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Fronts or interfaces in multiscale and random flows appear in many scientific areas as
solutions to PDEs or free boundary problems: premixed turbulent combustion, chemical
reaction fronts in liquid, algal blooms (large blobs of micro-algea) in the ocean. Two prototype
scalar models for fronts are:

I. Reaction-Diffusion-Advection-Equation (RD):

ut = ∆xu + B(ω, x, t) · ∇xu + f(u), x ∈ RN , (1)

f(u) is nonlinear reaction function; B a space-time periodic or random flow field.

II. Hamilton-Jacobi Equation (HJ):

ut + H(ω, x, t,∇xu) = κ∆u, x ∈ RN , N ≥ 1, κ ≥ 0. (2)

H is periodic or random in (x, t), nonlinear in ∇xu.
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Examples of reactive nonlinearities:

1. f(u) = u(1 − u) (Kolmogorov-Petrovsky-Piskunov(KPP), Fisher, 1937)

2. f(u) = 0 ∀u ∈ [0, θ] ∪ {1}, f(u) > 0 ∀u ∈ (θ, 1), f(u) Lipschitz continuous,
combustion nonlinearity with ignition temperature θ.

3. f(u) = u(1 − u)(u − µ), µ ∈ (0, 1): bistable nonlinearity.

Examples of Hamiltonians:

1. H(x, t, p) = |p|2/2 + V (x) (classical)

2. H(x, t, p) = |p|2/2 + V (x) · p (advective)

3. H(x, t, p) = |p| + V (x) · p (relativistic/geometric)
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Consider Spatially Heterogeneous Hamilton-Jacobi Eq. (HJ) satisfying:

• H (Hamiltonian) is convex in p ≡ ∇xu, continuous in x;

• H is stationary in x (joint distribution of H(ω, x1, p), · · · , H(ω, xm, p) is invariant
under translation in x);

• H is ergodic in x (events invariant under translation have probability either zero or one).

Theory of HJ homogenization requires coercivity:

H(x, p) → +∞, as p → ∞ uniformly in x.

• Periodic Media: Lions-Papanicolaou-Varadhan (1988), Evans (92);

• Quasi-periodic media and degenerate 2nd order (viscous) HJs: (Lions-Souganidis, Ishii,
and references therein).

• Stationary ergodic media:

Invisid HJs: Souganidis (99), Rezakhanlou-Tarver (00);

Viscous HJs: Lions-Souganidis (05), Kosygina-Rezakhanlou-Varadhan (06), Schwab (08).
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Non-coercive HJs:

Example 1: H(x, p, ω) = cn |p|n + V (x, ω), n = 2 (classical mechanics), n = 1
(relativistic mechanics), potential V is an Ornstein-Uhlenbeck (OU) process, a Gaussian
process with mean zero and covariance

E[V (x)V (y)] =
1
2

exp(−|x − y|).

The OU processs is unbounded in x, H is non-coercive.

Example 2 (advective Hamiltonian): H(x, p, ω) = cn|p|n + b(x, ω) · p, n = 2 (corres. to
KPP), n = 1 (G-equation, approximating ignition/bistable reaction fronts on hyperbolic time
scale).

If n = 1, then for b mean-zero periodic function with amplitude above cn, H is non-coercive.
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Inviscid G-equation:
Gt + B(x) · ∇G = sl |∇G|,

sl > 0 (constant, laminar speed) as a small diffusion fast reaction limit of ignition/bistable
reaction:

vt + B(x) · ∇v = ε∆v + ε−1 f(v).

Substituting:
v ∼ U(u(x, t)/ε),

then equation at order O(ε−1) is:

(ut + B(x) · ∇u)U ′ = |∇u|2U ′′ + f(U).

By traveling front identity and scaling:

U ′′ − cU ′ + f(U) = 0, d2U ′′ − dcU ′ + f(U) = 0, ∀ d > 0,

we have:
ut + B(x) · ∇u = c|∇u|.

Over longer (diffusive) time scale O(ε−2), one adds curvature correction to G-equation,
giving viscous G-equation.
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Capture Front Asymptotically in Multiscale Media and Homogenization:

Scaling transform: (x, t) → (x,t)
ε , u → εu ≡ uε. In case of homogeneous media, front

solutions are invariant.

