Line Failure Risk from Congestion Incorporating Uncertainty in Renewable Generation

Anderson Optimization

Eric Anderson Presentation for PIMS at UBC Wednesday, May 22nd, 2019

Eric Anderson Reliability and Renewable Generation

• • • • • • • • • • • •

My Background

- Ph.D. in Industrial Engineering from UW-Madison
- Focus on optimization models for power systems
 - Cascading power failures
 - Dispatch models incorporating renewable generation
 - Themes
 - Large scale computation
 - Uncertainty
- This talk is based on my thesis research with
 - Jeff Linderoth, Jim Luedtke, and Bernard Lesieutre

・ロッ ・雪 ・ ・ ヨ ・ ・

Anderson Optimization

- Software for energy analysis workflows
- Primary clients are renewable developers

Anderson Optimization

- Software for energy analysis workflows
- Primary clients are renewable developers
- Web platform for energy analysis
 - Prospecting for new development
 - Early stage economic and feasibility analysis
 - Production cost modeling

Why I'm Here

<ロ> <同> <同> <同> < 同> < 同> < 同> <

э

Why I'm Here

- Interested in both clean energy and math!
- Potential colloboration in the future
- Potential clients

イロト イヨト イヨト イヨト

Why I'm Here

- Interested in both clean energy and math!
- Potential colloboration in the future
- Potential clients
- Great location!

Intro

Overview

Context Power Systems Analysis Uncertainty Reliability Problems

Incorporating Uncertainty

Uncertain Injects Issues with Deterministic Analysis Chance Constraints System Risk

Conclusion

Context

- Climate change is ongoing, want to reduce emissions
- Reduce through increasing renewables

Context

- Climate change is ongoing, want to reduce emissions
- Reduce through increasing renewables

Emmissions of Electricity Generation

Worldwide

Image: A matrix and a matrix

Challenges

Bulk Power Systems (BPS)

- Composed of generation and high voltage transmission equipement.
- Goal to serve load with least cost electricity while maintaining reliability.

Challenges

Bulk Power Systems (BPS)

- Composed of generation and high voltage transmission equipement.
- Goal to serve load with least cost electricity while maintaining reliability.

Challenges

- Renewables [often] connect with bulk power system (BPS)
- BPS must maintain system reliability
- Renewables intermittent and uncertain

< ロ > < 同 > < 回 > < 回 > < □ > <

US split into 3 interconnected grids

- Generators rotating synchronously with grid
- Connection to every load

US split into 3 interconnected grids North America split into 4 interconnected grids

- Generators rotating synchronously with grid
- Connection to every load

North America Interconnections

э

Bulk Power Systems

Complex system requiring continuous supply demand balance

- Transient stability, automatic generator control
- Ancillary services market
- 5 minute real time market
- 1-6 hour inter region market
- 24 hour day ahead market
- Long term capacity markets

4 日 2 4 周 2 4 日 2 4 日 2 4

Bulk Power Systems

Complex system requiring continuous supply demand balance

- Transient stability, automatic generator control
- Ancillary services market
- 5 minute real time market
- 1-6 hour inter region market
- 24 hour day ahead market
- Long term capacity markets

4 日 2 4 周 2 4 日 2 4 日 2 4

Optimization in Power System

Operational/Markets

- Real time market / economic dispatch
- Day ahead market / unit commitment
- Planning
 - Production cost model
 - Capacity expansion
- Reliability
 - Power flow / optimal power flow
 - Dynamics / transient stability

Optimization in Power System

- Operational/Markets
 - Real time market / economic dispatch LP
 - Day ahead market / unit commitment MIP
- Planning
 - Production cost model simulation MIP
 - Capacity expansion MIP / DFO
- Reliability
 - Power flow / optimal power flow NLP
 - Dynamics / transient stability simulation NLP
- LP = Linear Program
- MIP = Mixed Integer Program
- NLP = Nonlinear Program
- DFO = Derivative Free Optimization

・ロト ・ 同ト ・ ヨト ・ ヨト - ヨ

Power Flow

Laws of physics, can't control branch flow Control net injects

- Generators
 - Ramping characterstics, limits
- Demand Response
- Storage (hydro, battery)

Power Flow

Laws of physics, can't control branch flow Control net injects

- Generators
 - Ramping characterstics, limits
- Demand Response
- Storage (hydro, battery)
- AC power flow balanced 3 phase power system model
 - Nonlinear, nonconvex equations
 - Difficult to solve
 - We use DC approximation (linear)

