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Fronts or interfaces in multiscale and random flows appear in many scientific areas as
solutions to PDEs or free boundary problems: premixed turbulent combustion, chemical
reaction fronts in liquid, algal blooms (large blobs of micro-algea) in the ocean. Two prototype

scalar models for fronts are:

|. Reaction-Diffusion-Advection-Equation (RD):

uy = Apu+ B(w,z,t) - Vou 4+ f(u), r e RY. (1)

f (u) is nonlinear reaction function; B a space-time periodic or random flow field.

ll. Hamilton-Jacobi Equation (HJ):

u + H(w, z,t, Vyu) = k Au, reRN, N>1,k>0. (2)

H is periodic or random in (x, t), nonlinear in V u.



Examples of reactive nonlinearities:
1. f(u) = u(1 — u) (Kolmogorov-Petrovsky-Piskunov(KPP), Fisher, 1937)

2. f(u) =0Vu € [0,0) U{1l}, f(u) >0Vu € (0,1), f(u) Lipschitz continuous,

combustion nonlinearity with ignition temperature 6.
8. f(u) =u(l —u)(u—p), € (0,1): bistable nonlinearity.
Examples of Hamiltonians:
1. H(z,t,p) = |p|?/2 + V(z) (classical)
2. H(x,t,p) = |p|?/2 + V(z) - p (advective)

3. H(x,t,p) = |p| + V(x) - p (relativistic/geometric)



Consider Spatially Heterogeneous Hamilton-Jacobi Eq. (HJ) satisfying:
e [ (Hamiltonian) is convex in p = V ,u, continuous in x;

e H is stationary in x (joint distribution of H (w, z1,p), - , H(w, T, p) is invariant

under translation in x);

e H is ergodic in x (events invariant under translation have probability either zero or one).

Theory of HJ homogenization requires coercivity:

H(x,p) — 400, as p — oo uniformly in =x.
e Periodic Media: Lions-Papanicolaou-Varadhan (1988), Evans (92);

e Quasi-periodic media and degenerate 2nd order (viscous) HJs: (Lions-Souganidis, Ishii,

and references therein).

e Stationary ergodic media:
Invisid HJs: Souganidis (99), Rezakhanlou-Tarver (00);
Viscous HJs: Lions-Souganidis (05), Kosygina-Rezakhanlou-Varadhan (06), Schwab (08).



Non-coercive HJs:

Example 1: H (x,p,w) = ¢, |p|” + V(z,w), n = 2 (classical mechanics), n = 1
(relativistic mechanics), potential V" is an Ornstein-Uhlenbeck (OU) process, a Gaussian

process with mean zero and covariance

1

BV (2)V ()] = 5 exp(— | — y])

The OU processs is unbounded in x, H is non-coercive.

Example 2 (advective Hamiltonian): H (x, p,w) = ¢, |p|™ + b(x,w) - p, n = 2 (corres. to
KPP), n = 1 (G-equation, approximating ignition/bistable reaction fronts on hyperbolic time
scale).

If n = 1, then for b mean-zero periodic function with amplitude above c,,, H is non-coercive.



Inviscid G-equation:

G: + B(z) - VG = 8, |[VG],

s; > 0 (constant, laminar speed) as a small diffusion fast reaction limit of ignition/bistable

reaction:
v + B(x) - Vv =eAv+e* f(v).

Substituting:
v~ Ulu(z,t)/e),

then equation at order O (e~ 1) is:
(ug + B(x) - Vu)U' = |Vu|*U" + f(U).
By traveling front identity and scaling:
U’ —cU + f(U)=0, d*U" —dcU' + f(U)=0, Vd>O0,

we have:

us + B(x) - Vu = ¢|Vul.

Over longer (diffusive) time scale O (€ ~2), one adds curvature correction to G-equation,

giving viscous G-equation.



Capture Front Asymptotically in Multiscale Media and Homogenization:

(2,t)

Scaling transform: (x,t) — ,u — eu = u®. In case of homogeneous media, front

solutions are invariant.

HJ random fronts may be studied in terms of ©€ in the limit € | 0, where u° satisfies:
x
ué + H(w, - Vut) =0, (3)
with planar initial data: u€(x,0) = p - .

The study of convergence of u€toa limiting funtion ’a(a:, t) and the resulting limiting eqn is
Homogenization.

Suppose  exists, then observing at (x,t) = (0, 1), we see:

by a0,1) = —A(p)

€

e u(0,

p dependent constant or HJ front speed (1" = %):

w(0,T) ~ —H(p)T.



