Traveling Fronts in Disordered Media

Andrej Zlatoš

Department of Mathematics University of Chicago

UBC, July 23, 2009

Andrej Zlatoš Traveling Fronts in Disordered Media

ヘロト ヘ戸ト ヘヨト ヘヨト

æ

Reaction-diffusion equations

We consider the reaction-diffusion equation

$$u_t = \Delta u + f(x, u)$$

on the spatial domain $D = \mathbb{R} \times \Omega$ (with $\Omega \subset \mathbb{R}^{d-1}$ bounded) and Neumann or periodic boundary conditions on ∂D .

- *u*(*t*, *x*) ∈ [0, 1] is the normalized temperature of a combusting medium or 1 − *u* is a concentration of a reactant in a chemical reaction
- $f: D \times [0, 1] \rightarrow [0, \infty)$ is a Lipschitz reaction function with f(x, 0) = f(x, 1) = 0 and ignition temperature

 $\theta(\mathbf{x}) = \inf \left\{ u \, \big| \, f(\mathbf{x}, u) > 0 \right\}$

- Ignition reaction: $\inf_x \theta(x) > 0$
- Positive (monostable) reaction: $\inf_x \theta(x) = 0$ KPP reaction: $f(x, u) \le \frac{\partial f}{\partial u}(x, 0)u$

글 🖌 🛪 글 🛌

Reaction-diffusion equations

We consider the reaction-diffusion equation

$$u_t = \Delta u + f(x, u)$$

on the spatial domain $D = \mathbb{R} \times \Omega$ (with $\Omega \subset \mathbb{R}^{d-1}$ bounded) and Neumann or periodic boundary conditions on ∂D .

- *u*(*t*, *x*) ∈ [0, 1] is the normalized temperature of a combusting medium or 1 − *u* is a concentration of a reactant in a chemical reaction
- $f: D \times [0, 1] \rightarrow [0, \infty)$ is a Lipschitz reaction function with f(x, 0) = f(x, 1) = 0 and ignition temperature

$$\theta(\mathbf{x}) = \inf \left\{ u \, \big| \, f(\mathbf{x}, u) > 0 \right\}$$

- Ignition reaction: $\inf_x \theta(x) > 0$
- Positive (monostable) reaction: $\inf_{x} \theta(x) = 0$ KPP reaction: $f(x, u) \le \frac{\partial f}{\partial u}(x, 0)u$

ヨト ・ヨトー

We will also consider the reaction-advection-diffusion equation

$$u_t + q(x) \cdot \nabla u = \nabla \cdot (A(x)\nabla u) + f(x, u)$$

with q divergence-free vector field (**incompressible flow**) and A uniformly elliptic (**inhomogeneous diffusion**).

Models propagation of reaction (e.g., combustion, fire). Also used in models of chemical kinetics, genetics, population dynamics.

Goal: Describe long time behavior of solutions.

個 とく ヨ とく ヨ とう

Transition fronts

Transition front (generalized traveling front) is a solution u(t, x) that is **global in time** and satisfies for each $t \in \mathbb{R}$,

$$\lim_{x_1 \to -\infty} u(t, x) = 1$$
 and $\lim_{x_1 \to \infty} u(t, x) = 0$

uniformly in $x' = (x_2, \ldots, x_d) \in \Omega$.

- This front moves to the right. Also a front moving left.
- Fronts can be attractors of general solutions of the PDE (front-like and compactly supported initial data).

0

< ロ > < 同 > < 回 > < 回 > .

Transition fronts

Transition front (generalized traveling front) is a solution u(t, x) that is **global in time** and satisfies for each $t \in \mathbb{R}$,

$$\lim_{x_1 \to -\infty} u(t, x) = 1$$
 and $\lim_{x_1 \to \infty} u(t, x) =$

0

uniformly in $x' = (x_2, \ldots, x_d) \in \Omega$.

- This front moves to the right. Also a front moving left.
- Fronts can be attractors of general solutions of the PDE (front-like and compactly supported initial data).

Homogeneous media: Traveling fronts

 $u_t = \Delta u + f(u)$

A traveling front is a solution of the form $u(t, x) = U(x_1 - ct)$ such that $U(-\infty) = 1$ and $U(\infty) = 0$.