HJ random fronts may be studied in terms of uε in the limit ε ↓ 0, where uε satisfies:

uεt + H(ω,
x

ε
,∇xuε) = 0, (3)

with planar initial data: uε(x, 0) = p · x.

The study of convergence of uε to a limiting funtion ū(x, t) and the resulting limiting eqn is
Homogenization.

Suppose ū exists, then observing at (x, t) = (0, 1), we see:

ε u(0,
1
ε
) → ū(0, 1) ≡ −H̄(p),

p dependent constant or HJ front speed (T = 1
ε ):

u(0, T ) ∼ −H̄(p) T.



8

Lax-Oleinik-Hopf formula:

uε(x, t) = inf
y∈RN

(
uε(y, 0) + inf

ξ

∫ t

0
L(ω, ξ(s)/ε, ξ′(s)) ds

)
, (4)

ξ ∈ W 1,∞((0, t); RN ), ξ(0) = y, ξ(t) = x, a Lipschitz path connecting y to x.

L is Lagrangian given by Legendre transform:

L(ω, x, q) = sup
p∈RN

(q · p − H(ω, x, p)). (5)

L is a convex function in q.

At x = 0, the integral equals:
∫ t

0
L(ω, ξ(s)/ε,−ξ′(s)) ds, (6)

where ξ(0) = 0, ξ(t) = y. Letting n = 1/ε, we study the limit Sn(y, t)/n, where:

Sn(y, t) = inf
ξ∈W 1,∞([0,nt];RN ):ξ(0)=0,ξ(nt)=n y

∫ nt

0
L(ω, ξ(s),−ξ′(s)) ds. (7)
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Subadditive Ergodic Theorem and Convergence of Sn/n to a Nonrandom Number.

Define:

Sm,n(y, t) = inf
ξ(mt)=m y;ξ(nt)=n y

∫ nt

mt
L(ω, ξ(s),−ξ′(s)) ds. (8)

with inf taken over all paths ξ connecting my to ny in time (n − m)t.

SET(Kingman): Suppose that Sm,n are random variables satisfying:

(1) S0,0 = 0, Sm,n ≤ Sm,k + Sk,n, for m ≤ k ≤ n;

(2) {Sm,m+k, m ≥ 0, k ≥ 0} equals {Sm+1,m+k+1, m ≥ 0, k ≥ 0} in distribution;

(3) E[S+
0,1] < +∞; αn ≡ E[S0,n] < ∞;

then:

(1)
α = lim

n→∞

αn

n
= inf

n≥1

αn

n
∈ [−∞,∞);

(2) S∞ = limn→∞
S0,n

n exists with probability one;

(3) if E[S∞] = α > −∞, limn→∞ E[|S0,n/n − S∞|] = 0.



10

Condition (1) follows directly from infemum of the path integral.

Condition (2) follows from stationarity.

Condition (3) requires further knowledge of “unboundedness” of the random Lagrangian.

If H is uniformly bounded in x (for any p), then L is uniformly bounded in x. All moment
assumptions hold, SET implies the existence of the limit Sn/n with probability one. The limit
is invariant under translations of the realization of L by vectors proportional to x, hence its
value is almost surely nonrandom (ergodicity).

By absorbing t into n, we see that the limit is of the form: tL̄( y
t ), where L̄ (homogenized

Lagrangian) is convex in y/t (velocity) due to convexity of L in ξ ′ (velocity) and subadditivity
of Sn.

The homogenization limit of HJ solution from planar data at x = 0 is:

ū(0, t) = inf
y

(p · y + tL̄(y/t)) = t inf
y′

(p · y′ + L̄(y′)) ≡ −tH̄(p). (9)

This further implies that in general the homogenized eqn is ūt + H̄(∇xū) = 0.
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Uniform boundedness is however not sharp for HJ homogenization, and not true for Gaussian
processes. Unboundedness is an indication of extreme behavior of a stochastic system.

