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Reaction-diffusion equations

We consider the reaction-diffusion equation

ut = ∆u + f (x , u)

on the spatial domain D = R × Ω (with Ω ⊂ R
d−1 bounded) and

Neumann or periodic boundary conditions on ∂D.

u(t , x) ∈ [0, 1] is the normalized temperature of a
combusting medium or 1 − u is a concentration of a
reactant in a chemical reaction
f : D × [0, 1] → [0,∞) is a Lipschitz reaction function with
f (x , 0) = f (x , 1) = 0 and ignition temperature

θ(x) = inf
{

u
∣

∣ f (x , u) > 0
}

Ignition reaction: infx θ(x) > 0
Positive (monostable) reaction: infx θ(x) = 0
KPP reaction: f (x , u) ≤ ∂f

∂u (x , 0)u
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Reaction-advection-diffusion equations

We will also consider the reaction-advection-diffusion equation

ut + q(x) · ∇u = ∇ · (A(x)∇u) + f (x , u)

with q divergence-free vector field (incompressible flow ) and
A uniformly elliptic (inhomogeneous diffusion ).

Models propagation of reaction (e.g., combustion, fire). Also
used in models of chemical kinetics, genetics, population
dynamics.

Goal: Describe long time behavior of solutions.
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Transition fronts

Transition front (generalized traveling front) is a solution
u(t , x) that is global in time and satisfies for each t ∈ R,

lim
x1→−∞

u(t , x) = 1 and lim
x1→∞

u(t , x) = 0

uniformly in x ′ = (x2, . . . , xd ) ∈ Ω.
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This front moves to the right. Also a front moving left.

Fronts can be attractors of general solutions of the PDE
(front-like and compactly supported initial data).
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Homogeneous media: Traveling fronts

ut = ∆u + f (u)

A traveling front is a solution of the form u(t , x) = U(x1 − ct)
such that U(−∞) = 1 and U(∞) = 0.
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Constant profile U and constant speed c
U ′′ + cU ′ + f (U) = 0 gives c > 0 and U ′ < 0
Ignition reactions: unique front speed c∗

f > 0
Positive reactions: minimal front speed c∗

f > 0 and all
c ∈ [c∗

f ,∞) are achieved
KPP reactions: c∗

f = 2
√

f ′(0) — same as for f (u) = f ′(0)u
(Kolmogorov-Petrovskii-Piskunov)
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Periodic media: Pulsating fronts

ut + q(x) · ∇u = ∇ · (A(x)∇u) + f (x , u)

Assume q,A,f are 1-periodic in x1 and
∫

[0,1]d q(x)dx = 0. A
pulsating front with speed c > 0 is a solution of the form
u(t , x) = U(x1 − ct , x mod 1) such that U(±∞, x) = 0/1.
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Time-periodic in a moving frame: u(t + 1
c , x + e1) = u(t , x)

(U, c) solve a degenerate elliptic equation
With mild conditions on f again unique/minimal front speed
c∗

f ,q,A > 0 for ignition/positive reactions (Berestycki-Hamel,
Xin)
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Pulsating front for a cellular flow
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Fronts in 1D inhomogeneous media

In general inhomogeneous media no special forms exist.

Nolen-Ryzhik-Mellet-Roquejoffre-Sire considered the 1D
case with f (x , u) = a(x)f0(u) and a, f0 Lipschitz:

ut = uxx + a(x)f0(u)

If there are 0 < a0 ≤ a1 < ∞ such that a(x) ∈ [a0, a1] and
∃θ ∈ (0, 1) such that f0(u) > 0 iff u ∈ (θ, 1), then they
proved existence of a unique (right-moving) transition front,
and its stability.

The method is specialized for 1D and constant positive
ignition temperature. A more robust method is needed to
handle more dimensions, general q, A, and general f
(non-constant, non-negative ignition temperature).
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Fronts in general inhomogeneous media

Hypotheses:

f (x , u) is Lipschitz and f0(u) ≤ f (x , u) ≤ f1(u) for some
reactions f0(u) ≤ f1(u) such that f0 is ignition (with ignition
temperature θ > 0) and f1 is ignition or positive.

f ′1(0) < (c∗

f0
)2/4 (true if f1 ignition)

This is equivalent to 2
√

f ′1(0) < c∗

f0

For some ζ < (c∗

f0
)2/4 the function f (x , ·) is bounded away

from zero (uniformly in x) on the interval [αf (x), 1 − ε], with

αf (x) = inf{u ∈ (0, 1) | f (x , u) > ζu}

I.e., f cannot vanish after becoming large (except at u = 1)
This is a mild condition without which fronts might not exist:
If f ( 1

2) = 0 and f (u) > f (u + 1
2) for u ∈ (0, 1

2 ), then only
fronts connecting 0 and 1

2 exist.
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Fronts in general inhomogeneous media
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Fronts in general inhomogeneous media

Theorem
Assume the above hypotheses.
(i) There exists a transition front w+ for

ut = ∆u + f (x , u)

moving to the right, with (w+)t > 0 (and w− moving to the left).
(ii) If f1 is ignition and f is non-increasing in u on [1 − ε, 1], then
these fronts are unique (up to time shifts).
(iii) In (ii) general solutions with exponentially decaying initial
data converge in L∞

x to time shifts of w± (global attractors).
Convergence is uniform in f and uniformly bounded initial data.