- Constant **profile** *U* and constant **speed** *c*
- U'' + cU' + f(U) = 0 gives c > 0 and U' < 0
- Ignition reactions: unique front speed $c_f^* > 0$
- **Positive reactions:** minimal front speed $c_f^* > 0$ and all $c \in [c_f^*, \infty)$ are achieved
- **KPP reactions:** $c_f^* = 2\sqrt{f'(0)}$ same as for f(u) = f'(0)u(Kolmogorov-Petrovskii-Piskunov)

Homogeneous media: Traveling fronts

$$u_t = \Delta u + f(u)$$

A traveling front is a solution of the form $u(t, x) = U(x_1 - ct)$ such that $U(-\infty) = 1$ and $U(\infty) = 0$.

- Constant **profile** *U* and constant **speed** *c*
- U'' + cU' + f(U) = 0 gives c > 0 and U' < 0
- Ignition reactions: unique front speed $c_f^* > 0$
- **Positive reactions:** minimal front speed $c_f^* > 0$ and all $c \in [c_f^*, \infty)$ are achieved
- **KPP reactions:** $c_f^* = 2\sqrt{f'(0)}$ same as for f(u) = f'(0)u(Kolmogorov-Petrovskii-Piskunov)

Periodic media: Pulsating fronts

$$u_t + q(\mathbf{x}) \cdot \nabla u = \nabla \cdot (A(\mathbf{x}) \nabla u) + f(\mathbf{x}, u)$$

Assume q,A,f are 1-periodic in x_1 and $\int_{[0,1]^d} q(x) dx = 0$. A **pulsating front** with speed c > 0 is a solution of the form $u(t,x) = U(x_1 - ct, x \mod 1)$ such that $U(\pm \infty, x) = 0/1$.

• Time-periodic in a moving frame: $u(t + \frac{1}{c}, x + e_1) = u(t, x)$

• (U, c) solve a degenerate elliptic equation

• With mild conditions on *f* again unique/minimal front speed $c_{f,q,A}^* > 0$ for ignition/positive reactions (Berestycki-Hamel, Xin)

Periodic media: Pulsating fronts

$$u_t + q(\mathbf{x}) \cdot \nabla u = \nabla \cdot (A(\mathbf{x}) \nabla u) + f(\mathbf{x}, u)$$

Assume q,A,f are 1-periodic in x_1 and $\int_{[0,1]^d} q(x) dx = 0$. A **pulsating front** with speed c > 0 is a solution of the form $u(t,x) = U(x_1 - ct, x \mod 1)$ such that $U(\pm \infty, x) = 0/1$.

- Time-periodic in a moving frame: $u(t + \frac{1}{c}, x + e_1) = u(t, x)$
- (U, c) solve a degenerate elliptic equation
- With mild conditions on *f* again unique/minimal front speed $c^*_{f,q,A} > 0$ for ignition/positive reactions (Berestycki-Hamel, Xin)

Pulsating front for a cellular flow

Andrej Zlatoš Traveling Fronts in Disordered Media

æ

∃ ► -

Fronts in 1D inhomogeneous media

In general inhomogeneous media no special forms exist.

• Nolen-Ryzhik-Mellet-Roquejoffre-Sire considered the 1D case with $f(x, u) = a(x)f_0(u)$ and a, f_0 Lipschitz:

$$u_t = u_{xx} + a(x)f_0(u)$$

If there are $0 < a_0 \le a_1 < \infty$ such that $a(x) \in [a_0, a_1]$ and $\exists \theta \in (0, 1)$ such that $f_0(u) > 0$ iff $u \in (\theta, 1)$, then they proved existence of a unique (right-moving) transition front, and its stability.

 The method is specialized for 1D and constant positive ignition temperature. A more robust method is needed to handle more dimensions, general q, A, and general f (non-constant, non-negative ignition temperature).

▲口 > ▲輝 > ▲ 注 > ▲ 注 > →

Fronts in 1D inhomogeneous media

In general inhomogeneous media no special forms exist.