Example I: H = |p|2/2 + V (x, ω), suppose that V is uniformly bounded from above by V0

(but no uniform lower bound), and that E[|V (x)|] < ∞. Then homogenization still holds.

Lagrangian L(x, q) = |q|2
2 − V (x, ω). For a linear path ξ(s) = s y

t , we obtain

S0,n ≤ n |y|2 t

2
−

∫ nt

0
V (

s y

t
) ds.

Integrability of V (x) implies that

E[|S0,n(t, y)|] < +∞.

On the other hand, since the kinetic part of Lagrangian integral is positive, upper bound on V

implies that
E[S0,n(t, y)] ≥ −n t V0.

The family Sm,n satisfies the assumptions of subadditive ergodic theorem, implying existence
of the finite limit of S0,n

n .
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Unbounded Potentials and Running Maxima

Let V be an Ornstein-Uhlenbeck process (N = 1), the running maximum
V ∗(y) = supu∈[0,y] V (u) obeys:

Theorem 1 (Cramér)

Prob [
V ∗(y) − by

ay
≤ x] → exp(−e−x)

as y → ∞, where
a−1

y ∼ by ∼ (2 log y)
1
2

with∼ denoting asymptotic equivalence.

Similar results hold in N ≥ 2 (Leadbetter et al).

The theorem says that the renormalized random variables V ∗(y) converge in distribution to
the double exponential distribution. It follows that

V ∗(y)
(2 log y) 1

2
→ 1, as y → ∞,

in probability.
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Scaling
√

2 log n for running max of i.i.d. sequenceXn:

Prob( max
1≤i≤n

{X1, · · · , Xn} ≤ x) = Prob(X1 ≤ x, X2 ≤ x, · · · , Xn ≤ x)

= [Prob(X1 ≤ x)]n

which converges to zero as n → ∞ for any finite x. Almost surely the running max is
unbounded!

If X1 is unit Gaussian, x =
√

2 log n,

[Prob(X1 ≤ x)]n =
(

1 − (2π)−1/2

∫ ∞

√
2 log n

exp{−y2/2} dy

)n

≈ (1 − const./n)n,

converging to a positive finite number, suggesting running max scales as O(
√

2 log n).
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Unboundedness of V from Above and Breakdown of Homogenization

N = 1, minimum action integral is:

Sn = inf
u(τ)

∫ nt

0
[
1
2
(
du

dτ
)2 − V (u(τ))] dτ,

over C1 functions u(τ): u(0) = 0 and u(nt) = nx. The minimizing function u is
monotone increasing: du

dτ /= 0 for all τ .

Rewrite Sn in inverse function τ(u):

Sn = inf
τ(u)

∫ nx

0
[
1
2
(
dτ

du
)−1 − V (u)

dτ

du
] du,

over all C1 functions τ(u): τ(0) = 0 and τ(nx) = nt.

Conservation of energy gives:

dτ

du
=

1√
2[En − V (u)]

,

En: the total energy, En > maxu∈[0,nx] V (u).
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It follows that

Sn =
∫ nx

0
[

√
En − V (u)

2
− V (u)√

2(En − V (u))
] du, (10)

and ∫ nx

0

1√
2(En − V (u))

du = nt. (11)

If En > supu∈[0,nx] V (u) + x2

2t2 , then
∫ nx
0

1√
2(En−V (u))

du < nt, contradicting (11).

Hence En ≤ supu∈[0,nx] V (u) + x2

2t2 , and

En ∼ sup
u∈[0,nx]

V (u), n 0 1.

Rewrite from (10):

Sn =
∫ nx

0
[

√
En − V (u)

2
+

En − V (u)√
2(En − V (u))

− En√
2(En − V (u))

] du. (12)
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First two terms of integrand in (12) are identical. Jensen’s inequality (concavity of root
function):

1
nx

∫ nx

0

√
2(En − V (u)) du ≤

√
1

nx

∫ nx

0
2(En − V (u)) du

=

√

2En − 2
1
nx

∫ nx

0
V (u) du,

where almost surely as n → ∞, 1
nx

∫ nx
0 V (u) du → 0, by ergodicity of the

Ornstein-Uhlenbeck process.