Modern Complexity for Power Systems

Uncertainty

Asking more of our transmission grid, robust to uncertainty

- Wind
- Solar
- Demand Response
- Energy Storage
- Electric Vehicles

Reliability Problems

Power Interruptions

- \$79 billion economic loss (2001)
 - \$247 billion electricity sales
- Hidden from system, distributed throughout economy
- New technologies: renewables, EVs, etc. stressful on system

Reliability Problems

Power Interruptions

- \$79 billion economic loss (2001)
 - \$247 billion electricity sales
- Hidden from system, distributed throughout economy
- New technologies: renewables, EVs, etc. stressful on system

Cascading power failures

- Rare, but costly
- Equillibrium balancing economics and reliability
- Northeast blackout 2003
 - \$6 billion economic loss
 - Loss of life

Intro

Overview

Context Power Systems Analysis Uncertainty Reliability Problems

Incorporating Uncertainty

Uncertain Injects Issues with Deterministic Analysis Chance Constraints System Risk

Conclusion

Uncertain Injects

Uncertainty in Injects to Power System

- Subset of nodes have uncertain injections
 - Solar, wind
 - Demand (relatively certain, however EVs could represent change)

Uncertain Injects

Uncertainty in Injects to Power System

- Subset of nodes have uncertain injections
 - Solar, wind
 - Demand (relatively certain, however EVs could represent change)
- Subset of assets respond to uncertainty (slack distribution)
 - Rotational inertia, peaker plants and regulation
 - Energy storage, enhanced power controls

Uncertainty is Multivariate Normal

Assumption

Uncertainty in net injections are Multivariate Normal

- Uncertainty in errors from forecast
- Known or can be empirically estimated
- Potentially correlated

< D > < P > < P > < P >

Gaussian Injects

Net Injection Uncertainties

- Subset of nodes have uncertain injections (i.e. wind)
- Subset of generators respond to uncertainty (slack distribution)

Gaussian Injects

Net Injection Uncertainties

- Subset of nodes have uncertain injections (i.e. wind)
- Subset of generators respond to uncertainty (slack distribution)

$$\mathbf{x} = C_g \left(\mathbf{x}_g + \mathbf{\Delta} \mathbf{\beta}
ight) - \left(d + C_M \mathbf{\delta}^m
ight)$$

Gaussian Injects

Net Injection Uncertainties

- Subset of nodes have uncertain injections (i.e. wind)
- Subset of generators respond to uncertainty (slack distribution)

$$oldsymbol{x} = C_{g} \left(oldsymbol{x_{g}} + oldsymbol{\Delta}eta
ight) - \left(d + C_{M} oldsymbol{\delta}^{m}
ight)$$

- **x** Net injects
- x_g Generator dispatch
- β Slack distribution
- d Expected demand
- $oldsymbol{\delta^m}$ Nodal demand variation $(\mathbb{E}\left[oldsymbol{\delta^m}
 ight]=$ 0, Σ known)
- **\Delta** Aggregate demand variation ($\mathbf{\Delta} = 1^T \boldsymbol{\delta}^{m}$)

・ロト ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・ ・

Decoupled (DC) Power Flow equations

Linearization of nonlinear AC Power Flow

Decoupled (DC) Power Flow equationsLinearization of nonlinear AC Power Flow

 $y = DC\theta$ $x = C^{T}y$ $x = B\theta$

Decoupled (DC) Power Flow equationsLinearization of nonlinear AC Power Flow

 $y = DC\theta$ $x = C^{T}y$ $x = B\theta$

- x Net injections, $x < 0 \equiv demand (N)$
- y Branch flows (E)
- θ Phase angle (N)
- D Diagonal branch susceptance matrix $(E \times E)$
- B System matrix, $B = C^T D C$ (N x N)
- C Node-arc incidence matrix $(E \times N)$

Decoupled (DC) Power Flow equationsLinearization of nonlinear AC Power Flow

 $y = DC\theta$ $x = C^{T}y$ $x = B\theta$

- x Net injections, $x < 0 \equiv demand (N)$
- y Branch flows (E)
- θ Phase angle (N)
- D Diagonal branch susceptance matrix $(E \times E)$
- B System matrix, $B = C^T D C$ (N x N)
- C Node-arc incidence matrix $(E \times N)$

