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1. Vocabulary

These are definitions for this talk.

An algebraic action is an action of Zd on a

compact metrizable group by continuous au-

tomorphisms. It has completely positive en-

tropy (is cpe) if it and every nontrivial factor

has positive entropy. (The topological condi-

tion in this case is equivalent to the measurable

condition with respect to Haar measure.)

A group shift is an expansive algebraic action

on a zero-dimensional group.

A conjugacy or factor map unless indicated is

topological. An algebraic conjugacy or factor

map is one with the additional property of be-

ing a group homomorphism.
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A Bernoulli group shift is the Zd shift on GZ
d
,

for some finite group G (the alphabet group).

Up to algebraic conjugacy, every group shift is

the shift on a closed invariant subgroup of a

Bernoulli group shift. Usually we take this pre-

sentation without comment. Every Zd group

shift is a Zd shift of finite type (Kitchens-

Schmidt).

A Zd action on X may be denoted by α, and

v ∈ Zd acts by a map denoted αv. We often

suppress α, e.g. writing its Zd entropy as h(X).

A group shift is abelian if its domain is abelian.

p always denotes a prime number.
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2. Main results

THEOREM 1 Every group shift has an equal

entropy Bernoulli group as a topological factor.

THEOREM 2 Every abelian group shift has

an equal entropy Bernoulli group shift as an

algebraic factor. This factor x is unique up to

isomorphism of the alphabet group.

Remark: although this Bernoulli is canonical,

we do not have a canonical factor map to it.

Remark: For d > 1 there are Zd shifts of finite

type of arbitrarily large entropy which do not

have any positive entropy Bernoulli shift as a

factor.

COROLLARY Every finite entropy algebraic

Zd action has a canonical maximum entropy

Bernoulli group shift as an algebraic factor.
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THEOREM 3 Every cpe group shift is weakly

algebraically equivalent to a Bernoulli group

shift (i.e., each is an algebraic factor of the

other).

”COROLLARY” An easier proof in dimension

zero of the Rudolph-Schmidt result that a cpe

algebraic Zd system is measurably (w.r.t. Haar

measure) Bernoulli:

By theorem 3, a group shift is a measurable

(since cont.) factor of a Bernoulli. A cpe al-

gebraic system is an inverse limit of cpe group

shifts and thus an inverse limit of Bernoullis,

hence Bernoulli.

We have other technical results and counterex-

amples regarding the issue of when the Pinsker

factor splits.
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3. Our methods

We use little of the sophisticated Laurent mod-

ule/duality theory for algebraic Zd actions. Why?

– The possible value of another viewpoint.

– In dimension zero, we can see some things

more simply.

We use coding arguments and homoclinic points

(developed in the Lind-Schmidt JAMS paper

and others).
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4. Homoclinic points

DEFN A point x is a homoclinic point for a Zd

action α if αv(x) → id as ||v|| → ∞.

For x in a group shift, with e the identity in

the alphabet group: x is a homoclinic point iff

x(v) = v for all but finitely many v ∈ Zd.

Let ∆X denote the group of homoclinic points

of X. Lind and Schmidt used Fourier analysis

to prove for abelian algebraic Zd actions the

following:
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1. h(X) > 0 iff ∆X is nontrivial

2. h(X) = h(∆X)

3. The Pinsker factor map is the algebraic

factor map with kernel ∆X.

4. X is cpe iff ∆X is dense.

For group shifts: these Lind-Schmidt results

have elementary proofs which do not use Fourier

analysis. The proofs work for nonabelian group

shifts.

Remark: also in the possibly nonabelian case:

an algebraic factor of a group shift is a group

shift.
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5. Entropy

Addition formula (Yuzvinskii; Lind-Schmidt-Ward).

For an algebraic factor map X → Y with kernel

K, we have h(X) = h(Y ) + h(K).

(Mostly Einsiedler-Schmidt) Suppose γ is an

algebraic factor map between group shifts. TFAE:

1. h(ker(γ)) = 0.

2. h(X) = h(Y )

3. For every closed shift-invariant subgroup

W of X, h(γW ) = h(W ).

4. The only homoclinic point in ker(γ) is the

identity.
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5. Proof of Theorem 1

DEFN Let X be a group shift with alphabet
group G and e the identity in G. For x in X,
define
F (x) = {y(0) : y(v) = x(v) for all v ≺ 0},
where ≺ is lexicographic order on Zd.

Well known:
– F (id) is a normal subgroup of G.
– Every F (x) is a coset of F (id).
– h(X) = log |F (id)| = h(B) (redone below)
(so, if pX = 0, then h(X) ∈ {0, p}).
– By general meas.th. entropy theory:
hµ(X) ≤ log |F (id)|
for any invariant Borel probability µ.