The integral of the first two terms is bounded by 3
√

Ennx for large n. The integral of the
third term is −Ennt. So for n large:

−tEn ≤ 1
n

Sn ≤ 3x
√

En − tEn,

or:
Sn

n
∼ −tEn ∼ −t sup

u∈[0,nx]
V (u) = −tV ∗(nx) → −∞.
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Standard homogenization limit fails. Instead, the modified limit holds in probability:

Sn

n(2 log n)1/2
→ −t.

Divergence of homogenization means that for affine data, the growth rate of HJ solutions in
time is faster than linear, or front acceleration. Similar divergence occurs in N ≥ 2.

For classical mechanics Hamiltonian, stochastic homogenization holds if and only if the
potential is uniformly bounded from above.

For advective Hamiltonian, upper bound may or may not be the criterion.

Example IIa (H in Gradient Flows): H(x, p) = p2

2 + p · b(x), b = ∇U(x), where U(x) is
a scalar random vector field whose realizations are of class C2, p, x ∈ RN . Such fields b

include Gaussian random fields with appropriate covariance.
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Corresponding Lagrangian is

L(x, q) =
1
2
|q − b(x)|2 =

|q|2

2
− q · b(x) +

|b(x)|2

2
. (13)

For a path ξ(s), 0 ≤ s ≤ n t, such that ξ(0) = 0 and ξ(n t) = nx, the contribution from
the second term to Lagrangian integral equals

∫ nt

0
b(ξ(s)) · ξ′(s) ds = U(nx)

Such a path independent term is called a null Lagrangian. Thus Lagrangian (13) leads to the
same Euler-Lagrange equations of motion for the minimizing path as the Lagrangian of the
potential system:

L1(x, q) =
|q|2

2
− V1(x),

where V1(x) = − 1
2 |b|

2(x) ≤ 0. By result of Example I, homogenization holds for such
Hamiltonian of advection type, even though flow field is unbounded !
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Example IIb (H in shear flows): b(x) = (V2(x′), 0), x′ = (x2, · · · , xN ), 0 ∈ RN−1.

HJ Eqn is:

ut + b(x) · ∇xu + |∇xu|2/2 = 0. (14)

Consider a front moving in the x1 direction in the form u(x, t) = x1 − 1
2 t + w(x′, t). Then

w satisfies HJ eqn:

wt + |∇x′ w|2/2 + V2(x′) = 0, (15)

which is in the classical potential form.

If V2 obeys the assumptions in Example I and is unbounded from above, −w(x ′, t)/t

diverges for large time t. Front speed acceleration appears due to dominance of running
maxima of process V2.
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Summary of HJ Fronts in Random Media:

• Homogenization: behavior of the system on large scales is described by an effective
nonrandom Lagrangian (or Hamiltonian). Disorder gets averaged, extreme nature of
the random media is tamed, fronts move at asymptotically constant speeds. An
elementary (and linear) analog of this phenomenon in classical probability theory is the
strong law of large numbers.

• Domination by finite-volume maxima of the random potential: Homogenization
breaks down. On an arbitrarily large scale, behavior of the system is dictated by the
maximum value of the disorder on that scale. The extreme nature of the random media
prevails. Analogue in classical probability theory is the study of extrema of stochastic
sequences and processes. For example, the maximum Mn of n independent unit normal
random variables behaves asymptotically as

√
2 log n as n → ∞.

The convergence (homogenization) and divergence (dominance by running maxima) phenomena of

stochastic H-J was noted earlier in KPP (Xin 2003).

The divergence of HJ homogenization and one-sided condition of random potentials for HJ homogenization are

based on E-Wehr-Xin (2008).
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G-equation and Control Representation:

Suppose u is the viscosity solution of

ut + V (x)∇u = sl|∇u|, u(x, 0) = u0(x), (16)

then:

u(x, t) = supu0(y(t)) (17)

where the supremum is over all y ∈ W 1,∞([0, t]; Rd) satisfying y(0) = x and the
constraint

|y′(τ) + V (y(τ))| ≤ sl (18)

for all τ ∈ [0, t].
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Suppose w(x, t) satisfies:

wt + V (x)∇w = sl|∇w| + κ∆w, w(x, 0) = w0(x), (19)

then w(x, t) has the representation:

w(x, t) = sup E [u0(Yt)] (20)

where Yt satisfies the stochastic equation

dYτ = (ατ − V (Yτ )) dτ +
√

2κ dWτ , Y0 = x. (21)

The supremum in (20) is over all stochastic controls ατ which are progressively measureable
with respect to the Brownian filtration, and satisfy |ατ | ≤ sl.