Same result with periodic q, A but with (c∗

f0
)2/4 replaced by

ζ0 such that the minimal front speed for a KPP reaction
with ∂f

∂u (x , 0) = ζ0 is c∗

f0
.
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Remarks

The main condition is f ′1(0) < (c∗

f0
)2/4. It guarantees that

the tail of the front is slower than the bulk . There are
examples where it is not satisfied and no fronts exist
(Roquejoffre-Zlatoš).

f (x , ·) can be arbitrary on (0, αf (x)) and ignition
temperature can be x-dependent.

Uniqueness part requires f1 ignition even for homogeneous
media.

Can be extended to periodically ondulating cylinders, but
not to domains unbounded in several variables. Fronts are
not unique in R

d (d ≥ 2), even for homogeneous ignition
reactions (and even when direction is fixed). Moreover,
there are examples of non-homogenous ignition reactions
in R

d where no fronts exist (Zlatoš).
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Fronts in random media

Front speed is not well defined in general, although the position
of the front moves with speeds between c∗

f0
and c∗

f1
.

Theorem

Assume the above hypotheses, with f1 ignition, for a random
reaction fω. If fω is stationary ergodic (with respect to
translations in x1), then there are c± ∈ [c∗

f0
, c∗

f1
] such that almost

surely the random fronts w±,ω have asymptotic speeds c±.
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Proof: Existence of a front

Construction of front as limit of solutions un initially supported
increasingly farther to the left: un(τn, x) = v(x1 + n) where

suppv = (−∞, 0] and v(−∞) = 1

v ′′ + f0(v) ≥ 0 ⇒ (un)t > 0

τn < 0 is such that un(0, 0) = θ
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un uniformly bounded in C1,δ;2,δ ⇒ ∃ subsequence converging
in C1;2

loc (R × D) to some u

u is a global solution

Problem: to show u is a front connecting 0 and 1
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Proof: Existence of a front

One needs to show that if

Zn,ε(t) = inf
{

y
∣

∣ un(t , x) ≥ 1 − ε whenever x1 ≤ y
}

Z̃n,ε(t) = sup
{

y
∣

∣ un(t , x) ≤ ε whenever x1 ≥ y
}

then Z̃n,ε(t)−Zn,ε(t) is uniformly bounded in n, t for every ε > 0.
It suffices to show that if λζ =

√
ζ and

Yn(t) = inf
{

y
∣

∣ un(t , x) ≤ e−λζ(x1−y) for all x ∈ D
}

then Yn(t) − Zn,ε(t) is uniformly bounded in n, t for every ε > 0.
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Proof: Existence of a front

Main idea: The tail of un cannot escape from the bulk due to

2
√

f ′1(0) < 2
√

ζ < c∗

f0

(when choosing ζ ∈ (f ′1(0), c∗

f0
)).

Let cζ = 2
√

ζ < c∗

f0
and λζ =

√
ζ. Then e−λζ(x1−Yn(t0)−cζ t) solves

ut = ∆u + ζu

and un is a subsolution where un(t , x) ≤ αf (x). So define

Xn(t) = sup
{

x1
∣

∣ un(t , x) ≥ αf (x) for some x = (x1, x ′)
}
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Proof: Existence of a front
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Claim 1: Y ′
n(t) ≤ cζ whenever Xn(t) < Yn(t).

Claim 2: Zn,ε(t) ≥ Zn,ε(t0) + c∗

f0
(t − t0 − τε) (Xin: with c∗

f0
− δ).

Claim 3: |Xn(t) − Zn,ε(t)| ≤ Cε.
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Proof: Existence of a front

Proof (of |Xn(t) − Zn,ε(t)| ≤ Cε): Recall that

Xn(t) = sup
{

x1
∣

∣ un(t , x) ≥ αf (x) for some x = (x1, x ′)
}

Zn,ε(t) = inf
{

y
∣

∣ un(t , x) ≥ 1 − ε whenever x1 ≤ y
}

(un)t > 0 and parabolic regularity give existence of uniform tε
such that if un(t , x0) ≥ αf (x0), then un(t + tε, x0) ≥ 1 − ε

Uses: if 0 = ∆ũ + f (x , ũ) and ũ(x0) ≥ αf (x0), then ũ ≡ 1

This and additional estimates on Xn(t) then give

Zn,ε(t + t ′ε) ≥ Xn(t) and Xn(t + t ′ε) − Xn(t) ≤ C′

ε

Thus Zn,ε(t) ≤ Xn(t) ≤ Zn,ε(t) + Cε, and so u is a front.
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Uses: if 0 = ∆ũ + f (x , ũ) and ũ(x0) ≥ αf (x0), then ũ ≡ 1
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Proof: Uniqueness and stability of front (ignition f1)

Main idea: If w is a front and un as above, then ∃τw ,n such that

lim
t→∞

‖w(t + τw ,n, x) − un(t , x)‖L∞x = 0 uniformly in n, w , f

So any two fronts are time-shifts of each other, and there is a
unique front w+.

Proof uses stability of un. This is obtained via construction of
suitable sub- and supersolutions, using that (un)t > 0 and also
that f is non-increasing in u near u = 0, 1.

A similar argument with w a general (front-like) solution shows
w − un → 0 as t → ∞. Since also w+ − un → 0 as t → ∞, we
have that w± are global attractors of general solutions.
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