Workshop on Topics in Kinetic Theory (PIMS, Victoria, June 29 – July 3, 2009)

Approach to steady motion of a plate moving in a collision less gas under a constant external force

> Kazuo Aoki Dept. of Mech. Eng. and Sci. Kyoto University

 Approach to steady motion of a plate in a free-molecular (collisionless or Knudsen) gas A, Tsuji, & Cavallaro, *Phys, Rev. E* (09)

Approach to equilibrium of a free-molecular gas Tsuji & A (work in progress)

Numerical study

Free-molecular gas

Highly rarefied gas Effect of collisions: Neglected Molecular $\operatorname{Kn} = l/L = \infty$ velocity Mean free path $\frac{\partial f}{\partial t} + \boldsymbol{\xi} \cdot \frac{\partial f}{\partial \mathbf{x}} = 0$ ξ **Boltzmann** equation t, \mathbf{X} $f(t, \mathbf{x}, \boldsymbol{\xi})$ ξ $= f(t_0, \mathbf{x} - \boldsymbol{\xi}(t - t_0), \boldsymbol{\xi})$ $t_0, \mathbf{x} - \boldsymbol{\xi}(t - t_0)$

Time-independent case

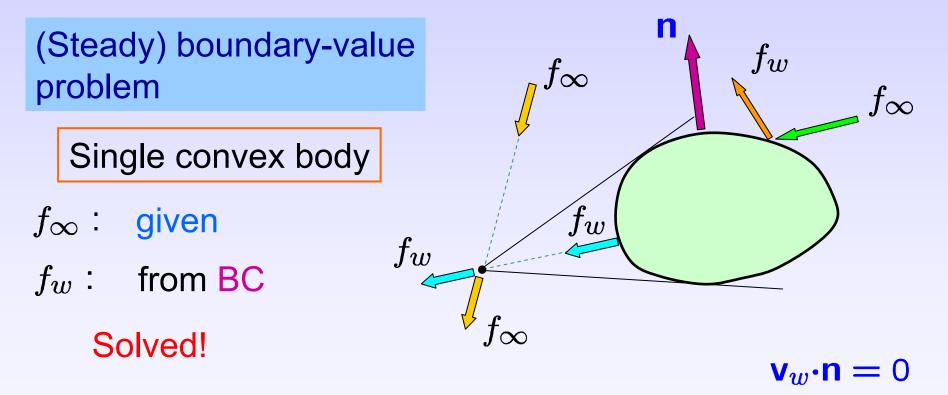
$$f(\mathbf{x}, \boldsymbol{\xi}) = f(\mathbf{x} - \boldsymbol{\xi}s, \boldsymbol{\xi})$$

parameter

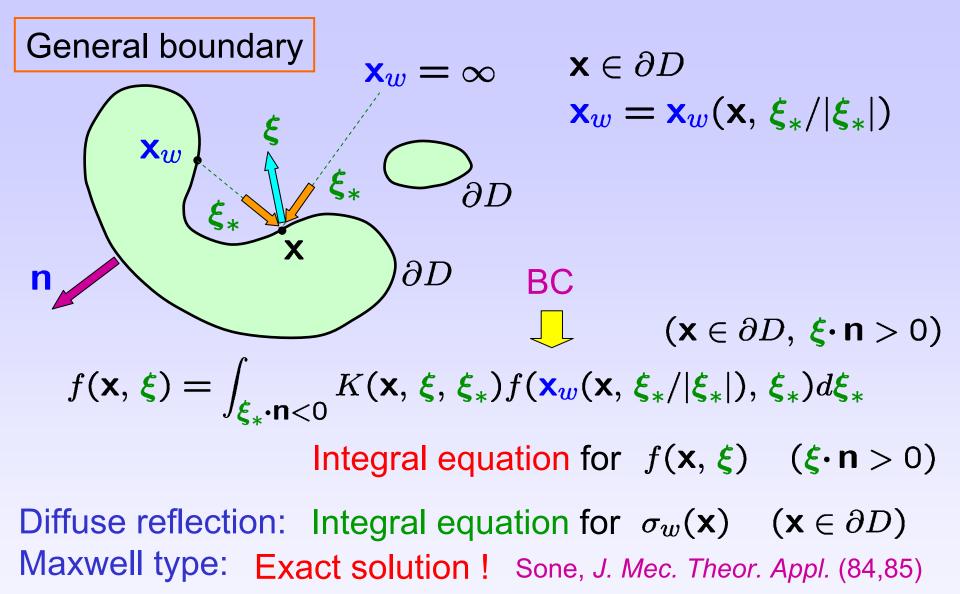
Initial-value problem

(Infinite domain)

Initial condition: $f(t_0, \mathbf{x}, \boldsymbol{\xi}) = g(\mathbf{x}, \boldsymbol{\xi})$ Solution: $f(t, \mathbf{x}, \boldsymbol{\xi}) = g(\mathbf{x} - \boldsymbol{\xi}(t - t_0), \boldsymbol{\xi})$



BC:
$$f(\boldsymbol{\xi}) = \int_{\boldsymbol{\xi}_* \cdot \mathbf{n} < 0} K(\boldsymbol{\xi}, \boldsymbol{\xi}_*) f(\boldsymbol{\xi}_*) d\boldsymbol{\xi}_*, \quad (\boldsymbol{\xi} \cdot \mathbf{n} > 0)$$



General situation, effect of boundary temperature

Y. Sone, Molecular Gas Dynamics: Theory, Techniques, and Applications (Birkhäuser, 2007) **Conventional boundary condition**

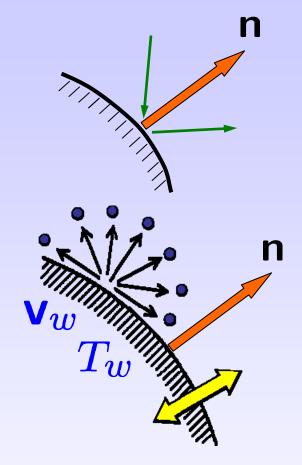
 $(\boldsymbol{\xi} - \mathbf{v}_w) \cdot \mathbf{n} > 0$ [(t, **x**): omitted]

Specular reflection

$$f(\boldsymbol{\xi}) = f(\boldsymbol{\xi} - 2\left[(\boldsymbol{\xi} - \mathbf{v}_{\boldsymbol{w}}) \cdot \mathbf{n}\right]\mathbf{n})$$

Diffuse reflection

$$f(\xi) = \frac{\sigma_w}{(2\pi RT_w)^{3/2}} \times \exp\left(-\frac{|\xi - \mathbf{v}_w|^2}{2RT_w}\right)$$



$$\sigma_w = -\left(\frac{2\pi}{RT_w}\right)^{1/2} \int_{(\xi - \mathbf{v}_w) \cdot \mathbf{n} < 0} (\xi - \mathbf{v}_w) \cdot \mathbf{n} f(\xi) d\xi$$

No net mass flux across the boundary

Maxwell type

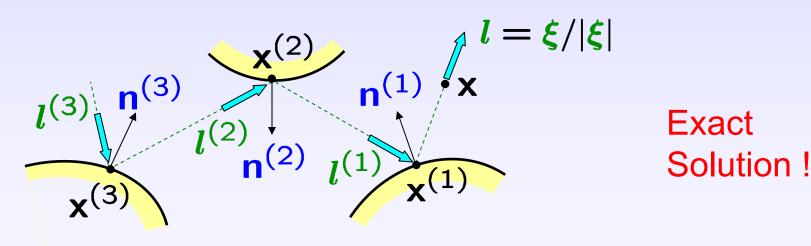
 $\frac{\alpha \times (\text{diffuse}) + (1 - \alpha) \times (\text{specular})}{\bigwedge}$ Accommodation coefficient

Cercignani-Lampis model Cercignani, Lampis (72)

Statics: Effect of boundary temperature

Sone, J Mec. Theor. Appl. (84, 85)

- Closed or open domain, boundary at rest arbitrary shape and arrangement
- Maxwell-type (diffuse-specular) condition
- Arbitrary distribution of boundary temperature, accommodation coefficient

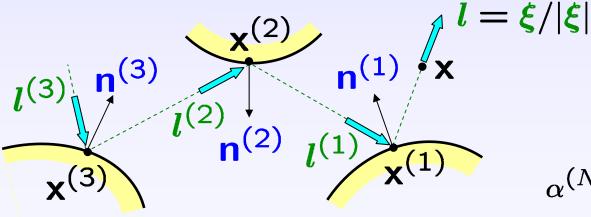


Path of a specularly reflected molecule

Exact solution

$$f(\mathbf{x}, |\boldsymbol{\xi}|\boldsymbol{l}) = C\alpha^{(1)}\mathcal{M}^{(1)} + C(1 - \alpha^{(1)})\alpha^{(2)}\mathcal{M}^{(2)} + C(1 - \alpha^{(1)})(1 - \alpha^{(2)})\alpha^{(3)}\mathcal{M}^{(3)} + \cdots = C\sum_{m=1}^{\infty}\prod_{h=1}^{m-1}(1 - \alpha^{(h)})\alpha^{(m)}\mathcal{M}^{(m)}$$

$$\begin{cases} \alpha^{(m)} = \alpha(\mathbf{x}^{(m)}), \quad C = \text{const} \\ \mathcal{M}^{(m)} = \frac{1}{[2RT_w(\mathbf{x}^{(m)})]^2} \exp\left(-\frac{|\boldsymbol{\xi}|^2}{2RT_w(\mathbf{x}^{(m)})}\right) \end{cases}$$