• Nolen-Ryzhik-Mellet-Roquejoffre-Sire considered the 1D case with $f(x, u) = a(x)f_0(u)$ and a, f_0 Lipschitz:

$$u_t = u_{xx} + a(x)f_0(u)$$

If there are $0 < a_0 \le a_1 < \infty$ such that $a(x) \in [a_0, a_1]$ and $\exists \theta \in (0, 1)$ such that $f_0(u) > 0$ iff $u \in (\theta, 1)$, then they proved existence of a unique (right-moving) transition front, and its stability.

• The method is specialized for 1D and constant positive ignition temperature. A more robust method is needed to handle more dimensions, general *q*, *A*, and general *f* (non-constant, non-negative ignition temperature).

ヘロト ヘ戸ト ヘヨト ヘヨト

Hypotheses:

- f(x, u) is Lipschitz and $f_0(u) \le f(x, u) \le f_1(u)$ for some reactions $f_0(u) \le f_1(u)$ such that f_0 is ignition (with ignition temperature $\theta > 0$) and f_1 is ignition or positive.
- $f'_1(0) < (c^*_{f_0})^2/4$ (true if f_1 ignition)

• This is equivalent to $2\sqrt{f_1'(0)} < c_{f_0}^*$

For some ζ < (c^{*}_{f₀})²/4 the function f(x, ·) is bounded away from zero (uniformly in x) on the interval [α_f(x), 1 − ε], with

 $\alpha_f(x) = \inf\{u \in (0, 1) \, | \, f(x, u) > \zeta u\}$

- I.e., f cannot vanish after becoming large (except at u = 1)
- This is a mild condition without which fronts might not exist: If f(¹/₂) = 0 and f(u) > f(u + ¹/₂) for u ∈ (0, ¹/₂), then only fronts connecting 0 and ¹/₂ exist.

(日)

Hypotheses:

- f(x, u) is Lipschitz and $f_0(u) \le f(x, u) \le f_1(u)$ for some reactions $f_0(u) \le f_1(u)$ such that f_0 is ignition (with ignition temperature $\theta > 0$) and f_1 is ignition or positive.
- $f'_1(0) < (c^*_{f_0})^2/4$ (true if f_1 ignition)

• This is equivalent to $2\sqrt{f_1'(0)} < c_{f_0}^*$

For some ζ < (c^{*}_{f0})²/4 the function f(x, ·) is bounded away from zero (uniformly in x) on the interval [α_f(x), 1 − ε], with

$$\alpha_f(\mathbf{x}) = \inf\{\mathbf{u} \in (0, 1) \mid f(\mathbf{x}, \mathbf{u}) > \zeta \mathbf{u}\}$$

- I.e., *f* cannot vanish after becoming large (except at u = 1)
- This is a mild condition without which fronts might not exist: If $f(\frac{1}{2}) = 0$ and $f(u) > f(u + \frac{1}{2})$ for $u \in (0, \frac{1}{2})$, then only fronts connecting 0 and $\frac{1}{2}$ exist.

(日)

Theorem

Assume the above hypotheses. (i) There exists a transition front w_+ for

 $u_t = \Delta u + f(\mathbf{x}, u)$

moving to the right, with $(w_+)_t > 0$ (and w_- moving to the left). (ii) If f_1 is ignition and f is non-increasing in u on $[1 - \varepsilon, 1]$, then these fronts are unique (up to time shifts).

(iii) In (ii) general solutions with exponentially decaying initial data converge in L_x^{∞} to time shifts of w_{\pm} (global attractors). Convergence is uniform in f and uniformly bounded initial data.

• Same result with periodic q, A but with $(c_{f_0}^*)^2/4$ replaced by ζ_0 such that the minimal front speed for a KPP reaction with $\frac{\partial f}{\partial u}(x,0) = \zeta_0$ is $c_{f_0}^*$.

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

Theorem

Assume the above hypotheses. (i) There exists a transition front w_+ for

 $u_t = \Delta u + f(\mathbf{x}, u)$

moving to the right, with $(w_+)_t > 0$ (and w_- moving to the left). (ii) If f_1 is ignition and f is non-increasing in u on $[1 - \varepsilon, 1]$, then these fronts are unique (up to time shifts).