N-Number of nodes, E-Number of edges
Linear Shift Factors

DC Power Flow -> Linear Shift Factors

Linear Shift Factors

$$y = Ax$$

where $A = B'CB^{-1}$

・ロッ ・雪 ・ ・ ヨ ・ ・ コ ・

= 900

Assuming Gaussian injects and linear shift factors

Branch flows are Gaussian as well

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Assuming Gaussian injects and linear shift factorsBranch flows are Gaussian as well

$$\mathbf{y} = \mathbf{y}_0 + AC_G \mathbf{\beta} \mathbf{\Delta} - AC_M \mathbf{\delta}^m$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Assuming Gaussian injects and linear shift factors

Branch flows are Gaussian as well

$$\mathbf{y} = \mathbf{y}_0 + AC_G \beta \mathbf{\Delta} - AC_M \delta^{m}$$

y Branch flows

Y₀

 $AC_{m}\delta^{m}$

- Branch flows for forecasted system
- $AC_g \beta \Delta$ Flow variation due to slack generation movement
 - Flow variation due to nodal inject changes

Issues with Deterministic Analysis

Normal distributed injects

Eric Anderson

Reliability and Renewable Generation

Issues with Deterministic Analysis

Normal distributed injects \rightarrow **Normal branch flows**¹

¹In a stable system

Eric Anderson

Reliability and Renewable Generation

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Issues with Deterministic Analysis

Normal distributed injects \rightarrow Normal branch flows¹

Problem!

Branch constraints violated half the time when at its limit

Normal Branch Flow

PDF for Branch flow with mean (forecast) at nominal capacity

・ コ ト ・ 一戸 ト ・ ヨ ト ・

Normal Branch Flow

PDF of Power Flow

Need to probabilistically enforce constraints

Eric Anderson

Reliability and Renewable Generation

<ロト < 同ト < ヨト < ヨト

Chance Constraint Model

Replace the standard constraints with probalistic ones ²³

$$P\left[-U_{e} \leq \boldsymbol{y}_{e} \leq U_{e}\right] \geq 1 - \epsilon_{I} \quad \forall e$$

¹Bienstock, D. and Chertkov, M. and Harnett, S. ²Vrakopoulou, M. and Chatzivasileiadis, S. and Andersson G. B. S. S.

Reliability and Renewable Generation

Chance Constraint Model

Replace the standard constraints with probalistic ones ²³

$$P\left[-U_{e} \leq \boldsymbol{y}_{e} \leq U_{e}\right] \geq 1 - \epsilon_{I} \quad \forall e$$

Deterministic equivalent Branch flows

$$y_e + s_e \eta_I \le U_e \qquad \forall e$$

with

$$\eta_I = \Phi^{-1}(1 - \epsilon_I)$$

¹Bienstock, D. and Chertkov, M. and Harnett, S. ²Vrakopoulou, M. and Chatzivasileiadis, S. and Andersson₂G.

Reliability and Renewable Generation

Chance Constraints

PDF of Power Flow

・ロト ・四ト ・ヨト ・ヨト

Determinsitic has fixed line thresholds

- Line is completely okay
- or system is infeasible

Determinsitic has fixed line thresholds

- Line is completely okay
- or system is infeasible

Chance Constraints

Enforce line threshold probalistically

Determinsitic has fixed line thresholds

- Line is completely okay
- or system is infeasible
- Chance Constraints
 - Enforce line threshold probalistically
- Line thresholds are soft constraints in real life

Determinsitic has fixed line thresholds

- Line is completely okay
- or system is infeasible

Chance Constraints

Enforce line threshold probalistically

Line thresholds are soft constraints in real life

- Multiple line ratings (i.e. short term emergency rating)
- Hard limit typically relay tripping

Line Limits

Limited by

- Sagging due to current flow and line heating
- Worst case environmental conditions (seasonally)
- An acceptable probability of line failure
- Enforce N-1 Reliability Constraint

Line Limits

Limited by

- Sagging due to current flow and line heating
- Worst case environmental conditions (seasonally)
- An acceptable probability of line failure
- Enforce N-1 Reliability Constraint

Dynamic line limits

 Real time limits based on current environmental conditions

イロト イヨト イヨト イヨト

System risk related to line loadings (severity measure) ⁴

²Qin Wang and McCalley, J.D. and Tongxin Zheng and Litvinov, E. = 🔊 🔍

Eric Anderson

Reliability and Renewable Generation

System risk related to line loadings (severity measure) ⁴ System Risk Probability of line failure