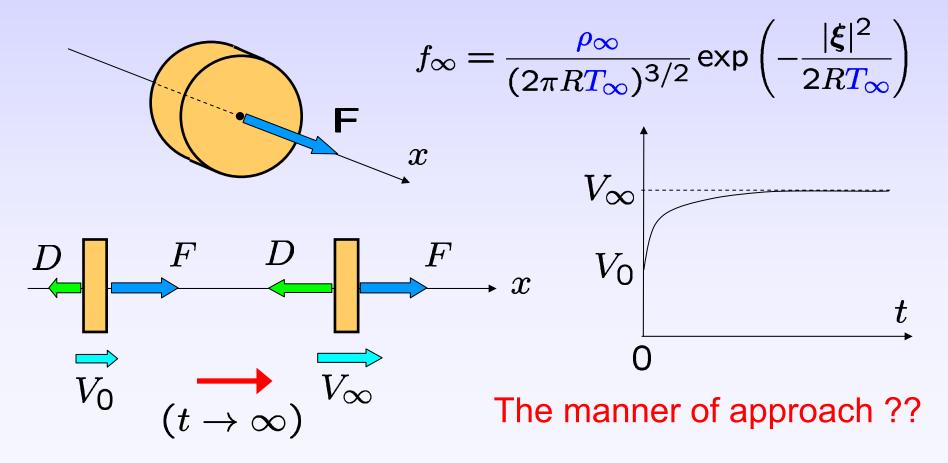


 $\alpha^{(N)} = 1$ if $\mathbf{x}^{(N)} = \infty$

Approach to steady motion of a plate

Initial and boundary-value problem

A disk accelerated by a constant external force **F** in a free-molecular gas (no force on gas molecules)



Equation of motion of the disk :

$$M\frac{dV(t)}{dt} = F - D(t)$$

If
$$D(t) = k V(t)$$
, then
 $V(t) = (V_0 - V_\infty) \exp\left(-\frac{k}{M}t\right) + V_\infty, \qquad V_\infty = F/k$

Exponential approach (usual case)

Free-molecular gas ???

Free-molecular gas

Gas:

EQ:
$$\partial_t f + \boldsymbol{\xi} \cdot \nabla_x f = 0$$

IC:
$$f = f_{\infty}$$
 $(t = 0)$
$$\int f_{\infty} = \frac{\rho_{\infty}}{(2\pi RT_{\infty})^{3/2}} \exp\left(-\frac{|\xi|^2}{2RT_{\infty}}\right)$$

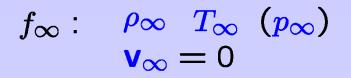
BC: Specular or Diffuse reflection on body surface

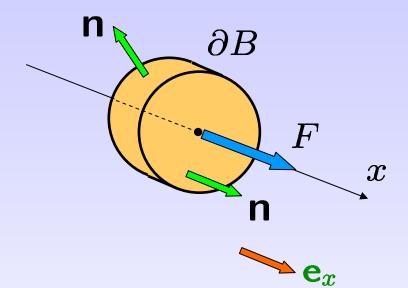
Body:

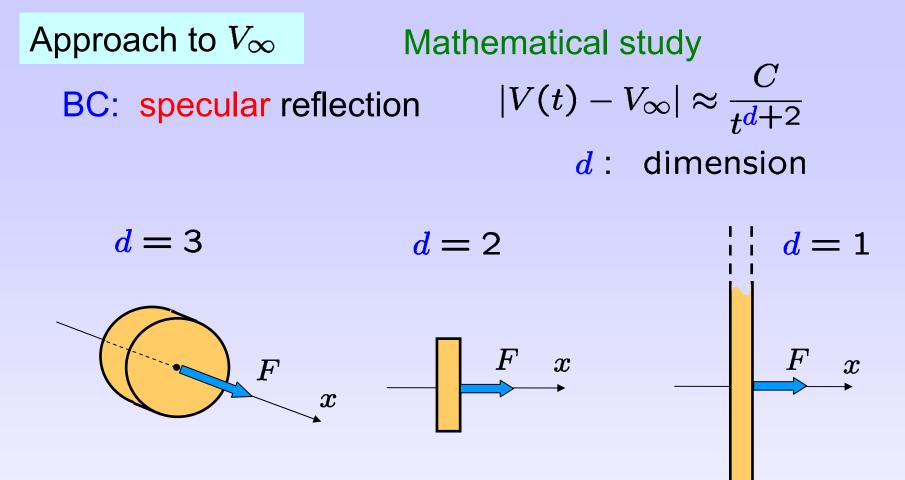
EQ:
$$\dot{X}(t) = V(t), \quad M\dot{V}(t) = F - D(t)$$

IC:
$$X(0) = 0, \quad V(0) = V_0$$

$$D(t) = \int_{\partial B} \int_{\xi \in \mathbb{R}^3} \xi_x \left[\boldsymbol{\xi} - V(t) \, \mathbf{e}_x \right] \cdot \mathbf{n} \, f \, d\boldsymbol{\xi} \, dS$$







Condition: $|V_0 - V_\infty|$ small

Caprino, Marchioro, & Pulvirenti, *Commun. Math. Phys.* (06) Caprino, Cavallaro, & Marchioro, *M*³*AS* (07) Cavallaro, *Rend. Mat.* (07) Approach to V_{∞}

BC: specular reflection

$$|V(t) - V_{\infty}| \approx \frac{C}{t^{d+2}}$$

d: dimension

Caprino, Marchioro, & Pulvirenti, *Commun. Math. Phys.* (06) Caprino, Cavallaro, & Marchioro, *M*³*AS* (07) Cavallaro, *Rend. Mat.* (07)

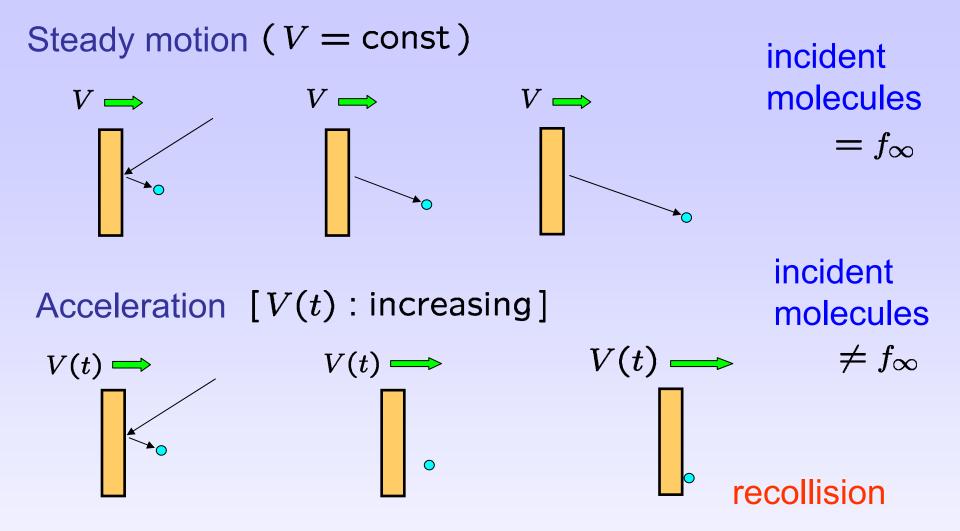
BC: diffuse reflection $|V(t) - V_{\infty}| \approx \frac{C}{t^{d+1}}$

A, Cavallaro, Marchioro, & Pulvirenti, M²NA (08)

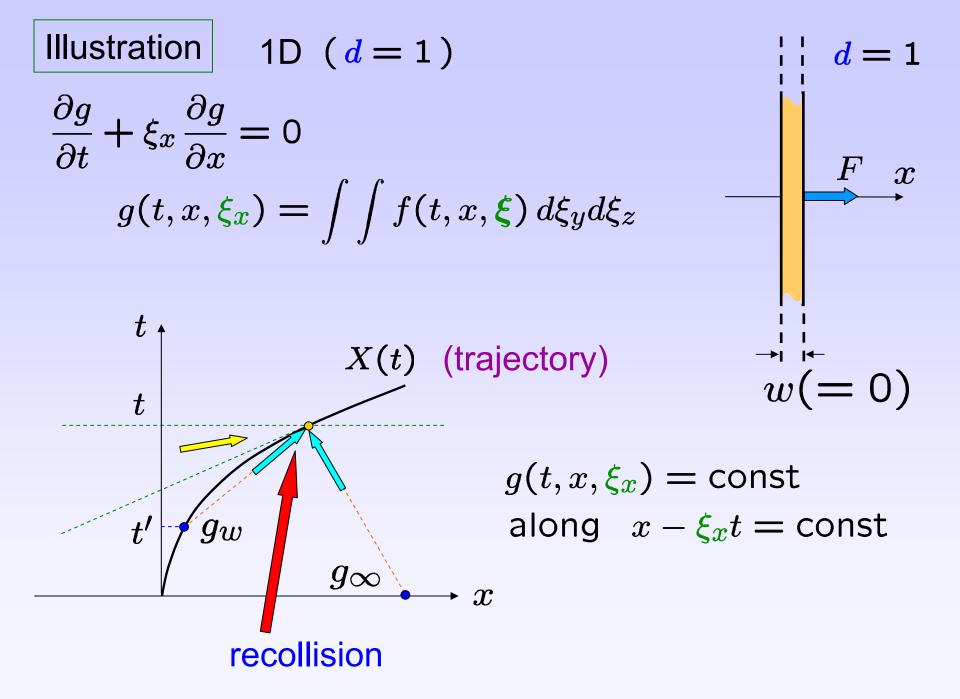
Condition: $|V_0 - V_\infty|$ small

Cause of non-exponential (power-law) decay

Effect of recollision



- If we neglect recollision, we obtain exponential approach.
- Diffuse reflection : more chances of recollision (more slow molecules)



