, [(e%*a; (s))'| < Cel&=0-7)5 As
€ —7 —7 = e — 7 —7 >0, then by integration on [t, t],
we find |a; ()] < Ce~ 0ot

Ce—(&t70+7)s
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Induction

Recall that we already have ||e(t)| 2 < Ce™ " with 9 = . Now,
we prove that if ||e(t)||n < Ce™F with v < 9 < e1 — 7, then
()l < Cre=tott
@ We have for all j € [1, N, |(e_efsajr(s))’
and so by integration on [t, +00): ]ajr(t)
@ Similarly, [(e%*a; (s))'| < Cel&=0-7)5 As
€ —7 —7 = e — 7 —7 >0, then by integration on [t, t],
we find |a; ()] < Ce~ 0ot

© Therefore, we have |a(t)||> < Ce 20047t and so
||§(t)||Hl < Ce—(o+7)t

| < Ce—(&+r0+7)s.
| < Ce= (o)t
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Induction

Recall that we already have ||e(t)| 2 < Ce™ " with 9 = . Now,
we prove that if ||e(t)||n < Ce™F with v < 9 < e1 — 7, then
()l < Cre=tott
@ We have for all j € [1, N], |(e_efsajr(s))’] < Ce(gtw0t7)s,
and so by integration on [t, +00): ]ajr(t)| < Ce= (ot

@ Similarly, |(eefsajf(s))’| < Cele=10=7)s  As
€ —7 —7 = e — 7 —7 >0, then by integration on [t, t],
we find |o; ()] < Ce—(o+M)t,

© Therefore, we have Ha(t)H2 < Ce 200t and so
()| < Cem Dot

© Then we have [aj(s)| < Ce= (0173 and so by integration on
[t, +00): |aj(t)] < Ce—(0+7)t.
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Induction

Recall that we already have ||e(t)| 2 < Ce™ " with 9 = . Now,
we prove that if ||e(t)||n < Ce™F with v < 9 < e1 — 7, then
le(®)][pn < Clem Gt
@ We have for all j € [1, N, |(e_efsajr(s))’
and so by integration on [t, +00): ]ajr(t)
@ Similarly, [(e%*a; (s))'| < Cel&=0-7)5 As
€ —7 —7 = e — 7 —7 >0, then by integration on [t, t],
we find |a; ()] < Ce~ 0ot
@ Therefore, we have [|a(t)||> < Ce 20t and so
(&) < Cem ot
@ Then we have |aj(s)| < Ce=(0+7)s and so by integration on
[t,+00): |aj(t)] < Ce= (ot )t
@ Finally, we get [|e(t)||n < Ce™ (017 as expected.

Ce—(&t70+7)s

| <
| < Ce= (o)t

V. Combet Multi-soliton solutions for the supercritical gkdV equations



Multi-solitons case Subcritical and critical cases Supercritical case Classification

Identification of A;

Now, we have |[le(t)|| ;1 < Ce™°F with e; — v < 79 < e1.
Following the scheme of the induction, we have:
@ For all j € [1, N], |ozjr(t)| < Ce=(0tNt L Cemat,
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Identification of A;

Now, we have |[le(t)|| ;1 < Ce™°F with e; — v < 79 < e1.
Following the scheme of the induction, we have:
@ For all j € [1, N], |ozjr(t)| < Ce=(0tNt L Cemat,
Q [(e%q; (s))] < Cel&=7-7)5 and in particular, for j = 1,
(%505 (s))| < Cela=70-7% & [1([to, +00)).
Hence, there exists A; € R such that

H et  — o
tllToo € al (t) o Al’

and so |ag (t)| < Ce™@t.
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Identification of A;

Now, we have |[le(t)|| ;1 < Ce™°F with e; — v < 79 < e1.
Following the scheme of the induction, we have:

@ For all j € [1, N], |ozjr(t)| < Ce=(0tNt L Cemat,
Q [(e%q; (s))] < Cel$=70=7)5, and in particular, for j = 1,
(€957 (5))'] < Celr=™0775 ¢ [Y([tg, +00)).
Hence, there exists A; € R such that

H et  — o
tllToo € al (t) o Al’

and so |ag (t)| < Ce™@t.
© For j > 2, since ¢f — 79 — 7 > 0, we still obtain by integration
on [to, t], |aj (t)] < Ce= (0Nt L Ceet,
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Identification of A;

Now, we have |[le(t)|| ;1 < Ce™°F with e; — v < 79 < e1.
Following the scheme of the induction, we have:
@ For all j € [1, N], |ozjr(t)| < Ce=(0tNt L Cemat,

Q [(e%q; (s))] < Cel$=70=7)5, and in particular, for j = 1,
|(e%a; (5))'] < Cela™07)% ¢ [}([to, +00)).
Hence, there exists A; € R such that

H et  — o
tllToo € al (t) o Al’

and so |ag (t)| < Ce™@t.

© For j > 2, since e — 79 — v > 0, we still obtain by integration
on [to, t], |aj (t)] < Ce= (0Nt L Ceet,

Q It is easy to conclude that ||e(t)|| ;1 < Ce ! by the
preliminary estimates. 0
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Identification of the solution

Defining e1(t) = u(t) — ¢a,(t), we have |le1(t)||n < Ce €, and
defining z1 by z1(t) = pa,(t) — ¢(t) — Are~ Y[ (t), we also have

aia(t) = [2(0Z (6) = a1 ()~ e = [ 202 (1),

As [|z1(t)|p < e (&t we finally find, for t — oo,

leay(t)] < |e®fay (t) — Ar| + Ce™7F — 0.
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Identification of the solution

Defining e1(t) = u(t) — ¢a,(t), we have |le1(t)||n < Ce €, and
defining z1 by z1(t) = pa,(t) — ¢(t) — Are~ Y[ (t), we also have

ani(0) = [ (2 () = ai(6) = he = [ 202 (2)
As [|z1(t)|p < e (&t we finally find, for t — oo,
e fag; (t)] < |efag () — Ay + Ce 7" — 0.

Proposition

For all j € [1, N], there exist tg, C > 0 and (A1, ...,A;) € R/ such
that, defining ;(t) = u(t) — @a,,..A,(t), one has

Vt > to, lej(t)]| g < Cem%E

Moreover, defining afk(t) = [¢j(t)ZE(t) for all k € [1, N], one
has lim;_s 1 oo eekta;k(t) =0, for all k € [1,]].
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Conclusion

There exist (A1, ...,Ay) € RN and C,ty > 0 such that, defining
z(t) = u(t) — ay....ay(t), one has ||z(t)|| 0 < Ce 2Nt for t > to.
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Conclusion

There exist (A1, ...,Ay) € RN and C,ty > 0 such that, defining
z(t) = u(t) — ay....ay(t), one has ||z(t)|| 0 < Ce 2Nt for t > to.

Proposition
There exists ty > 0 such that, for all t > ty, z(t) = 0.

For the proof of this final proposition, we consider

6(t) = sup e[| z(t) |,
t'>t
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Conclusion

There exist (A1, ...,Ay) € RN and C,ty > 0 such that, defining
z(t) = u(t) — ay....ay(t), one has ||z(t)|| 0 < Ce 2Nt for t > to.

Proposition

There exists ty > 0 such that, for all t > ty, z(t) = 0.

For the proof of this final proposition, we consider
0(t) = sup e ||z(t)|| 11,
t'>t

and we prove by similar techniques that there exists C* > 0 such
that

O(t) < Cre 70(t).
Choosing tq large enough so that C*e 7% < % we finally find
6(t) =0.
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