We shall use these control formulas to analyse front speeds. The following is based on joint
work with J. Nolen (2009).
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G-eqn and Spatial Flow: V = V (x)

ut + V (x) · ∇xu = sl|∇x u|,

with affine initial data u(x, 0) = p · x, where p a unit vector in Rn.

Control formula of solution is:

u(x, t) = max
α

p · y,

where y = y(t; x) is the solution to the ODE with continous control α, |α| ≤ sl:

y′(τ) = −V (y(τ)) + α(τ), (22)

and initial data y(0) = x.
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Gradient flow

Let p = 1, by ODE comparison argument, α = sl is the optimal control facilitating largest
velocity to the right. Solution is u(x, t) = y, where y = y(t; x) solves:

y′(τ) = −V (y(τ)) + sl, (23)

with initial data y(0) = x. Two regimes arise.

If min−V (y) + sl > 0 for all y, closed form solution:
∫ y

x

dη

−V (η) + sl
= t. (24)

Let t → +∞:

sT = lim
t→∞

u(x, t)/t = lim
t→∞

y(t)/t = 1/E[(−V (·) + sl)−1], (25)

almost surely for a stationary ergodic process V . Bounding harmonic mean by arithmetic
mean: sT ≤ sl − E[V ].

Front speed slows down if E[V ] = 0.
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−V + sl changes sign:

−V + sl has discrete zeros where −V ′ changes sign alternately. These zeros are stable
and unstable equilibria of characteristic eqn (23).

Then y(t) will converge to a nearest stable equilibriam from starting point x. Implying that
y(t) is uniformly bounded in t.

Front asymptotic speed sT = 0, front trapping occurs!

In contract, KPP fronts slow down in gradient flows but are never trapped (Nolen-Xin, 2009).
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Divergence in Shear flow V = (v(y2), 0), (y1, y2) ∈ R2, v(y2) is a mean zero
stationary ergodic process. Choose control as:

ẏ1 = −v(y2) + sl − sl ε (ξ − x2)e−ε sl t,

ẏ2 = sl ε (ξ − x2)e−ε sl t,

where ξ is a point so that −v(ξ) > 0; ε1 1. Then as t → ∞:

y2(t) = x2 + (ξ − x2) (1 − e−ε sl t) → ξ,

y1(t) = x1 −
∫ t

0
v(y2(τ)) dτ + sl t + O(1),

= −v(ξ)t + slt + O(1), (26)

implying that y1/t → −v(ξ) + sl.

Choose ξ to reach maximum of −v on [x2 − L, x2 + L]:

sT ≥ sl + sup
L

maxy∈[−L,L] − v(y). (27)

For unbounded Gaussian process v, sT diverges as L → ∞, same as in quadratic HJ.
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Cell Flows (Hamiltonian Flows with Periodic Array of Vortices)

V (x, y) = const ∇⊥H, H = sin(πx) sin(πy).

cellular flow
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A nearly optimal trajectory to maximize velocity in x is to follow the flow downward and right
along separatrices, and make turns with the help of control. Without the control, the trajectory
would get stuck at a saddle point!

The time to go from a small neighborhood of order O(q) of a saddle point to that of the next
saddle point without control is:

∫ 1−q

q
dx/A sin(πx) = O(| log q|/A), A 0 1, q 1 1.

Choosing q = sL/(A log A), the control is dominant over cell flow in O(q) neighborhood of
the saddle. So time to make a turn around a saddle is O(q/sL). Total travel time from saddle
to saddle is O(log A/A), hence asymptotic velocity is sT = O(A/ log A).