(Rough) sketch of proof Specular, 3D (d = 3) Caprino, Marchioro, & Pulvirenti (06) EQ: $\dot{X}(t) = V(t)$, $M\dot{V}(t) = F - D(t)$ IC: X(0) = 0, $V(0) = V_0$

$$D(t) = \int_{\partial B} \int_{\xi \in \mathbb{R}^3} \xi_x \left[\xi - V(t) \, \mathbf{e}_x \right] \cdot \mathbf{n} \, f \, d\xi \, dS$$

Assumption: $V_{\infty} > V_0 > 0$, $V_{\infty} - V_0$: small

$$D(t) = D_0(V(t)) + r^+(t) + r^-(t)$$

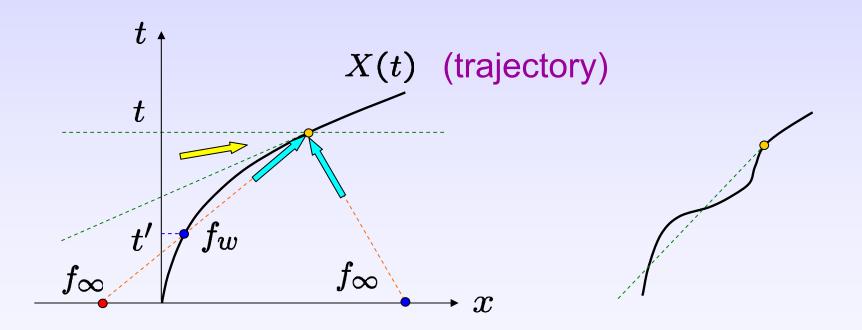
- $D_0(V(t))$: Drag without recollision
- $r^+(t)$: Correction (recollision on right face)
- $r^{-}(t)$: Correction (recollision on left face)

EQ:
$$\dot{X}(t) = V(t), \quad M\dot{V}(t) = F - D_0(V(t)) - r^+(t) - r^-(t)$$

 $D(t) = D_0(V(t)) + r^+(t) + r^-(t)$

 $D_0(V(t))$: Drag without recollision

- $r^+(t)$: Correction (recollision on right face)
- $r^{-}(t)$: Correction (recollision on left face)

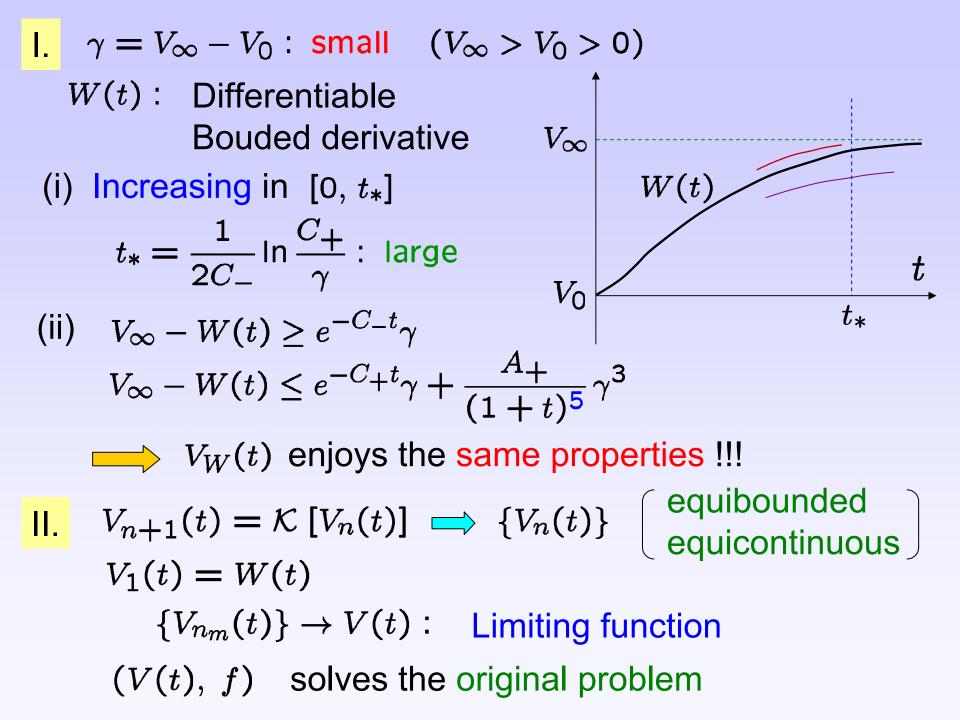


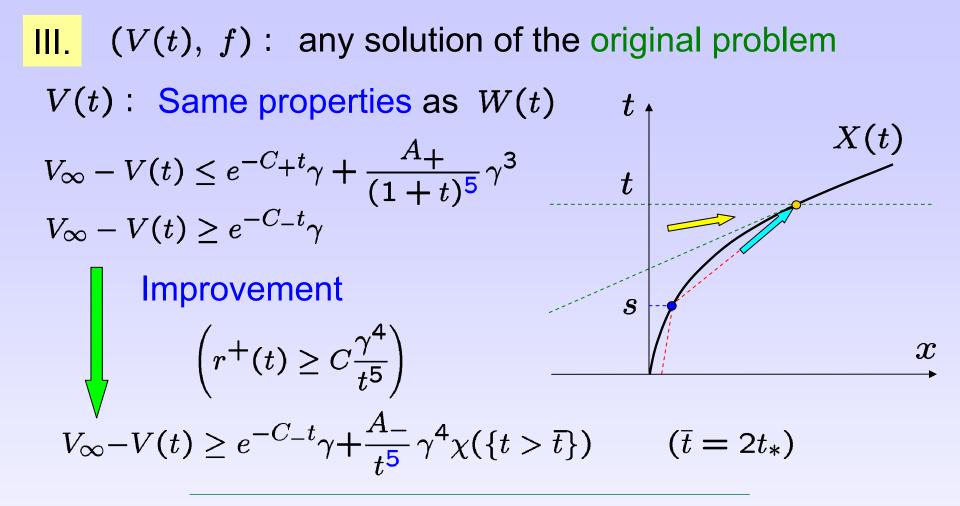
$$\dot{X}(t) = V(t), \quad M\dot{V}(t) = F - D_0(V(t)) - r^+(t) - r^-(t)$$

■
$$V(t) \rightarrow W(t)$$
: given function
 $X_W(t) = \int_0^t W(\tau) d\tau$, f , $r_W^+(t)$, $r_W^-(t)$: known
 V trajectory sol. of B eq. corrections

• Modified problem [for $V_W(t)$] $M\dot{V}_W(t) = F - D_0(V_W(t)) - r_W^+(t) - r_W^-(t)$ $\longrightarrow V_W(t)$

Map from W(t) to $V_W(t)$: $V_W(t) = \mathcal{K}[W(t)]$





$$|V(t) - V_{\infty}| \approx \frac{C}{t^{d+2}}$$

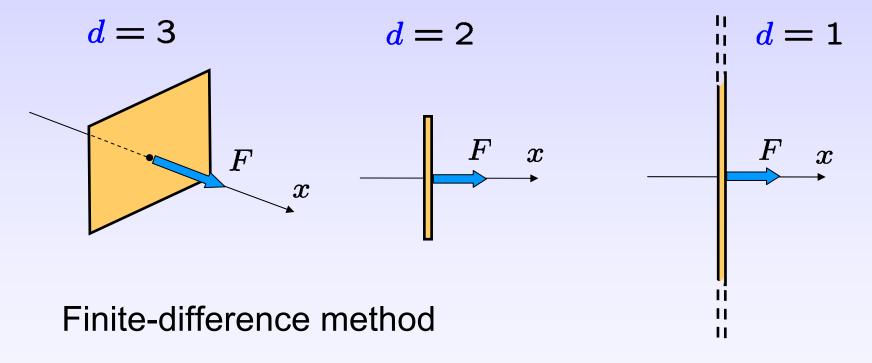
 $V_0 > V_\infty \ge 0, \quad V_0 - V_\infty$: small