(iii) In (ii) general solutions with exponentially decaying initial data converge in L_x^{∞} to time shifts of w_{\pm} (global attractors). Convergence is uniform in f and uniformly bounded initial data.

• Same result with periodic q, A but with $(c_{f_0}^*)^2/4$ replaced by ζ_0 such that the minimal front speed for a KPP reaction with $\frac{\partial f}{\partial u}(x,0) = \zeta_0$ is $c_{f_0}^*$.

(日)

Remarks

- The main condition is $f'_1(0) < (c^*_{f_0})^2/4$. It guarantees that the **tail of the front is slower than the bulk**. There are examples where it is not satisfied and no fronts exist (Roquejoffre-Zlatoš).
- f(x, ·) can be arbitrary on (0, α_f(x)) and ignition temperature can be x-dependent.
- Uniqueness part requires f₁ ignition even for homogeneous media.
- Can be extended to periodically ondulating cylinders, but not to domains unbounded in several variables. Fronts are not unique in ℝ^d (d ≥ 2), even for homogeneous ignition reactions (and even when direction is fixed). Moreover, there are examples of non-homogenous ignition reactions in ℝ^d where no fronts exist (Zlatoš).

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

Remarks

- The main condition is $f'_1(0) < (c^*_{f_0})^2/4$. It guarantees that the **tail of the front is slower than the bulk**. There are examples where it is not satisfied and no fronts exist (Roquejoffre-Zlatoš).
- f(x, ·) can be arbitrary on (0, α_f(x)) and ignition temperature can be x-dependent.
- Uniqueness part requires f₁ ignition even for homogeneous media.
- Can be extended to periodically ondulating cylinders, but not to domains unbounded in several variables. Fronts are not unique in ℝ^d (d ≥ 2), even for homogeneous ignition reactions (and even when direction is fixed). Moreover, there are examples of non-homogenous ignition reactions in ℝ^d where no fronts exist (Zlatoš).

<ロ> (四) (四) (三) (三) (三) (三)

Front speed is not well defined in general, although the position of the front moves with speeds between $c_{f_0}^*$ and $c_{f_1}^*$.

Theorem

Assume the above hypotheses, with f_1 ignition, for a random reaction f_{ω} . If f_{ω} is stationary ergodic (with respect to translations in x_1), then there are $c_{\pm} \in [c_{f_0}^*, c_{f_1}^*]$ such that almost surely the random fronts $w_{\pm,\omega}$ have asymptotic speeds c_{\pm} .

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Front speed is not well defined in general, although the position of the front moves with speeds between $c_{f_0}^*$ and $c_{f_1}^*$.

Theorem

Assume the above hypotheses, with f_1 ignition, for a random reaction f_{ω} . If f_{ω} is stationary ergodic (with respect to translations in x_1), then there are $c_{\pm} \in [c_{f_0}^*, c_{f_1}^*]$ such that almost surely the random fronts $w_{\pm,\omega}$ have asymptotic speeds c_{\pm} .

ヘロト ヘ戸ト ヘヨト ヘヨト

Construction of front as limit of solutions u_n initially supported increasingly farther to the left: $u_n(\tau_n, \mathbf{x}) = v(\mathbf{x}_1 + n)$ where

• $supp v = (-\infty, 0]$ and $v(-\infty) = 1$

•
$$v'' + f_0(v) \ge 0 \Rightarrow (u_n)_t > 0$$

• $\tau_n < 0$ is such that $u_n(0,0) = \theta$

 u_n uniformly bounded in $C^{1,\delta;2,\delta} \Rightarrow \exists$ subsequence converging in $C^{1,2}_{loc}(\mathbb{R} \times D)$ to some u

- *u* is a global solution
- Problem: to show u is a front connecting 0 and 1

문에서 문어

Construction of front as limit of solutions u_n initially supported increasingly farther to the left: $u_n(\tau_n, x) = v(x_1 + n)$ where

• $supp v = (-\infty, 0]$ and $v(-\infty) = 1$

•
$$v'' + f_0(v) \ge 0 \Rightarrow (u_n)_t > 0$$

• $\tau_n < 0$ is such that $u_n(0,0) = \theta$

 u_n uniformly bounded in $C^{1,\delta;2,\delta} \Rightarrow \exists$ subsequence converging in $C^{1;2}_{loc}(\mathbb{R} \times D)$ to some u