Lax-Oleinik-Hopf formula:

yeERN

u€(z,t) = inf (ue(y, 0) + int /O t L(w, £(s) /e, €'(5)) ds),

£ Whee((0,t); RY), £(0) =y, () = x, a Lipschitz path connecting ¥ to .

L is Lagrangian given by Legendre transform:

L(w,z,q) = sup (¢-p— H(w,z,p)).
peERN

L is a convex function in q.
At x = 0, the integral equals:

/O L(w,€(s) fe, —€'(s)) ds.

where £(0) = 0, £(t) = y. Letting n = 1/¢, we study the limit S}, (y, t) /n, where:

Sn(y,t) = inf /On L(w,&(s), —&'(s)) ds.

geW b= ([0,nt];RY):£(0)=0,£(nt)=ny



Subadditive Ergodic Theorem and Convergence of .5, / n to a Nonrandom Number.

Define:

Sm,n (y7 t)

inf /n L(w,&(s),—&'(s)) ds.

B E(mt)=my;&(nt)=ny J¢

with inf taken over all paths & connecting my to ny in time (n — m)t.

SET(Kingman): Suppose that Sm,n are random variables satisfying:

(1) 50,0 =0, 5mn < Sm i+ Skn form <k <mn;

) {Sm.m+k, m >0, k> 0} equals {Sp+1,m+k+1,m > 0,k > 0} in distribution;
(3) E[Safl] < 4005 an = E[Sp.n] < o0;

then:

(1)
. 04 ) 0}
a= lim — = inf — € [~00,00);
n—oo M n>1 N

2) Soo = lim,,— o0 % exists with probability one;

3)if E[Seo] = ¢ > —00, limy, 00 F[|Son/n — Sec|] = 0.
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Condition (1) follows directly from infemum of the path integral.
Condition (2) follows from stationarity.
Condition (3) requires further knowledge of “unboundedness” of the random Lagrangian.

If H is uniformly bounded in x (for any p), then L is uniformly bounded in x. All moment
assumptions hold, SET implies the existence of the limit Sn/n with probability one. The limit
is invariant under translations of the realization of L by vectors proportional to x, hence its

value is almost surely nonrandom (ergodicity).

By absorbing ¢ into 1, we see that the limit is of the form: ¢ L(¥), where L (homogenized
Lagrangian) is convex in 3/t (velocity) due to convexity of L in & (velocity) and subadditivity
of S,,.

The homogenization limit of HJ solution from planar data at z = O is:

a(0,t) = inf(p -y +tL(y/t)) = tinf(p-y' + L(y") = ~tH(p). (9)

This further implies that in general the homogenized eqn is @i; + H (V@) = 0.



Uniform boundedness is however not sharp for HJ homogenization, and not true for Gaussian
processes. Unboundedness is an indication of extreme behavior of a stochastic system.

Example I: H = |p|?/2 + V (z,w), suppose that V' is uniformly bounded from above by V
(but no uniform lower bound), and that E'[|V (x)|] < co. Then homogenization still holds.

Lagrangian L(x, q) = lal® V(x,w). For alinear path £(s) = s £, we obtain
t

2
2
2t nt
So,n < nlyl —/ V(%)ds.
’ 2 0 t

Integrability of V' () implies that

E[|S0,(t,y)]] < +oc.

On the other hand, since the kinetic part of Lagrangian integral is positive, upper bound on V'

implies that
E[Son(t,y)] = —ntVo.

The family Sm,n satisfies the assumptions of subadditive ergodic theorem, implying existence

of the finite limit of 2%
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Unbounded Potentials and Running Maxima

Let V' be an Ornstein-Uhlenbeck process (/N = 1), the running maximum
V*(y) = sup,eo,, V (u) obeys:
Theorem 1 (Cramér)

Vi(y) —b

Prob |
Ay

Y < x| — exp(—e™¥)

asy — 00, where

ay_l ~ b, ~ (2logy)

N|—=

with ~ denoting asymptotic equivalence.

Similar results hold in /N > 2 (Leadbetter et al).

The theorem says that the renormalized random variables V' *(y) converge in distribution to

the double exponential distribution. It follows that

V*(y)
(2logy)

> 1, asy — oo,

N[~

in probability.
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Scaling /2 log n for running max of i.i.d. sequence X, :

Prob(lrgakx {X1,-, Xn}<z) = Prob(X7 <z, Xo<z, -+, X, <)

= [Prob(X; < x)|"

which converges to zero as n — o< for any finite x. Almost surely the running max is

unbounded!