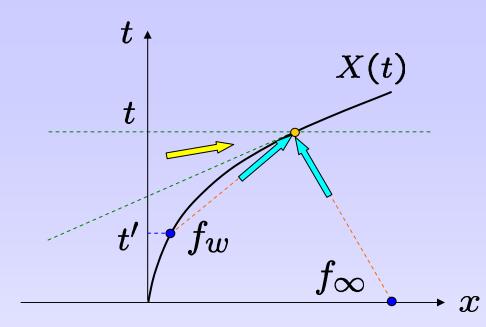
Cavallaro, Caprino, & Marchioro (07)

Numerical study A, Tsuji, & Cavallaro, *Phys. Rev. E* (09)

Arbitrary $|V_0 - V_\infty|$ Diffuse reflection (more difficult mathematically)

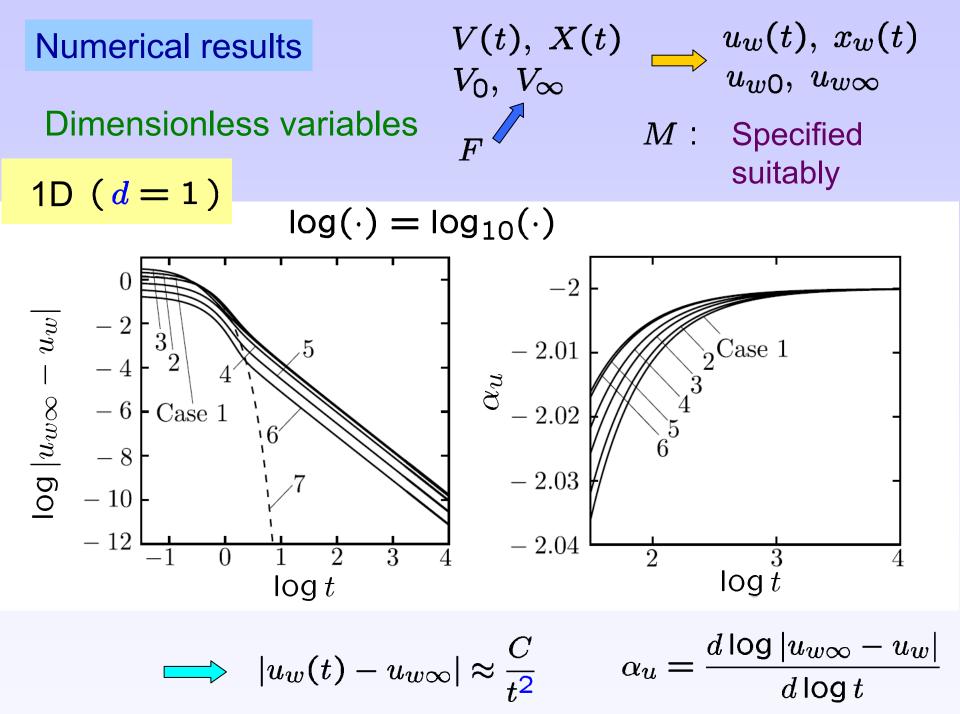
Plate without thickness $(T_w = T_\infty)$





Diffuse reflection $\sigma_w(t'), V(t')$ (Macro variables) $f_w(t')$

$$f_w(\boldsymbol{\xi}) = \frac{\sigma_w}{(2\pi R T_w)^{3/2}} \exp\left(-\frac{|\boldsymbol{\xi} - \mathbf{v}_w|^2}{2R T_w}\right)$$
$$\left(\sigma_w = -\left(\frac{2\pi}{R T_w}\right)^{1/2} \int_{(\boldsymbol{\xi} - \mathbf{v}_w) \cdot \mathbf{n} < 0} (\boldsymbol{\xi} - \mathbf{v}_w) \cdot \mathbf{n} f(\boldsymbol{\xi}) d\boldsymbol{\xi}\right)$$



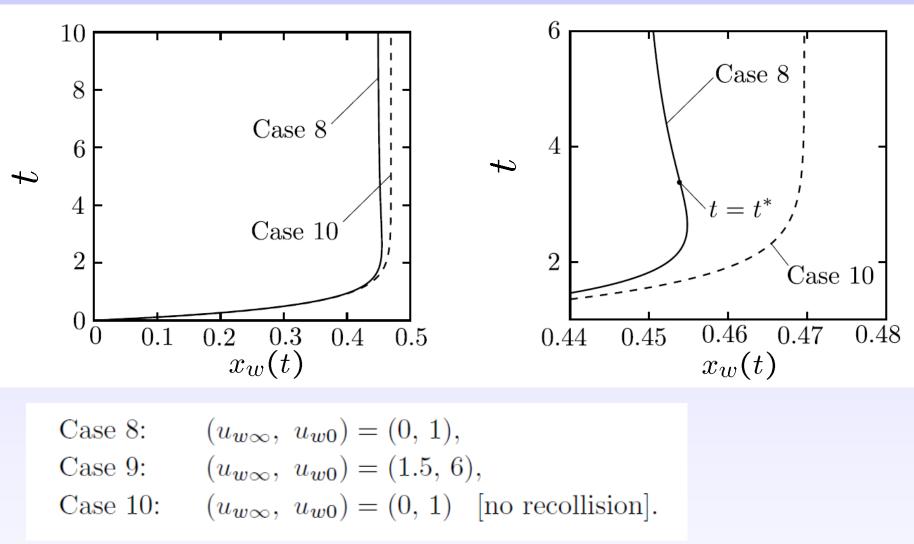
		$-\alpha_u$					
t	$\log t$	Case 1	Case 2	Case 3	Case 4	Case 5	Case 6
31.62	1.5	2.036055	2.031885	2.025712	2.016124	2.016933	2.016124
100.00	2.0	2.011302	2.010035	2.008112	2.004999	2.005267	2.004999
316.23	2.5	2.003564	2.003168	2.002563	2.001571	2.001657	2.001571
1000.00	3.0	2.001126	2.001001	2.000810	2.000496	2.000523	2.000496
3162.28	3.5	2.000356	2.000316	2.000256	2.000157	2.000165	2.000157
10000.00	4.0	2.000113	2.000100	2.000081	2.000048	2.000052	2.000048

$V_{\infty} > V_0 \ge 0 \quad (u_{w\infty} > u_{w0} \ge 0)$

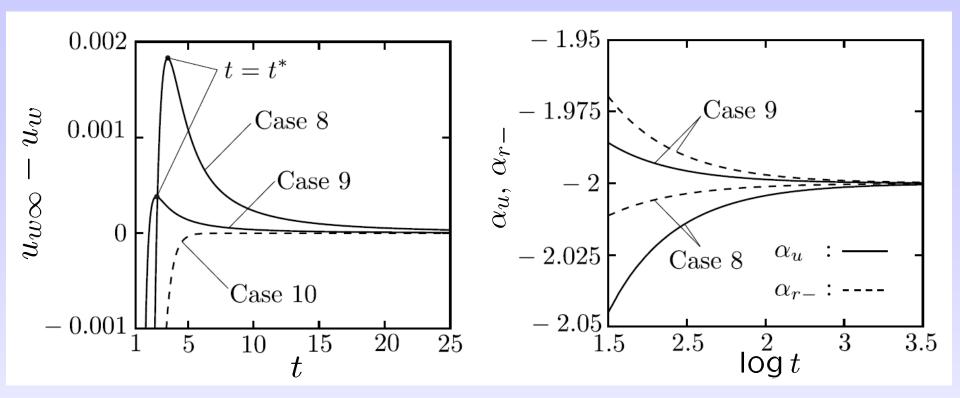
 $|V(t) - V_{\infty}| \approx \frac{C}{t^{d+1}}$ $(u_{w\infty}, u_{w0}) = (1.5, 0),$ Case 1: $(u_{w\infty}, u_{w0}) = (2.35815, 0),$ Case 2: $(u_{w\infty}, u_{w0}) = (3.55659, 0),$ Case 3: (d = 1) $(u_{w\infty}, u_{w0}) = (1.5, 0.75),$ Case 4: $(u_{w\infty}, u_{w0}) = (1.5, 1.125),$ Case 5: $(u_{w\infty}, u_{w0}) = (1.5, 1.3125),$ Case 6: $(u_{w\infty}, u_{w0}) = (1.5, 0)$ [no recollision]. Case 7:

$V_0 > V_\infty \ge 0 \quad (u_{w0} > u_{w\infty} \ge 0)$

Overshoot !