- *u* is a global solution
- Problem: to show *u* is a front connecting 0 and 1

One needs to show that if

$$Z_{n,\varepsilon}(t) = \inf \left\{ y \mid u_n(t,x) \ge 1 - \varepsilon \text{ whenever } x_1 \le y \right\}$$
$$\tilde{Z}_{n,\varepsilon}(t) = \sup \left\{ y \mid u_n(t,x) \le \varepsilon \text{ whenever } x_1 \ge y \right\}$$

then $\tilde{Z}_{n,\varepsilon}(t) - Z_{n,\varepsilon}(t)$ is uniformly bounded in *n*, *t* for every $\varepsilon > 0$. It suffices to show that if $\lambda_{\zeta} = \sqrt{\zeta}$ and

$$\mathsf{Y}_{n}(t) = \inf ig\{ \mathsf{y} \ ig| \ u_{n}(t, \mathsf{x}) \leq \mathsf{e}^{-\lambda_{\zeta}(\mathsf{x}_{1}-\mathsf{y})} ext{ for all } \mathsf{x} \in \mathsf{D} ig\}$$

then $Y_n(t) - Z_{n,\varepsilon}(t)$ is uniformly bounded in n, t for every $\varepsilon > 0$.

Main idea: The tail of *u_n* cannot escape from the bulk due to

$$2\sqrt{f_1'(0)} < 2\sqrt{\zeta} < c_{f_0}^*$$

(when choosing $\zeta \in (f'_1(0), c^*_{f_0})$).

Let $c_{\zeta} = 2\sqrt{\zeta} < c_{f_0}^*$ and $\lambda_{\zeta} = \sqrt{\zeta}$. Then $e^{-\lambda_{\zeta}(x_1 - Y_n(t_0) - c_{\zeta}t)}$ solves $u_t = \Delta u + \zeta u$

and u_n is a subsolution where $u_n(t, x) \leq \alpha_f(x)$. So define

 $X_n(t) = \sup \left\{ x_1 \mid u_n(t, x) \ge \alpha_f(x) \text{ for some } x = (x_1, x') \right\}$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ■ ● ● ●

Main idea: The tail of *u_n* cannot escape from the bulk due to

$$2\sqrt{f_1'(0)} < 2\sqrt{\zeta} < c^*_{f_0}$$

(when choosing $\zeta \in (f'_1(0), c^*_{f_0})$).

Let
$$c_{\zeta} = 2\sqrt{\zeta} < c_{f_0}^*$$
 and $\lambda_{\zeta} = \sqrt{\zeta}$. Then $e^{-\lambda_{\zeta}(x_1 - Y_n(t_0) - c_{\zeta}t)}$ solves
 $u_t = \Delta u + \zeta u$

and u_n is a subsolution where $u_n(t, x) \le \alpha_f(x)$. So define

$$X_n(t) = \sup \left\{ x_1 \mid u_n(t, x) \ge lpha_f(x) \text{ for some } x = (x_1, x')
ight\}$$

▲■▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

Claim 1: $Y'_n(t) \le c_{\zeta}$ whenever $X_n(t) < Y_n(t)$. Claim 2: $Z_{n,\varepsilon}(t) \ge Z_{n,\varepsilon}(t_0) + c^*_{f_0}(t - t_0 - \tau_{\varepsilon})$ (Xin: with $c^*_{f_0} - \delta$). Claim 3: $|X_n(t) - Z_{n,\varepsilon}(t)| \le C_{\varepsilon}$.