If the starting point x is not on a separatrix, it takes finite amount of time for the control to
move the particle out of the area of closed streamlines to a nearby separatrix:

α(s) = −sl
∇H(y(s))
|∇H(y(s))| · sign(H(y(s)))

until the particle reaches a separatrix then follow the above optimal path to reach the same
order of sT .
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• The enhancement O(A/ log A) of inviscid G-front speed in cell flows was shown for
initial starting point x on a separatrix in A. Oberman’s Thesis (2001) using control
representation.

• Abel, Cencini, Vergni, Vulpiani, obtained similar result using formally reduced front
equation (2002).

• KPP speeds in cell flow obeys A1/4 (Audoly-Berestycki-Pomeau 2000, Novikov-Ryzhik
2007), Ignition front speeds in cell flow behaves similarly, O(Ap), p ∈ (1/5, 1/4]
(Kiselev-Ryzhik,2001).

• Lack of dissipation in standard (inviscid) G-equation may be the cause of discrepancy in
speed asymptotics ?
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Front Speeds of Viscous G-equation in Cellular Flows:

ut + δV (x) · ∇u = sl|∇u| + κ∆u, (28)

where (sl, κ) 1 δ, with Lipschitz continuous initial data.

The traveling front solution of (28) is:

u = p · x + H(p) t + w(x), (29)

p is a unit vector in Rd, and w(x) is periodic. Equation for (H, w(x)):

H + δV (x) · (p + ∇xw) = sl|p + ∇xw| + κ∆xw, x ∈ T, (30)

where T is the periodic cell [0, 2] × [0, 2].

Eulerian view:
H(p) = sl 〈|p + ∇w|〉, (31)

L1 nonlinearity ! Jensen’s inequality gives lower bound:

c∗ = H(p)/|p| ≥ sl, (32)

flow can only enhance the front speed.
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Analysis of (H, w) equation shows that due to L1:

Theorem 2 (Nolen-Xin 2009) viscous G-front speedH(p) grows slower than any positive
power of δ as δ 0 1, if sl 1 κ independent of δ.

In contrast, viscous quadratic HJ front speed grows at least O(δ1/4) (Novikov-Ryzhik 2007).

Lagrangian view: control representation for the viscous G-equation indicates that large
Brownian fluctuation slows down the steering mechanism of control through the vortices. The
particle trajectory has a very large probability of falling off a separatrix into rotating vortices
and get temporally trapped there. Imagine: in a canoe/kayak slalom race, what a paddler has
to do (control) to navigate through a 300m turbulent course to win if he constantly gets a large
random kick ?!
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Sketch of Proof of Upper Bound based on Cell Problem:

H∗ + AV (x) · (p + ∇xw) = R|p + ∇xw| + ∆xw, x ∈ T, (33)

where A = δ/κ and R = sl/κ and H∗ = H/κ. Front speed is c∗ = H∗κ/|p|.
As (Novikov-Ryzhik 2007), decompose (p = (λ, 0)):

p · x + w = λx1 + w = T + S ≡ ζ, (34)

where T is mean zero and solves the linear inhomogeneous problem:

∆T − AV (x) · ∇T = 0,

T (x1 + 2, x2) = T (x1, x2) + 2λ, T (x1, x2 + 2) = T (x1, x2), (35)

and S, a mean zero periodic function, solves the nonlinear problem:

∆S − AV (x) · ∇S = H∗ − R|∇(T + S)|. (36)

The linear problem (35) is well-studied and L2 gradient estimate is:

C1A
1/2λ2 ≤

∫

T
|∇T |2 dx ≤ C2A

1/2λ2, (37)

for positive constants C1, C2 independent of A.



33

Lemma: For any power β > 0, there is a constant Cβ such that

‖∇T‖L1(T) ≤ Cβ(1 + Aβ)

holds for all A > 1.