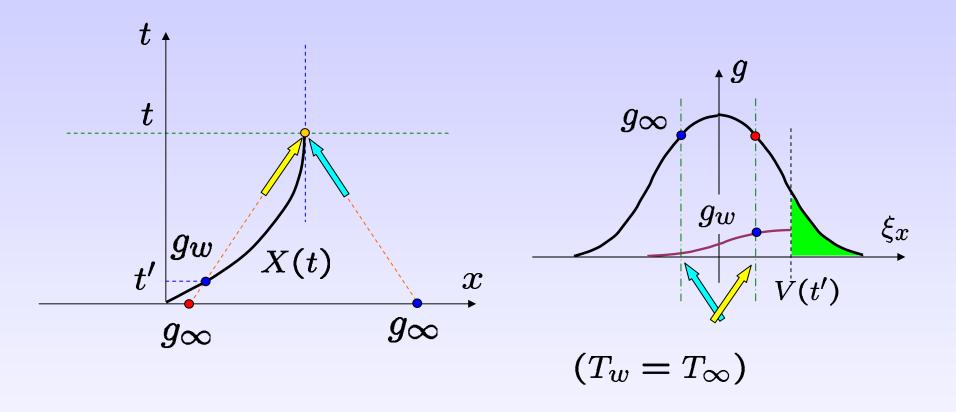


Overshoot is proven in
Cavallaro, Caprino, & Marchioro (07)Specular
 $V_0 - V_{\infty}$: small

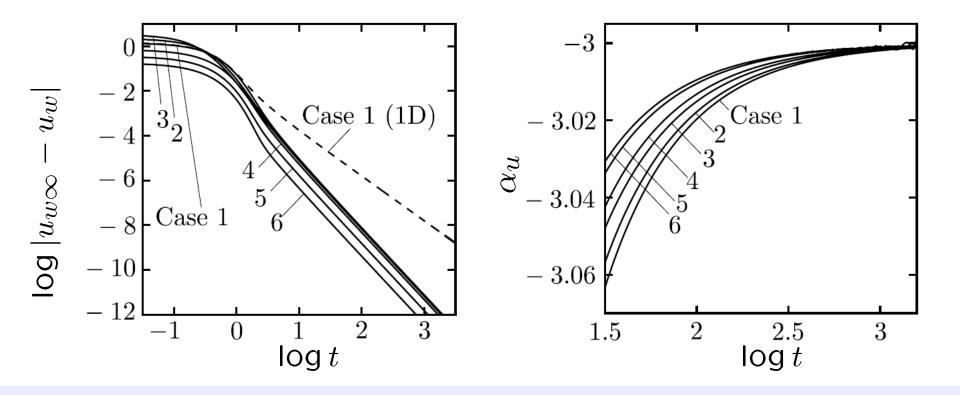


$$\alpha_u = \frac{d \log |u_{w\infty} - u_w|}{d \log t}$$

Overshoot (physical explanation)



2D (d = 2)



$$\alpha_u = \frac{d \log |u_{w\infty} - u_w|}{d \log t}$$

$$|u_w(t) - u_{w\infty}| \approx \frac{C}{t^3}$$

		$-lpha_u$					
t	$\log t$	Case 1	Case 2	Case 3	Case 4	Case 5	Case 6
31.62	1.5	3.063329	3.056900	3.048011	3.042502	3.033773	3.030717
100.00	2.0	3.019708	3.017834	3.015121	3.013234	3.010493	3.009530
316.23	2.5	3.006203	3.005624	3.004769	3.004169	3.003297	3.003054
1000.00	3.0	3.001961	3.001778	3.001516	3.001286	3.000979	3.000809

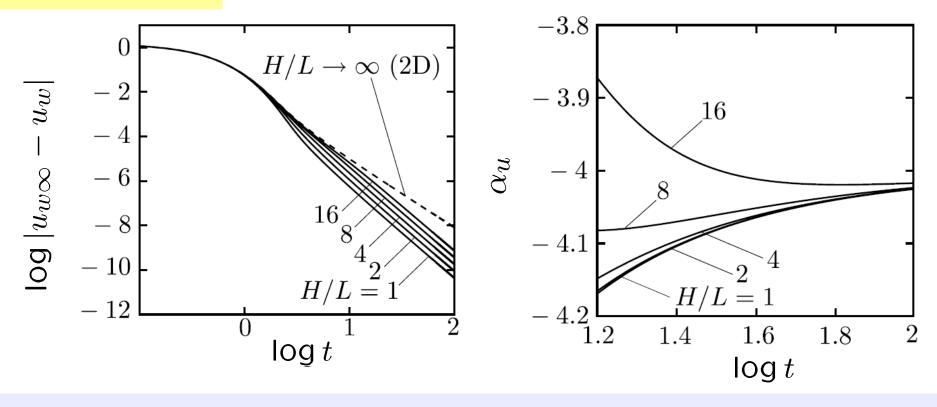
$V_{\infty} > V_0 \ge 0 \quad (u_{w\infty} > u_{w0} \ge 0)$

Case 1: $(u_{w\infty}, u_{w0}) = (1.5, 0),$ Case 2: $(u_{w\infty}, u_{w0}) = (2.35815, 0),$ Case 3: $(u_{w\infty}, u_{w0}) = (3.55659, 0),$ Case 4: $(u_{w\infty}, u_{w0}) = (1.5, 0.75),$ Case 5: $(u_{w\infty}, u_{w0}) = (1.5, 1.125),$ Case 6: $(u_{w\infty}, u_{w0}) = (1.5, 1.3125),$

$$|V(t) - V_{\infty}| \approx \frac{C}{t^{d+1}}$$

(d=2)

3D (d = 3)

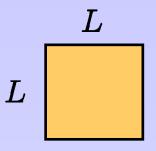


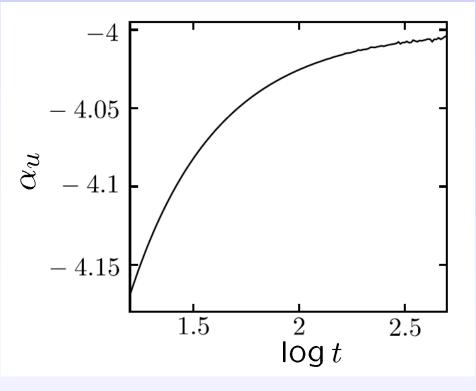
Case 1:
$$(u_{w\infty}, u_{w0}) = (1.5, 0)$$

 H
 L
 $u_w(t) - u_{w\infty}| \approx \frac{C}{t^4}$

Case 1:
$$(u_{w\infty}, u_{w0}) = (1.5, 0)$$

Square plate





$$\alpha_u = \frac{d \log |u_{w\infty} - u_w|}{d \log t}$$

t	$\log t$	$-\alpha_u$	$-\alpha_{r+}$
15.85	1.2	4.169216	4.094073
31.62	1.5	4.082090	4.047232
100.00	2.0	4.025448	4.014949
316.23	2.5	4.008078	4.004729
1000.00	3.0		4.001496

$$|V(t) - V_{\infty}| \approx rac{C}{t^{d+1}}$$

(d = 3)

Approach to V_{∞}

BC: specular reflection

$$|V(t) - V_{\infty}| \approx \frac{C}{t^{d+2}}$$

d: dimension

Caprino, Marchioro, & Pulvirenti, *Commun. Math. Phys.* (06) Caprino, Cavallaro, & Marchioro, *M*³*AS* (07) Cavallaro, *Rend. Mat.* (07)

BC: diffuse reflection

$$|V(t) - V_{\infty}| pprox rac{C}{t^{d+1}}$$

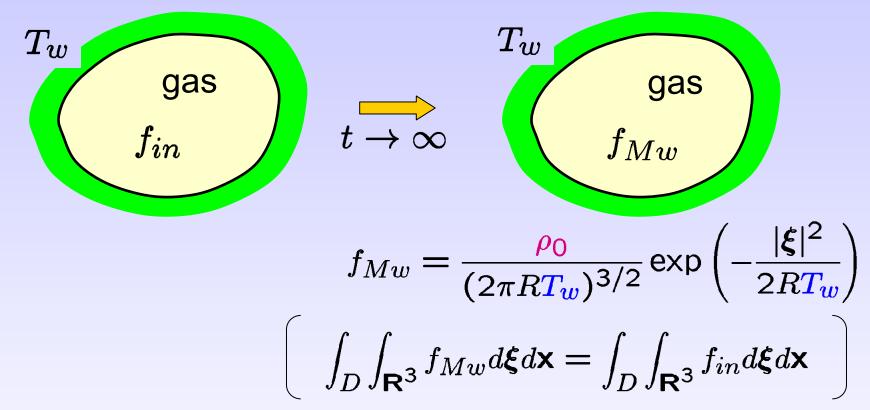
A, Cavallaro, Marchioro, & Pulvirenti, M²NA (08)

Condition: $|V_0 - V_\infty|$ small

Numerical evidence

Approach to equilibrium of a free-molecular gas

Trend to equilibrium



Boltzmann equation (with collisions)

Grad, Cercignani, Illner, Arkeryd, Bobylev, Toscani, ... Villani, Mouhot, Desvillettes, Wennberg, Carlen, ... Guo Specularly (or backwardly) reflecting boundaryPeriodic box

Desvillettes & Villani, Invent. Math. (04)

$$f \to f_{M\infty}: \quad O(t^{-\kappa}) \quad (\forall \kappa > 0)$$

$$f_{M\infty} = \frac{\rho_0}{(2\pi RT_\infty)^{3/2}} \exp\left(-\frac{|\boldsymbol{\xi}|^2}{2RT_\infty}\right)$$

$$\left(\int_D \int_{\mathbf{R}^3} \begin{pmatrix} 1\\ |\boldsymbol{\xi}|^2 \end{pmatrix} f_{M\infty} d\boldsymbol{\xi} d\mathbf{x} = \int_D \int_{\mathbf{R}^3} \begin{pmatrix} 1\\ |\boldsymbol{\xi}|^2 \end{pmatrix} f_{in} d\boldsymbol{\xi} d\mathbf{x} \right)$$

$$H(f|f_{M\infty}) = \int_D \int_{\mathbf{R}^3} f \ln\left(\frac{f}{f_{M\infty}}\right) d\boldsymbol{\xi} d\mathbf{x} < C_\kappa t^{-\kappa}$$

