The ant in the labyrinth: random walks and percolation

Martin T. Barlow University of British Columbia

Percolation was introduced by Broadbent and Hammersley in 1957. The simplest version to describe is on the Euclidean lattice \mathbb{Z}^d . Let p be a fixed probability between 0 and 1. Each bond in \mathbb{Z}^d is retained with probability p, and removed with probability 1-p, independently of all the others. The percolation *cluster* containing a point x, denoted C(x), consists of those points which can be reached from x by a path of retained bonds. There is a critical value $p_c \in (0, 1)$ such that if $p < p_c$ then all clusters are finite, while for $p > p_c$ there is an infinite cluster.

Random walks on percolation clusters were introduced by De Gennes in 1976: he called this the problem of 'the ant in the labyrinth'. If p = p(n, x, y) is the probability that a random walker ('the ant'), starting at x, is at y at time n, then p describes diffusion of heat on the cluster.

For the supercritical phase $(p > p_c)$ this problem is now quite well understood, and p(n, x, y) converges to a Gaussian distribution as $n \to \infty$. PDE techniques introduced by Nash in the 1950s, play an important role in some of the arguments.

The critical case $p = p_c$ is much harder, since the clusters have fractal properties. One expects that $p(n, x, x) \sim n^{-d_s/2}$, where d_s is called the spectral dimension of the cluster. Alexander and Orbach conjectured in 1982 that $d_s = 4/3$ in all dimensions: this has recently been proved in some high dimensional cases.