If X7 is unit Gaussian, x = /2 logn,

[Prob(X; < z)|" = (1 — (2m)"1/? /O; exp{—y?/2} dy)
~ (1 — const./n)",

converging to a positive finite number, suggesting running max scales as O( Vv 2 log n)



Unboundedness of IV from Above and Breakdown of Homogenization

N = 1, minimum action integral is:

, "1 du .,
S, = int / (o) = V()] dr,

over C'! functions u(7): u(0) = 0 and u(nt) = nx. The minimizing function u is

monotone increasing: Z—’: # 0 for all 7.

Rewrite .S,, in inverse function 7(u):

"1 dr dr
p=inf [ (50— V(w)St]d
S,= it [ G0 -Vl

over all C'! functions 7(u): 7(0) = 0 and 7(nx) = nt.

Conservation of energy gives:

dr _ 1
du 2B, —V(u)]

E,,: the total energy, E/;, > maxXy,c(o,ny) V ().

14



It follows that

" B V) V(W) y
S”_/o [\/ 2 V2B V) "

and

du = nt. (11)

nir 1
/o V2(E, —V(u))

du < nt, contradicting (11).

It By > SUDyeqo.na) V(1) + 2t2 then [

\/2(E —V(u))

Hence ), < sup,¢ Viu) + = 2t2 and

0,nx]

E,~ sup V(u), n>1.
u€e[0,nx]

Rewrite from (10):

o B, V(W) | E,-V(W) E, y
= [ VET ey e

15



First two terms of integrand in (12) are identical. Jensen’s inequality (concavity of root

function):

% /Om \/Q(En —Vuw)du < \/nla; /Om 2(E, —V(u))du

1
\/2En —2— V(u) du,

nIx 0

1 n

where almost surely as n — o0, = [, V/(u) du — 0, by ergodicity of the

Ornstein-Uhlenbeck process.

The integral of the first two terms is bounded by 3+/ F,,nx for large n. The integral of the

third term is — F/,,nt. So for n large:
1
—tk, < -5, <3z E, —tk,,
n

or:
Sn
— ~ —tE, ~—t sup V(u)=—tV*(nxr) — —o0.

n u€e[0,n]

16
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Standard homogenization limit fails. Instead, the modified limit holds in probability:

Sn
n(2logn)l/2

—t.

Divergence of homogenization means that for affine data, the growth rate of HJ solutions in

time is faster than linear, or front acceleration. Similar divergence occurs in N > 2.

For classical mechanics Hamiltonian, stochastic homogenization holds if and only if the

potential is uniformly bounded from above.
For advective Hamiltonian, upper bound may or may not be the criterion.
2
Example lla (H in Gradient Flows): H(x,p) = & +p - b(x), b = VU (x), where U(x) is

a scalar random vector field whose realizations are of class C2, p, z € R” . Such fields b

include Gaussian random fields with appropriate covariance.



Corresponding Lagrangian is

1
L(z,q) = 5la = b(z)]* = - —q-b(z) + (13)

Forapath £(s), 0 < s < nt,suchthat£(0) = 0 and {(nt) = n x, the contribution from
the second term to Lagrangian integral equals

/O " b(e(s) - €(s) ds = U (na)

Such a path independent term is called a null Lagrangian. Thus Lagrangian (13) leads to the
same Euler-Lagrange equations of motion for the minimizing path as the Lagrangian of the
potential system:

q/”
L1<33,Q) 7 —V1(513>,
where Vi (z) = —£|b|?(z) < 0. By result of Example |, homogenization holds for such

Hamiltonian of advection type, even though flow field is unbounded !
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Example b (H in shear flows): b(z) = (Va(2'),0), 2" = (22, - ,2n),0 € RV L,

HJ Egn is:
ug + b(x) - Vyu + |Veul?/2 = 0. (14)

Consider a front moving in the 1 direction in the form u(x, t) = z1 — 2t + w(a’, ). Then

w satisfies HJ eqgn:
2 /
wi + |V w|? /2 + Va(z') =0, (15)

which is in the classical potential form.

If V3 obeys the assumptions in Example | and is unbounded from above, —w(x’, t)/t
diverges for large time t. Front speed acceleration appears due to dominance of running

maxima of process V5.



Summary of HJ Fronts in Random Media:

e Homogenization: behavior of the system on large scales is described by an effective
nonrandom Lagrangian (or Hamiltonian). Disorder gets averaged, extreme nature of
the random media is tamed, fronts move at asymptotically constant speeds. An
elementary (and linear) analog of this phenomenon in classical probability theory is the

strong law of large humbers.

e Domination by finite-volume maxima of the random potential: Homogenization
breaks down. On an arbitrarily large scale, behavior of the system is dictated by the
maximum value of the disorder on that scale. The extreme nature of the random media
prevails. Analogue in classical probability theory is the study of extrema of stochastic
sequences and processes. For example, the maximum M ,, of n independent unit normal
random variables behaves asymptotically as v/2 log n as n — oo.

