COUNTING POINTS OF HOMOGENEOUS VARIETIES OVER FINITE FIELDS

MICHEL BRION

This talk is based on joint work with Emmanuel Peyre. We consider an algebraic variety X, homogeneous under an algebraic group G. Assuming that X and G are defined over a finite field \mathbb{F}_q , we study the number of points of X over finite extensions \mathbb{F}_{q^n} .

When G is linear, we show that $|X(\mathbb{F}_{q^n})|$ is a periodic polynomial function of q^n with integer coefficients. Moreover, the "shifted" periodic polynomial function, where q^n is formally replaced with q^n+1 , has non-negative coefficients.

For an arbitrary G, we obtain a factorization

$$|X(\mathbb{F}_{q^n})| = |A(\mathbb{F}_{q^n})| |Y(\mathbb{F}_{q^n})|$$

where A is an abelian variety, and Y is homogeneous under a linear algebraic group.