Emission pathways reducing the risk of dangerous climate change

Kirsten Zickfeld

Climate Modelling Group School of Earth and Ocean Sciences University of Victoria

CRG Workshop, 21-23 July 2008

Thanks to...

- Andrew J. Weaver
- Michael Eby
- H. Damon Matthews
- Alvaro Montenegro
- Katrin Meissner
- Many others who have contributed to the development of the UVic Earth System climate model.

Outline

- What is "dangerous climate change"?
- The UVic Earth System Climate Model
- Experimental design
- Results: CO₂ emissions compatible with specified temperature targets
- Conclusions

UNFCCC Article 2

"The ultimate objective of this convention ... is to achieve ... stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system.

Such a level should be achieved within a time-frame sufficient to allow ecosystems to adapt naturally to climate change, to ensure that food production is not threatened and to enable economic development to proceed in a sustainable manner."

What is "dangerous"?

Interpretation of Article 2 involves

- Scientific assessment of what impacts might be associated with different levels of greenhouse gas concentrations or levels of climate change.
- Normative evaluation by policy-makers of which impacts and associated likelihoods constitute "dangerous anthropogenic interference".

IPCC's reasons for concern

CRG Workshop, 21-23 July 2008

Motivation

- Recent international climate policy discussions framed around limiting global mean temperature increase to 2°C relative to preindustrial times.
- Earlier studies have linked specific CO₂ concentration levels with the probability of meeting the 2°C target.
- Probability of meeting that target is 'likely' (p<0.33) at CO₂ equivalence concentration levels below 450 ppmv.
- Link to allowable CO₂ emissions usually provided by integrated assessment models including highly simplified representation of the carbon cycle.
- Scope of this study: Consistently derive cumulative emissions compatible different temperature targets using state-of-the-art climate-carbon cycle model.

- "Intermediate complexity" model.
- Suited for climate studies on decadal to millennial time-scales.
- Computationally efficient (~160 model years in 1 day).

Ocean General Circulation Model MOM 2 19 vertical layers

Model evaluation: Historical temperature change

CRG Workshop, 21-23 July 2008

Model evaluation: Historical CO₂ change

Data: Keeling et al., 2005

Experiment design

- Over the historical period (1800-2000) the model is driven by known forcings (greenhouse gases, sulphates, solar irradiance, volcanoes, land cover change).
- From 2000 on the model computes the CO₂ emissions consistent with a specified temperature profile ("temperature tracking"). Most non-CO₂ forcing agents are hold constant at year-2000 levels.
- Proportional control:

$$E(t) = k(\Delta T^{DATA}(t) - \Delta T(t))$$

 $E - CO_2$ emissions

k - constant

 ΔT^{DATA} - prescribed temperature anomaly

 ΔT - modelled temperature anomaly

Temperature tracking

CRG Workshop, 21-23 July 2008

Cumulative emissions meeting 2°C target

Variation of climate sensitivity

PDFs for climate sensitivity

IPCC 2007, WG I, Ch 10

Probability of exceeding temperature target

Given $E(cs^0, \Delta T^{GOAL})$

$$P(\Delta T(E) \ge \Delta T^{GOAL}) = \int_{cs^{o}}^{\infty} P(cs = x) dx$$
$$= P(cs \ge cs^{o})$$

 ΔT^{GOAL} - Temperature target cs - Equilibrium climate sensitivity $P(cs = \Delta T)$ - Climate sensitivity PDF $P(cs \ge \Delta T)$ - Climate sensitivity CDF

Probability of exceeding 2°C target

Conclusions

- Cumulative CO₂ emissions compatible with 2°C target independent of path taken to stabilization.
- To limit global mean temperature rise to 2°C above preindustrial with a probability of 0.33 cumulative emissions after 2000 must not exceed 640 PgC (range: 280-930 PgC).
- We suggest shift in focus from allowable greenhouse gas concentrations to total allowable emissions.
- Path independency may facilitate international climate policy negotiations: Countries are allocated total emissions shares. No need to agree on common time-line.

Thank you for your attention!

Contact:

Dr. Kirsten Zickfeld

Climate Modelling Group School of Earth and Ocean Sciences University of Victoria Ian Stewart Complex PO Box 3055 Stn CSC Victoria, BC, V8W 3P6

Tel.:+1-250-4724008Email:zickfeld@ocean.seos.uvic.caWWW:http://climate.uvic.ca/people/zickfeld