The convergence (homogenization) and divergence (dominance by running maxima) phenomena of
stochastic H-J was noted earlier in KPP (Xin 2003).
The divergence of HJ homogenization and one-sided condition of random potentials for HJ homogenization are

based on E-Wehr-Xin (2008).

20
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G-equation and Control Representation:

Suppose u is the viscosity solution of
us + V(x)Vu = s|Vu|, u(z,0) = wug(x), (16)
then:

u(x,t) = supug(y(t)) (17)

where the supremum is over all y € W 1:°°(0, t]; R?) satisfying (0) = x and the

constraint
' (1) + V(y(m))] < s (18)
forall 7 € [0, t].



Suppose w(x, t) satisfies:
wy + V(x)Vw = s;|Vw| + kAw, w(z,0) = wo(x), (19)
then w(x, t) has the representation:
w(x,t) = sup E [ug(Y3)] (20)
where Y} satisfies the stochastic equation
dY, = (o, — V(Y})) dr +V2kdW,, Y=z (21)

The supremum in (20) is over all stochastic controls &~ which are progressively measureable

with respect to the Brownian filtration, and satisfy |a., | < s;.

We shall use these control formulas to analyse front speeds. The following is based on joint
work with J. Nolen (2009).

22



G-eqn and Spatial Flow: V' = V (z)
us + V() - Veu = 51|V ul,

with affine initial data u(x,0) = p - x, where p a unit vector in R".

Control formula of solution is:

u(z,t) = maxp -y,
(6%
where y = y(t; ) is the solution to the ODE with continous control v, |a| < s;:
y'(1) ==V(y(r)) + a(7),

and initial data y(0) = =.

(22)
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Gradient flow

Let p = 1, by ODE comparison argument, o = s; is the optimal control facilitating largest
velocity to the right. Solution is u(x,t) = y, where y = y(t; =) solves:

y'(1) = =V(y(7)) + s1, (23)
with initial data y(0) = x. Two regimes arise.

If min —V (y) + s; > 0 for all y, closed form solution:

y
/ . _y (24)
T _V<77) + S|

Let{ — +00:

s = lim u(x,t)/t = tlirrolo y(t)/t = 1/E[(=V () +5) 7], (25)

t—o0

almost surely for a stationary ergodic process V. Bounding harmonic mean by arithmetic
mean: sp < s; — E|V].

Front speed slows down if £[V] = 0.

24



—V + s; changes sign:

—V + s; has discrete zeros where — V'’ changes sign alternately. These zeros are stable
g g

and unstable equilibria of characteristic egn (23).

Then y(t) will converge to a nearest stable equilibriam from starting point . Implying that

y(t) is uniformly bounded in t.

Front asymptotic speed s = 0, front trapping occurs!

In contract, KPP fronts slow down in gradient flows but are never trapped (Nolen-Xin, 2009).

25
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Divergence in Shear flow V' = (v(12),0), (y1,y2) € R?, v(y2) is a mean zero
stationary ergodic process. Choose control as:

Yy = —’U(yz> + s; — S € (f — 332)6_68“57
o = sp€(€&—mxo)e

where & is a point so that —v(§) > 0; e < 1. Thenas t — oc:

y2(t) = 2 + (E —x2) (1 —e™ %) = &,

y1(t) = :131—/0 v(y2(7))dr + st + O(1),
= —v(&)t+ sit + O(1), (26)

implying that y1 /t — —v(§) + si.

Choose £ to reach maximum of —v on [x9 — L, xo + LJ:

st > 8+ s%p maxyc(—r,] — V(y)- (27)

For unbounded Gaussian process v, st diverges as L. — 00, same as in quadratic HJ.
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ian Flows with Periodic Array of Vortices)

Cell Flows (Hamilton

H = sin(7mx) sin(7y).

Y

V(x,y) = const V*H

cellular flow

; / \\\‘\IIK/V//:\\\A\R\ALAI‘/&/
| V2= _

!
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A nearly optimal trajectory to maximize velocity in x is to follow the flow downward and right
along separatrices, and make turns with the help of control. Without the control, the trajectory
would get stuck at a saddle point!

The time to go from a small neighborhood of order O(q) of a saddle point to that of the next
saddle point without control is:

1—q
/ dr/Asin(mz) = O(|logq|/A), A>1, ¢ < 1.
q

Choosing ¢ = s, /(Alog A), the control is dominant over cell flow in O(q) neighborhood of
the saddle. So time to make a turn around a saddle is O(q/s ). Total travel time from saddle
to saddle is O(log A/A), hence asymptotic velocity is s = O(A/log A).