 $h(y) = P_{\Xi}$ [at least one line fails|y]

²Qin Wang and McCalley, J.D. and Tongxin Zheng and Litvinov, E. 🖅 🔊 🔍

Reliability and Renewable Generation

System risk related to line loadings (severity measure) ⁴ System Risk Probability of line failure

$$h(y) = P_{\Xi}$$
 [at least one line fails|y]

Intuition

Grid relatively stressed when more lines are near their limit

²Qin Wang and McCalley, J.D. and Tongxin Zheng and Litvinov, E. 🛓 🔊 🔍

Risk function takes the normalized flow returns line risk

$$g(y_e) = \mathbb{P}_{\Xi}$$
 [Line *e* fails| y_e]

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

3

Risk function takes the normalized flow returns line risk

$$g(y_e) = \mathbb{P}_{\Xi}[\text{Line } e \text{ fails}|y_e]$$

Piece-wise linear function chosen

- Below L, there is no risk associated with loading
- After L, the risk increases linearly with loading
- ▶ At critical capacity U^c, line fails with certainty

イロト イポト イラト イラト

Risk function takes the normalized flow returns line risk

$$g(y_e) = \mathbb{P}_{\Xi}[\text{Line } e \text{ fails}|y_e]$$

Piece-wise linear function chosen

- Below L, there is no risk associated with loading
- After L, the risk increases linearly with loading
- At critical capacity U^c, line fails with certainty

$$g(y_e) = \left\{ egin{array}{cc} 0 & y_e \leq L \ a+by_e & L \leq y_e < U^c \ 1 & U^c \leq y_e \end{array}
ight.$$

イロト イポト イラト イラト

Piecewise Linear Risk Function

・ロト ・四ト ・ヨト ・ヨト

System Risk, Fixed Injects

System Risk Probability that at least one line fails

 $h(y) = P_{\Xi}$ [at least 1 line fails]

イロト イポト イヨト イヨト

System Risk, Fixed Injects

System Risk Probability that at least one line fails

 $h(y) = P_{\Xi}$ [at least 1 line fails]

With fixed line flows, independent failures

$$h(y) = 1 - \prod_{e \in \mathcal{E}} (1 - g(y_e))$$

イロト イポト イヨト イヨト

System Risk, Fixed Injects

System Risk Probability that at least one line fails

 $h(y) = P_{\Xi}$ [at least 1 line fails]

With fixed line flows, independent failures

$$h(y) = 1 - \prod_{e \in \mathcal{E}} (1 - g(y_e))$$

Implies hard line constraint, line risk=system risk
 h(y) ≤ ϵ not convex
 But it is log convex, log transform and solve

(日)

Gaussian Flow and Risk Function

・ロト ・四ト ・ヨト ・ヨト

Risk function takes the normalized flow returns line risk

$$g(oldsymbol{y}_e) = \mathbb{P}_{\Xi}\left[\mathsf{Line}\; e\; \mathsf{fails} |oldsymbol{y}_e
ight]$$

3

Risk function takes the normalized flow returns line risk

 $g(\mathbf{y}_e) = \mathbb{P}_{\Xi} [\mathsf{Line} \ e \ \mathsf{fails} | \mathbf{y}_e]$

Assume Conditioned on line flow

- Failure probabilities independent
- Bold letters w.r.t. Ω, orthogonal to Ξ
 - Ω: represents demand uncertainty, wind, etc.
 - Ξ: likelihood of failure given flow

イロト イポト イヨト イヨト 三日

Risk function takes the normalized flow returns line risk

 $g(oldsymbol{y}_e) = \mathbb{P}_{\Xi} \left[\mathsf{Line} \; e \; \mathsf{fails} | oldsymbol{y}_e
ight]$

Assume Conditioned on line flow

- Failure probabilities independent
- Bold letters w.r.t. Ω, orthogonal to Ξ
 - Ω: represents demand uncertainty, wind, etc.
 - Ξ: likelihood of failure given flow

Line flows are not independent!