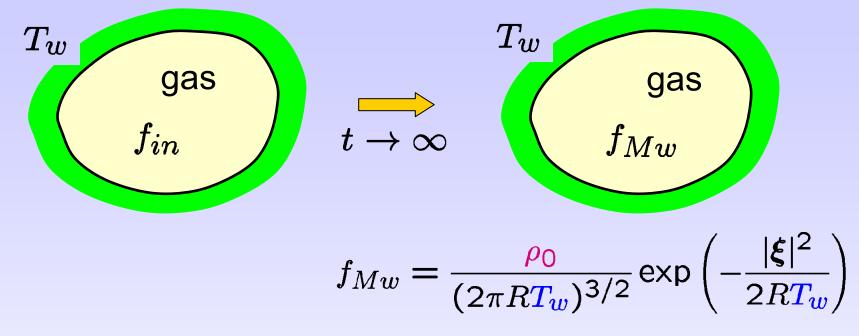
Diffuse reflection

Villani (07?), Guo (09?)

 $f \to f_{Mw}$: $O(t^{-\kappa}) \ (\forall \kappa > 0)$

Free-molecular gas

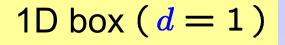
(Diffuse reflection)



Arkeryd & Nouri, Mh. Math. (97)

Slow approach is expected.

$$f \to f_{Mw}$$
: $O(t^{-d})$ (d: dimension of box) guess

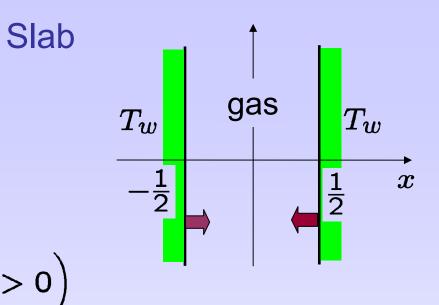


EQ:
$$\frac{\partial f}{\partial t} + \xi_x \frac{\partial f}{\partial x} = 0$$

IC:
$$f(0, x, \xi) = f_{in}(x, \xi)$$

BC:
$$f = f_{w\pm}, \ \left(x = \pm \frac{1}{2}, \ \mp \xi_x > 0\right)$$

1



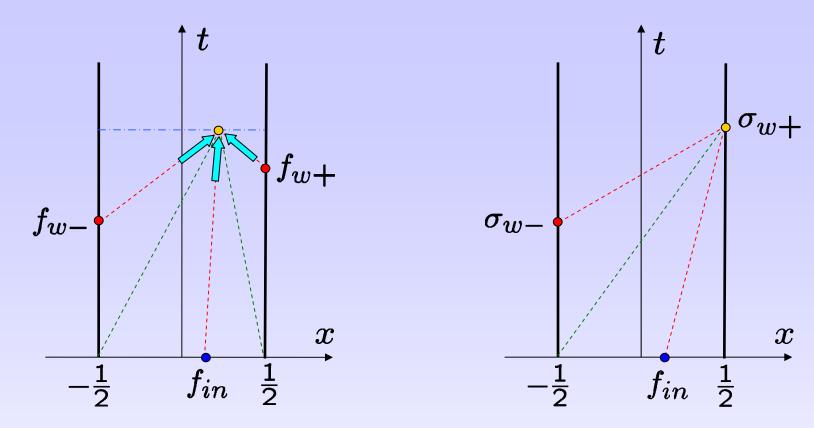
$$f_{w\pm}(t,\boldsymbol{\xi}) = \pi^{-3/2} \sigma_{w\pm}(t) \exp(-|\boldsymbol{\xi}|^2)$$

$$\sigma_{w\pm}(t) = \pm 2\sqrt{\pi} \int \int \int_{\pm\xi_x>0} \xi_x f\left(t, \pm \frac{1}{2}, \boldsymbol{\xi}\right) d\xi_x d\xi_y d\xi_z$$

N

Formal solution

$$f(t, x, \boldsymbol{\xi}) = \begin{cases} f_{in}(x - \xi_x t, \boldsymbol{\xi}), & \left[\frac{1}{t}\left(x - \frac{1}{2}\right) \le \xi_x \le \frac{1}{t}\left(x + \frac{1}{2}\right)\right] \\ f_{w\pm}\left(t - \frac{1}{\xi_x}\left(x \mp \frac{1}{2}\right), \boldsymbol{\xi}\right), & \text{[otherwise]} \end{cases}$$



Integral equation for $\sigma_{w\pm}$

$$\sigma_{w\pm}(t) = M_{\pm} + \int_0^t r(t-s) \,\sigma_{w\mp}(s) ds$$
$$M_{\pm} = 2\sqrt{\pi} \int \int \int_0^{1/t} \xi_x f_{in} \left(\pm \left(\frac{1}{2} - \xi_x t\right), \, \pm \xi_x, \xi_y, \xi_z \right) \, d\xi_x d\xi_y d\xi_z$$
$$r(t) = \frac{2}{t^3} \exp(-1/t^2)$$

Symmetric initial condition:

$$f_{in}(x, \xi_x, \xi_y, \xi_z) = f_{in}(-x, -\xi_x, \xi_y, \xi_z)$$

$$\sigma_{w+}(t) = \sigma_{w-}(t) = \sigma_w(t)$$

$$\sigma_w(t) = M(t) + \int_0^t r(t-s) \sigma_w(s) ds$$
Renewal equation
$$M(t) = 2\sqrt{\pi} \int \int \int_0^{1/t} \xi_x f_{in} \left(\frac{1}{2} - \xi_x t, \xi\right) d\xi_x$$

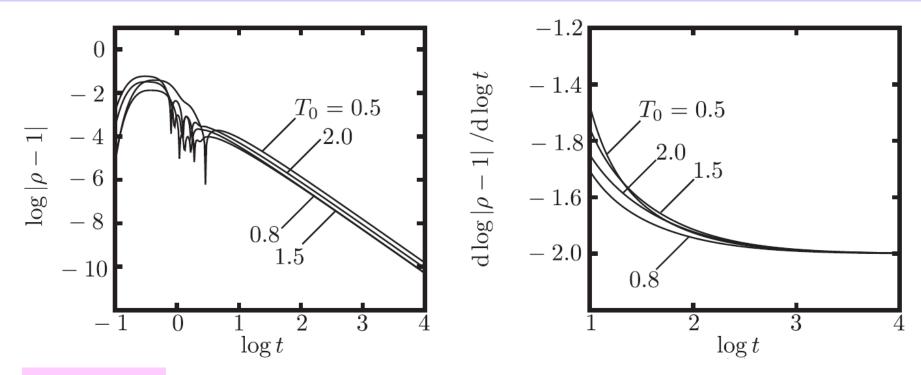
$$r(t) = \frac{2}{t^3} \exp(-1/t^2)$$

 $\sigma_w(t) \implies f(t, x, \xi) \implies \text{Macroscopic quantities}$

Numerical result (preliminary)

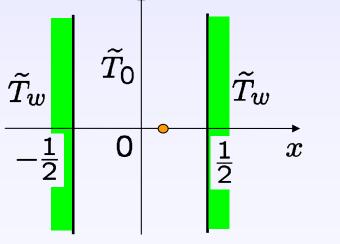
$$f_{in} = \frac{1}{(\pi T_0)^{3/2}} \exp\left(-\frac{|\xi|^2}{T_0}\right)$$

 $(T_0 = \tilde{T}_0 / \tilde{T}_w = 0.5, 0.8, 1.5, 2)$

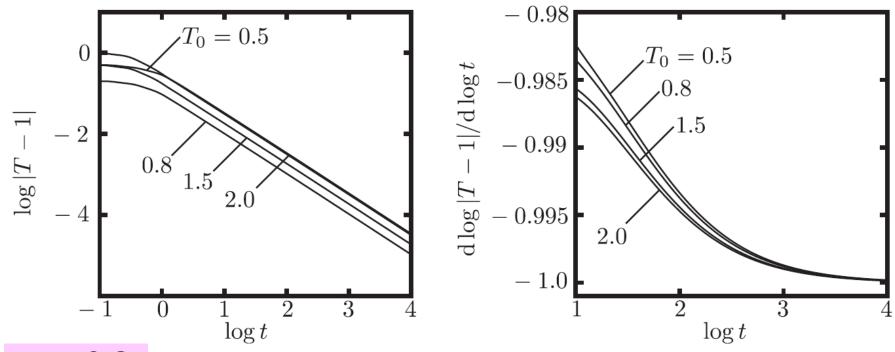


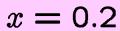
x = 0.2

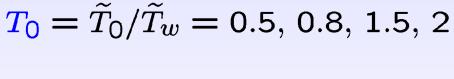
 $T_0 = \tilde{T}_0 / \tilde{T}_w = 0.5, \, 0.8, \, 1.5, \, 2$