For each F (id) coset [g] in G, choose a bi-
jection β : [g] → F (id). Define a one-block
code φ from X to the Bernoulli shift B with
alphabet F (id) by the rule φ(g) = β([g]). It
is not hard to check that φ is surjective. So
h(X) = log |F (id)| = h(B). QED
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There are group shifts X such that no map φ

constructed in this way can be a group homo-

morphism.
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7. Kitchens Theorem

Theorem (Kitchens 1987) If X is a Z group

shift, then X is topologically conjugate to a

product of a Bernoulli shift B and a shift P on

a finite set. (Here P is the Pinsker factor. )

That is a pretty decisive classification theorem.

If h(X) = logn with n square free, then the

conjugacy X → B above can be made alge-

braic. For n not square free this fails badly

(Kitchens; Fagnani; Schmidt).

What about Zd, d > 1?

All those Z group shift top-but-not-alg conju-

gate examples give rise to Zd examples via a

construction of Hochman and Meyerovitch.
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Kitchens Example: a Z2 cpe group shift X with

entropy log 2, with 2X = 0 and with four fixed

points. So, X is not top. conjugate to the full

Z2 two shift S. (Contrast Z.)

To show this X is cpe, Kitchens gave an al-

gebraic argument (torsion free dual module).

Alternately (B-S) one can check that the ho-

moclinic points are dense.
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There are easier examples (“USAir”). Here is

an infinite family of pairwise not conjugate (by

periodic point counts) cpe Z2 group shifts of

entropy log 2.

For a positive integer k define maps S → S by

φk(x) = x− σ2k−1(1,0)(x) ,

ψk(x) = x− σ2k−1(0,1)(x)

and set

γk = φk × ψk, Xk = image of γk.

The kernel of γk is finite, so Xk has entropy

log 2. Can check: γk maps Fix(2kZ2) onto

Fix(2k−1Z2) x Fix(2k−1Z2) := Fk, and

Fj is not contained in Xk if j > k.

For example, X1 has 2 × 2 = 4 fixed points,

while the 2-shift has two.
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Proof sketch for Theorem 2

For n a positive integer, B(n) denotes a Bernoulli
group shift with alphabet Z/n, with Z/n given
as the subgroup of R/Z generated by 1/n.

Reduce to case X is a p-group, a subgroup of
B := B1 × · · · ×Br where Bi = B(pni).

If X is not B: choose f = (f1, ..., fr) with each
fi ∈ Z[u±1

1 , . . . , u±d] and associated factor map

πf from X into (R/Z)Z
d

which annihilates X

but not B. Let fi = 0 if fi annihilates Bi. Set
f = prg = pr(g1, ..., gr) with r nonnegative and
say g1 not identically zero mod p. Define factor
map φ on X by
x = (x1, ..., xr) 7→ (px1 − πg(x), x2, . . . , xr). Now
φX < pB1 × B2 × · · · × Br and h(φX) = h(X).
Continue until image is Bernoulli. QED

Uniqueness of the Bernoulli equal entropy fac-
tor follows from consideration of the entropies
of the subgroups pB, p2B, p3B, ....
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Proof of Theorem 3

Let X be a cpe group shift. We have already

built an algebraic factor map φ : X → B, with

h(X) = (B).

We need to show a cpe group shift X is the

image of an equal entropy Bernoulli group shift

B by an algebraic factor map.

PROOF 1

A part of Einsiedler-Schmidt: given an alge-

braic action Y , let Y ∗ be the algebraic action

which is dual to the discrete Laurent module

which is the homoclinic group of Y . We know

that φ is a module monomorphism from ∆X

into ∆B). By duality we get B∗ mapping onto

X∗. E-S show generally X∗ maps algebraically

onto X. So B∗ maps algebraically onto X. But

B∗ is alg. conjugate to B.
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PROOF 2

”Just” take the natural generators of the ho-

moclinic group of B, and define a module monomor-

phism ψ into the homoclinic group of X. Such

a ψ extends to a factor map B → X.

This works but the proof becomes a little messy,

at least in our hands.
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Problems

1. Classify cpe abelian group shifts up to topo-

logical conjugacy. (Reduce to the case the

group shift X is a p shift and pX = 0.)

2. Can one understand the periodic point pos-

sibilities for cpe Z2 group shifts of entropy log

2? If cpe abelian group shifts have the same

periodic point counts, must they be top. con-

jugate? If one is a full shift on 2 symbols?

3. The only result we know in this area for

nonabelian group shifts is the existence of the

equal entropy Bernoulli factor.

So, for example: must a nonabelian group shift

have an equal entropy algebraic Bernoulli fac-

tor?
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