Proof (of $|X_n(t) - Z_{n,\varepsilon}(t)| \le C_{\varepsilon}$): Recall that

$$\begin{split} X_n(t) &= \sup \left\{ x_1 \mid u_n(t,x) \geq \alpha_f(x) \text{ for some } x = (x_1,x') \right\} \\ Z_{n,\varepsilon}(t) &= \inf \left\{ y \mid u_n(t,x) \geq 1 - \varepsilon \text{ whenever } x_1 \leq y \right\} \end{split}$$

 $(u_n)_t > 0$ and parabolic regularity give existence of uniform t_{ε} such that if $u_n(t, x_0) \ge \alpha_f(x_0)$, then $u_n(t + t_{\varepsilon}, x_0) \ge 1 - \varepsilon$

• Uses: if $0 = \Delta \tilde{u} + f(x, \tilde{u})$ and $\tilde{u}(x_0) \ge \alpha_f(x_0)$, then $\tilde{u} \equiv 1$

This and additional estimates on $X_n(t)$ then give

 $Z_{n,arepsilon}(t+t'_arepsilon)\geq X_n(t) \qquad ext{and}\qquad X_n(t+t'_arepsilon)-X_n(t)\leq C'_arepsilon$

Thus $Z_{n,arepsilon}(t) \leq X_n(t) \leq Z_{n,arepsilon}(t) + C_{arepsilon}$, and so u is a front.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Proof (of $|X_n(t) - Z_{n,\varepsilon}(t)| \le C_{\varepsilon}$): Recall that

$$\begin{aligned} X_n(t) &= \sup \left\{ x_1 \mid u_n(t, x) \geq \alpha_f(x) \text{ for some } x = (x_1, x') \right\} \\ Z_{n,\varepsilon}(t) &= \inf \left\{ y \mid u_n(t, x) \geq 1 - \varepsilon \text{ whenever } x_1 \leq y \right\} \end{aligned}$$

 $(u_n)_t > 0$ and parabolic regularity give existence of uniform t_{ε} such that if $u_n(t, x_0) \ge \alpha_f(x_0)$, then $u_n(t + t_{\varepsilon}, x_0) \ge 1 - \varepsilon$

• Uses: if $0 = \Delta \tilde{u} + f(x, \tilde{u})$ and $\tilde{u}(x_0) \ge \alpha_f(x_0)$, then $\tilde{u} \equiv 1$

This and additional estimates on $X_n(t)$ then give

 $Z_{n,\varepsilon}(t+t'_{\varepsilon}) \ge X_n(t)$ and $X_n(t+t'_{\varepsilon}) - X_n(t) \le C'_{\varepsilon}$

Thus $Z_{n,\varepsilon}(t) \leq X_n(t) \leq Z_{n,\varepsilon}(t) + C_{\varepsilon}$, and so *u* is a front.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ■ の Q ()

Proof: Uniqueness and stability of front (ignition f_1)

Main idea: If *w* is a front and u_n as above, then $\exists \tau_{w,n}$ such that

$$\lim_{t\to\infty} \|w(t+\tau_{w,n},x)-u_n(t,x)\|_{L^\infty_x}=0 \qquad \text{uniformly in } n,w,f$$

So any two fronts are time-shifts of each other, and there is a unique front w_+ .

Proof uses stability of u_n . This is obtained via construction of suitable sub- and supersolutions, using that $(u_n)_t > 0$ and also that f is non-increasing in u near u = 0, 1.

A similar argument with w a general (front-like) solution shows $w - u_n \rightarrow 0$ as $t \rightarrow \infty$. Since also $w_+ - u_n \rightarrow 0$ as $t \rightarrow \infty$, we have that w_\pm are **global attractors** of general solutions.

(日)

Proof: Uniqueness and stability of front (ignition f_1)

Main idea: If *w* is a front and u_n as above, then $\exists \tau_{w,n}$ such that

$$\lim_{t\to\infty} \|w(t+\tau_{w,n},x)-u_n(t,x)\|_{L^\infty_x}=0 \qquad \text{uniformly in } n,w,f$$

So any two fronts are time-shifts of each other, and there is a unique front w_+ .

Proof uses stability of u_n . This is obtained via construction of suitable sub- and supersolutions, using that $(u_n)_t > 0$ and also that f is non-increasing in u near u = 0, 1.

A similar argument with *w* a general (front-like) solution shows $w - u_n \rightarrow 0$ as $t \rightarrow \infty$. Since also $w_+ - u_n \rightarrow 0$ as $t \rightarrow \infty$, we have that w_{\pm} are **global attractors** of general solutions.