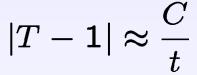


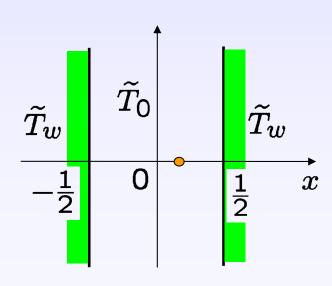
$$|\rho-1|\approx \frac{C}{t^2}$$

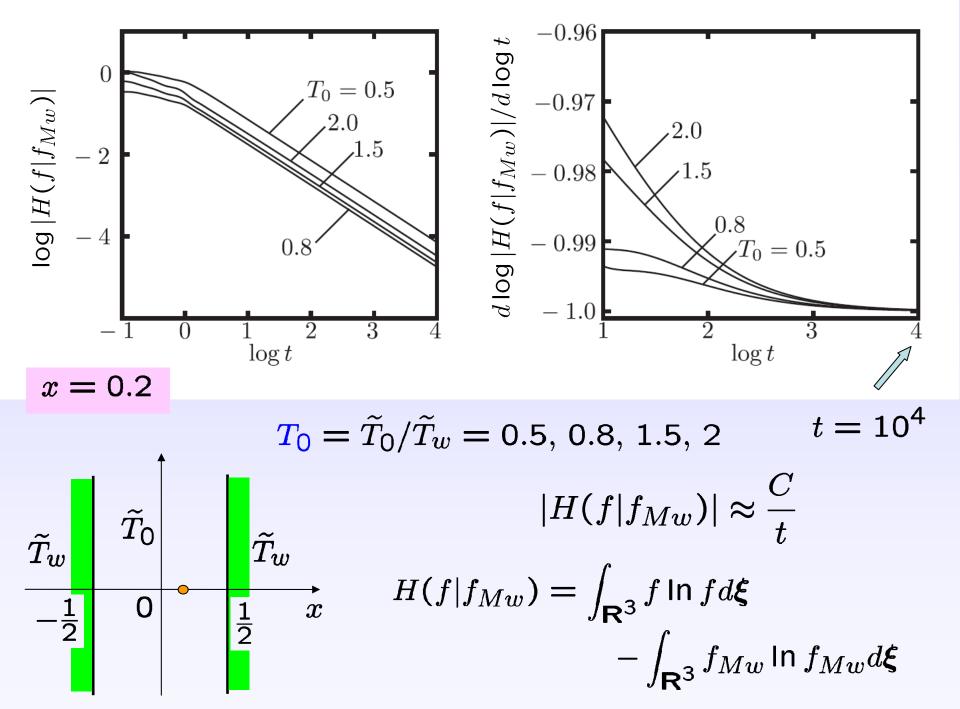












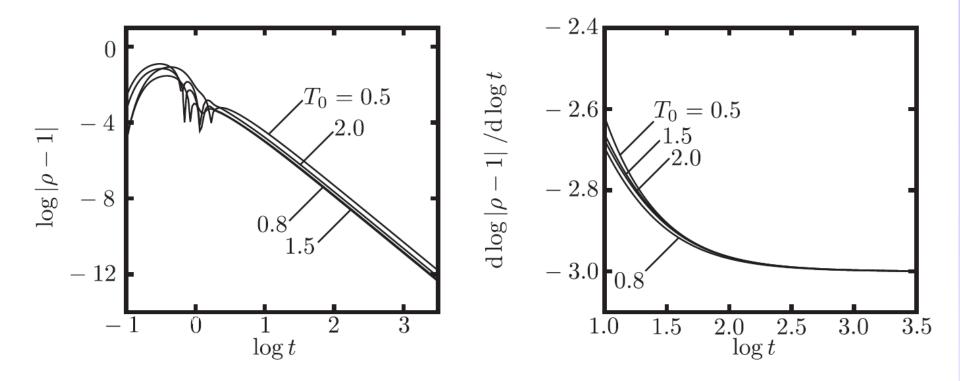
_	$-\mathrm{d}\log h - h_{\infty} /\mathrm{d}\log t (x_1 = 0.2)$				
T_0	$h = \rho$	$h = u_1$	h = T	$h = H(f f_{Mw})$	
0.5	1.998248	2.997418	0.999808	0.999874	
0.8	1.998561	2.997782	0.999821	0.999850	
1.5	1.997783	2.997080	0.999842	0.999803	
2.0	1.997952	2.997231	0.999851	0.999779	
= 0.2				$t = 10^{4}$	
other po	oints			$t = 10^{\circ}$	

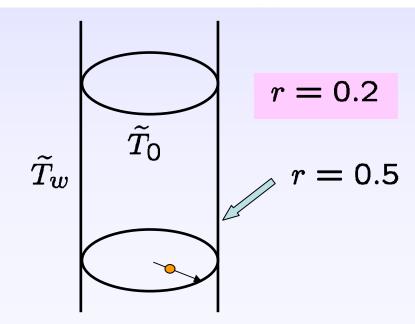
Table 2: Values of the gradient of $d \log |h - h_{\infty}| / d \log t$ in double-logarithmic scale for several T_0 at $x_1 = 0.2$, where $t = 10^4$. Computational parameter: $\Delta t = 0.002$.

 $f \to f_{Mw}$: $O(t^{-d})$ (d: dimension of box) d = 1

2D box
$$(d = 2)$$
 Cylinder
Circular cylinder, Cylindrical symmetry
 $f_{in} = \frac{1}{(\pi T_0)^{3/2}} \exp\left(-\frac{|\boldsymbol{\xi}|^2}{T_0}\right)$
 $(T_0 = \tilde{T}_0/\tilde{T}_w = 0.5, 0.8, 1.5, 2)$
 $[f_w(t, \boldsymbol{\xi}) = \pi^{-3/2} \sigma_w(t) \exp(-|\boldsymbol{\xi}|^2)]$
 $\sigma_w(t) = M(t) + \int_0^t r(t-s) \sigma_w(s) ds$
 $M(t) = -\frac{\sqrt{\pi}}{t} \exp\left(-\frac{1}{2T_0t^2}\right) I_1\left(-\frac{1}{2T_0t^2}\right)$
 $r(t) = \frac{\sqrt{\pi}}{t^4} \exp\left(-\frac{1}{2t^2}\right) \left[I_0\left(-\frac{1}{2t^2}\right) + (1+t^2)I_1\left(-\frac{1}{2t^2}\right)\right]$

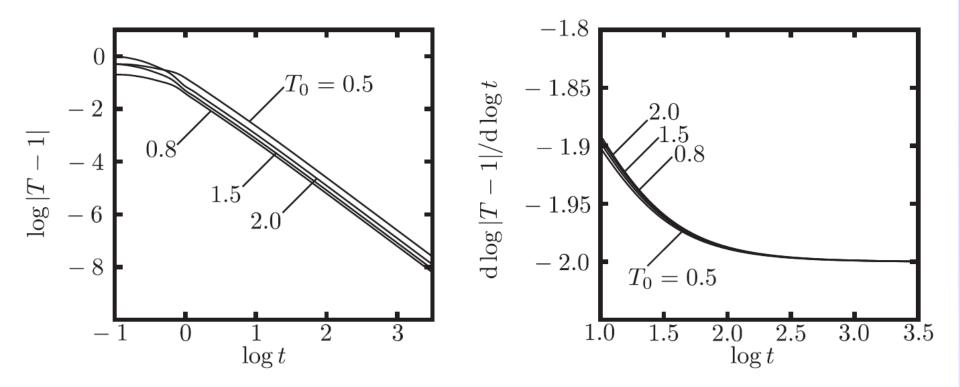
Modified Bessel functions



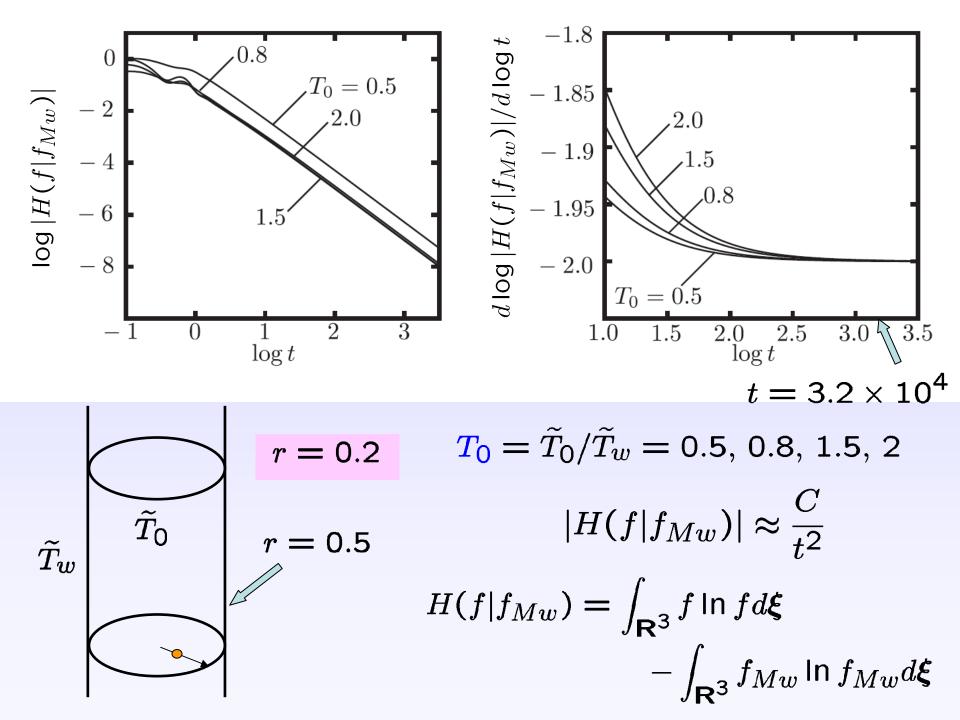


 $T_0 = \tilde{T}_0 / \tilde{T}_w = 0.5, 0.8, 1.5, 2$

$$|\rho - 1| \approx \frac{\varepsilon}{t^3}$$



 $\tilde{T}_{w} = \tilde{T}_{0}/\tilde{T}_{w} = 0.5, \ 0.8, \ 1.5, \ 2$ r = 0.2 $|T - 1| \approx \frac{C}{t^{2}}$