Let Ω(h) = {x ∈ T | H(x) < h}, h = εp, ε = A−1, be the boundary region near
separatrices. Then |Ω(h)| = O(εp log ε). Cauchy-Schwarz implies for q ∈ (0, p):

∫

Ω(h)
|∇T | dx ≤ C1/2

1 |Ω(h)|1/2ε−1/4 ≤ Cεq/2−1/4 (38)

Let D(h) = T \ Ω(h) denote the interior region, away from the separatrices. For any
r > 1, the energy upper bound:

∫

D(h)
|∇T |2 dx ≤ Cr

h

( ε
h2

)r
(39)

holds for a positive constant Cr .
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if h = εp for any power p < 1/2,
∫

D(εp)
|∇T |2 dx ≤ Cp (40)

for some constant Cp independent of ε ∈ (0, 1). Thus,
∫

D(εp)
|∇T | dx (41)

is uniformly bounded in ε. Combining this estimate with (38), we have for any p < 1/2,

‖∇T‖L1(T) =
∫

D(εp)
|∇T | dx +

∫

Ω(εp)
|∇T | dx ≤ Cp + Cεq/2−1/4 (42)

Choose p and q arbitrarily close to 1/2, then for any β > 0,

‖∇T‖L1(T) ≤ Cβ(1 + ε−β) = Cβ(1 + Aβ) (43)

This proves the lemma.



35

Proof of Theorem: function ζ = w + p · x increases by λ across the cell in x1. It follows:

H∗(p) = R

∫

T
|∇ζ| dx/|T| ≥ R

∫

T
|ζx| dx/|T|

≥ R

∫

T
ζx1dx/|T| = Rλ. (44)

By Poincaré inequality and maximum principle, the ζ function in the cell T satisfies the upper
bound:

ζ ≤ C[λ+ ‖∇ζ‖1], (45)

implying:

ζ ≤ C[λ+ H∗/R] ≤ CH∗/R, (46)

for a positive universal constant C .
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The type of inequality (45) also applies to T and gives:

T ≤ C[λ+ ‖∇T‖1] ≤ CβAβ , (47)

for all A > 1. Inequality (47) improves Lemma 1 of (Novikov-Ryzhik 2007) where the upper
bound is O(λA1/4). It follows from (47) and (46) that

S ≤ C(Aβ + H∗/R). (48)

By (31)-(34):

|T|H∗ = R‖∇(T + S)‖1,

and so:

||T|H∗ − R‖∇T‖1| ≤ R‖∇S‖1 ≤ 2 R ‖∇S‖2. (49)
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Gradient estimate of S: Multiplying S to (36), integrating over T and applying (48) gives:

‖∇S‖2
2 = R

∫

T
S |∇(T + S)| dx

≤ RC(Aβ + H∗/R)
∫

T
|∇ζ| dx

= C(Aβ + H∗/R)H∗. (50)

It follows from (49) that:

|T|H∗ ≤ 2R ‖∇S‖2 + R‖∇T‖1

≤ 2R
√

C(Aβ + H∗/R)H∗ + R C(1 + Aβ). (51)
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Suppose H∗ > RAβ . Then (51) implies

|T|H∗ ≤ R
√

2CH∗H∗/R + R C(1 + Aβ) (52)

If
√

R =
√

sl/κ is sufficiently small (independently of A),

H∗ ≤ RC(1 + Aβ).

Therefore, for any β > 0, there is a constant C such that

H∗ ≤ RC(1 + Aβ), (53)

holds for all A ≥ 1. Consequently,

c∗ = H/|p| = H∗κ/|p| ≤ slC

(
1 +

(
δ

κ

)β
)

(54)

holds for δ > κ.!
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Summary of noncoercive HJs and homogenization:

• In non-coercive HJs due to unbounded random processes: homogenization may
break down (shear flows) or persist (gradient flows). A necessary and sufficient condition
for homogenization is found for random unbounded Hamiltonian in classical mechanics,
namely potential being bounded from above.

• There is drastically different front speed asymptotics in cell flows of viscous and
inviscid G-equations from KPP or ignition reaction or quadratic HJs. The
nonlinearity from L2 to L1 makes the key difference.

• A tutorial presentation of reaction-diffusion, Burgers, HJ fronts in multiscale and
random media is in my newly published Springer book at amazon.com for students
and researchers at an affordable price $35.
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New Book at amazon.com:
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