But we calculate and account for branch covariance Σ

イロト イポト イヨト イヨト 三日

System Risk Under Uncertainty

Line Risk Function

$$\rho(\mu_e^y, \sigma_e^y) \equiv \mathbb{E}_{\Omega}\left[g(\boldsymbol{y}_e)\right]$$

Function representation

$$\rho(\mu_{e}^{y},\sigma_{e}^{y}) = (a+b\mu_{e}^{y})\left[1-\Phi(\alpha_{L})\right] + b\sigma_{e}^{y}\phi(\alpha_{L})$$

Function is

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

System Risk Under Uncertainty

Line Risk Function

$$\rho(\mu_e^y, \sigma_e^y) \equiv \mathbb{E}_{\Omega}\left[g(\boldsymbol{y}_e)\right]$$

Function representation

$$\rho(\mu_e^y, \sigma_e^y) = (a + b\mu_e^y) [1 - \Phi(\alpha_L)] + b\sigma_e^y \phi(\alpha_L)$$

Function is

• Convex with respect to μ_e^y, σ_e^y of branch flow \mathbf{y}_e

• σ second order cone representable

- Not expressable due to CDF of standard normal evaluation
 - Derivatives expressable

System Risk Under Uncertainty

Line Risk Function

$$\rho(\mu_e^y, \sigma_e^y) \equiv \mathbb{E}_{\Omega}\left[g(\boldsymbol{y}_e)\right]$$

Function representation

$$\rho(\mu_e^y, \sigma_e^y) = (a + b\mu_e^y) [1 - \Phi(\alpha_L)] + b\sigma_e^y \phi(\alpha_L)$$

Function is

• Convex with respect to μ_e^y, σ_e^y of branch flow \mathbf{y}_e

• σ second order cone representable

- Not expressable due to CDF of standard normal evaluation
 - Derivatives expressable

Solve with Cutting Planes!

Solution Exploration Demo

http://eja4.info/pow-explore.html

Toggle in bottom left to change dispatch model

Eric Anderson

Reliability and Renewable Generation

イロト イボト イヨト イヨト
Conclusion

Review

- Need improved analysis for uncertainty in renewable generation
- Correlation in renewable generation is important
- Line failure risk vs system risk

Next Steps

Incorporate in analysis such as Capacity Expansion

Conclusion

Review

- Need improved analysis for uncertainty in renewable generation
- Correlation in renewable generation is important
- Line failure risk vs system risk

Next Steps

Incorporate in analysis such as Capacity Expansion

Thanks!

Hope you enjoyed! Questions?

38/38

DC Optimal Power Flow

Economic dispatch with quadratic cost function

$$\min_{(x;\theta,y)} \sum_{j} [c_2 x_j^2 + c_1 x_j + c_0]$$

$$\sum_{j} C_{ij}^g x_j - \sum_{e} C_{ie}^b y_e = d_i \qquad \forall i$$

$$y_e - b_e \sum_{j} C_{ie}^b \theta_i = 0 \qquad \forall e$$

$$y_e \in [-U_e, U_e] \qquad \forall e$$

$$x_j \in [G_j^{min}, G_j^{max}] \forall j$$

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・

Full JCC Model

$$\begin{split} \min_{(x,\beta;\theta,y,\pi,s,z)} \sum_{j} \left[c_2 \left(x_j^2 + \beta_j^2 \sigma_{\Delta}^2 \right) + c_1 x_j + c_0 \right] \\ \sum_{j} c_{ij}^g x_j - \sum_{j} c_{ie}^b y_e &= d_i \qquad \forall i \\ y_e - b_e \sum_{i} c_{ie}^b \theta_i &= 0 \qquad \forall e \\ y_e \in \left[-U_e^\epsilon, U_e^\epsilon \right] \qquad \forall e \\ x_j + \beta_j \sigma_{\Delta}^2 \eta_g \in \left[G_j^{min}, G_j^{max} \right] \forall j \\ \sum_{j} \beta_j &= 1 \\ \pi_e - \sum_{j} A_{ej} \beta_j &= 0 \qquad \forall e \\ s_e^2 - \pi_e^2 \sigma_{\Delta}^2 + 2\pi_e \sigma_{e_1}^2 \geq \sigma_{e_1e_1}^2 \qquad \forall e \\ z_e - \rho(|y_e|, s_e) \geq 0 \qquad \forall e \\ \sum_e z_e \leq \epsilon \end{split}$$

Eric Anderson

Reliability and Renewable Generation

Cost Risk Frontier

- OPF single point
- \blacktriangleright CC tighten probabalistic branch constraint from .5 \rightarrow infeasible

 $\blacktriangleright\,$ JCC - tighten system risk from lowest cost \rightarrow infeasible