	$-\mathrm{d}\log h-h_{\infty} /\mathrm{d}\log t$ ($\boldsymbol{r}=0.2$)					
T_0	$h = \rho$	$h = u_1$	h = T	$h = H(f f_{Mw})$		
0.5	2.998965	3.998614	1.999676	1.999843		
0.8	2.999082	3.998765	1.999654	1.999787		
1.5	2.998961	3.998641	1.999635	1.999641		
2.0	2.998978	3.998660	1.999623	1.999552		
r = 0.2				$t = 3.2 \times 10^{4}$		

Table 5: Values of the gradient of $d \log |h - h_{\infty}|/d \log t$ in double-logarithmic scale for several T_0 at $\mathbf{r} = 0.2$, where $t = 3.2 \times 10^3$. Computational parameter: $\Delta t = 0.002$.

Other points \int

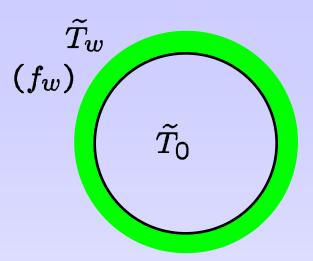
 $f \to f_{Mw}$: $O(t^{-d})$ (d: dimension of box) d = 2

3D box (
$$d = 3$$
)

Sphere, Spherical symmetry

$$f_{in} = \frac{1}{(\pi T_0)^{3/2}} \exp\left(-\frac{|\boldsymbol{\xi}|^2}{T_0}\right)$$

$$(T_0 = \tilde{T}_0/\tilde{T}_w = 0.5, 0.8, 1.5, 2$$

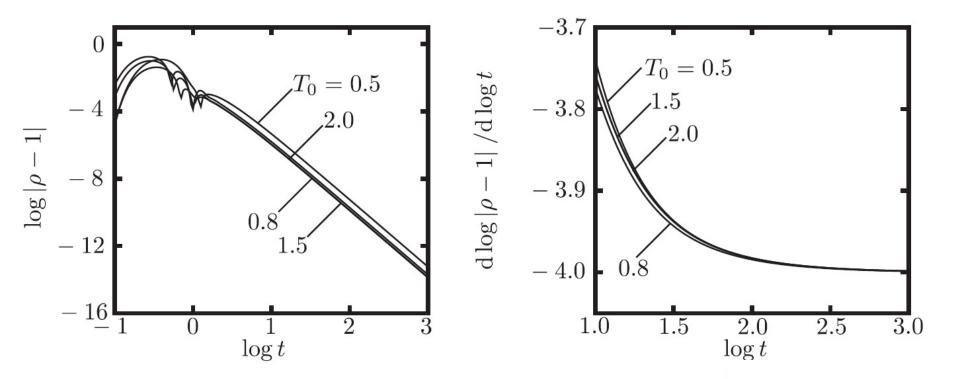


$$[f_w(t,\xi) = \pi^{-3/2} \sigma_w(t) \exp(-|\xi|^2)]$$

$$\sigma_w(t) = M(t) + \int_0^t r(t-s) \,\sigma_w(s) ds$$

$$M(t) = \sqrt{T_0} \left[1 - 2T_0 t^2 + (1 + 2T_0 t^2) \exp\left(-\frac{1}{T_0 t^2}\right) \right]$$

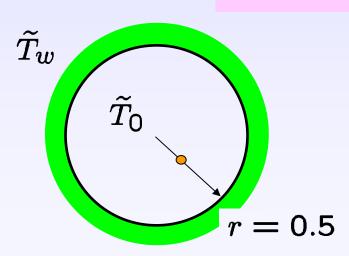
$$r(t) = 4t - \left(4t + \frac{4}{t} + \frac{2}{t^3}\right) \exp\left(-\frac{1}{t^2}\right)$$

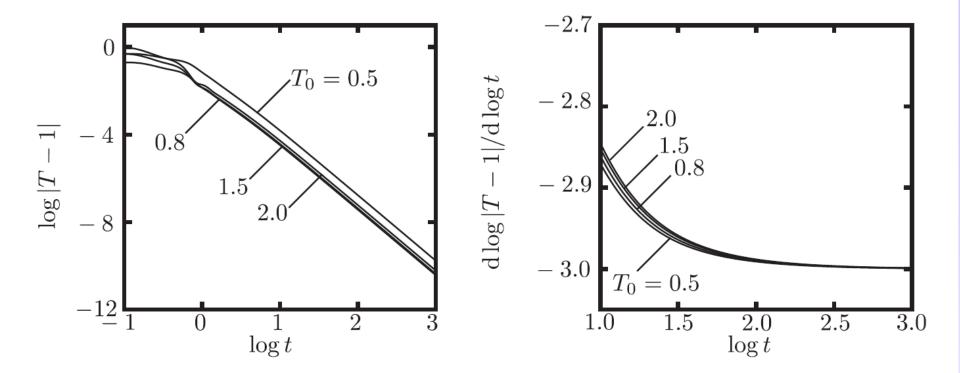


r = 0.2

 $T_0 = \tilde{T}_0 / \tilde{T}_w = 0.5, \, 0.8, \, 1.5, \, 2$

 $|\rho - 1| \approx \frac{C}{t^4}$

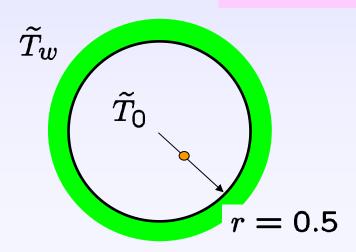


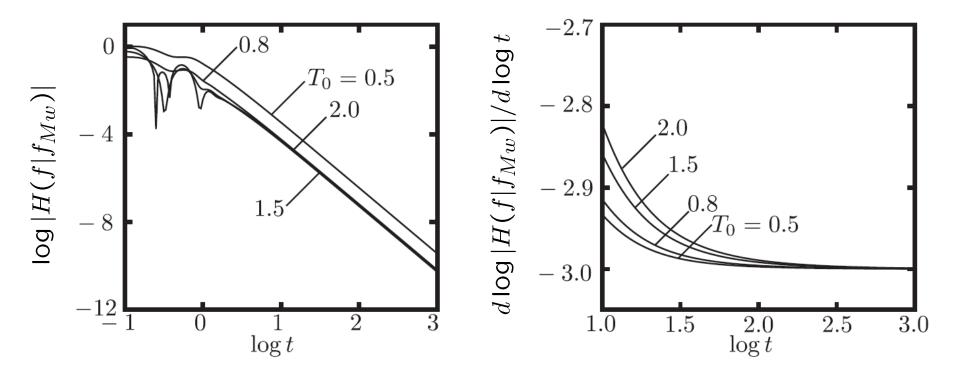


r = 0.2

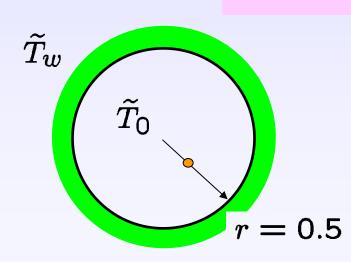
 $T_0 = \tilde{T}_0 / \tilde{T}_w = 0.5, \, 0.8, \, 1.5, \, 2$

 $|T-1| \approx \frac{C}{t^3}$





r = 0.2



 $T_0 = \tilde{T}_0 / \tilde{T}_w = 0.5, \ 0.8, \ 1.5, \ 2$ $|H(f|f_{Mw})| \approx \frac{C}{t^3}$ $H(f|f_{Mw}) = \int_{\mathbf{R}^3} f \ln f d\boldsymbol{\xi}$ $- \int_{\mathbf{R}^3} f_{Mw} \ln f_{Mw} d\boldsymbol{\xi}$

 $f \to f_{Mw}$: $O(t^{-d})$ (d: dimension of box)

Numerical evidence (preliminary)

1D2D: Circular cylinder+ Symmetric initial data3D: Sphere