If the starting point x is not on a separatrix, it takes finite amount of time for the control to
move the particle out of the area of closed streamlines to a nearby separatrix:

als) = —s, VH(y(s))
[VH(y(s))]

until the particle reaches a separatrix then follow the above optimal path to reach the same

- sign(H(y(s)))

order of s7.



The enhancement O( A/ log A) of inviscid G-front speed in cell flows was shown for
initial starting point & on a separatrix in A. Oberman’s Thesis (2001) using control

representation.

Abel, Cencini, Vergni, Vulpiani, obtained similar result using formally reduced front
equation (2002).

KPP speeds in cell flow obeys Al/4 (Audoly-Berestycki-Pomeau 2000, Novikov-Ryzhik
2007), Ignition front speeds in cell flow behaves similarly, O(AP), p € (1/5,1/4]
(Kiselev-Ryzhik,2001).

Lack of dissipation in standard (inviscid) G-equation may be the cause of discrepancy in

speed asymptotics ?
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Front Speeds of Viscous G-equation in Cellular Flows:
us + 0V (x) - Vu = 1|Vu| + kAu,

where (s7, k) < ¢, with Lipschitz continuous initial data.

The traveling front solution of (28) is:
u=p-z+ H(p)t+w(z),
p is a unit vector in RY, and w(x) is periodic. Equation for (H, w(x)):
H+06V(x)  (p+ Vzw) =s|lp+ Vow| + kAyw, z €T,

where T is the periodic cell [0, 2] x [0, 2].

Eulerian view:
H(p) = s {|p + V),

Lt nonlinearity ! Jensen’s inequality gives lower bound:

c" = H(p)/|p| = si,

flow can only enhance the front speed.

(28)

(29)

(30)

(31)

(32)

30
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Analysis of (I, w) equation shows that due to L':

Theorem 2 (Nolen-Xin 2009) viscous G-front speed H (p) grows slower than any positive
power of d as 0 > 1, if s; < K independent of ).

In contrast, viscous quadratic HJ front speed grows at least O(51/4) (Novikov-Ryzhik 2007).

Lagrangian view: control representation for the viscous G-equation indicates that large
Brownian fluctuation slows down the steering mechanism of control through the vortices. The
particle trajectory has a very large probability of falling off a separatrix into rotating vortices
and get temporally trapped there. Imagine: in a canoe/kayak slalom race, what a paddler has
to do (control) to navigate through a 300m turbulent course to win if he constantly gets a large

random kick ?!



Sketch of Proof of Upper Bound based on Cell Problem:
H*+ AV(z) - (p+ Vsw) = Rlp+ Vyw| + Ayw, v €T,

where A =¢/kand R = s;/kand H* = H/k. Front speedis ¢* = H*k/|p|.
As (Novikov-Ryzhik 2007), decompose (p = (A, 0)):

pr+w=Ar1+w=T+5=¢(,
where ' is mean zero and solves the linear inhomogeneous problem:

AT — AV (z)-VT =0,
T(x1+2,20) =T(x1,22) + 2\, T(x1, 29 +2) =T (21, 22),

and S, a mean zero periodic function, solves the nonlinear problem:

AS — AV (z)-VS = H* — R|V(T + S)|.
The linear problem (35) is well-studied and L? gradient estimate is:
CL AN < / IVT)? dz < CLAY2N2,
T

for positive constants C'7, C5 independent of A.

(33)

(34)

(35)

(36)

32
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Lemma: For any power 3 > 0, there is a constant C'g such that
IVT || 1) < Cp(1 + A7)
holds forall A > 1.

Let Q(h) = {z € T | H(z) < h}, h = €P,e = A™1, be the boundary region near
separatrices. Then [2(h)| = O(€P log €). Cauchy-Schwarz implies for ¢ € (0, p):

/ VT |dx < CL2|Q(h)|V/2e 14 < Cet/2-1/4 (38)
Q(h)

Let D(h) = T \ Q(h) denote the interior region, away from the separatrices. For any
r > 1, the energy upper bound:

C e\
T2 de < =L (— 39
/D(h>\v Par <3 (55) (39)

holds for a positive constant C,..



if h = €P for any power p < 1/2,

/ IVT|?dx < C,
D(er)

for some constant C), independent of € € (0, 1). Thus,

/ VT dx
D(eP)

is uniformly bounded in €. Combining this estimate with (38), we have for any p < 1/2,
HVTHLl(T) = / VT dx —l—/ VT |dx < C, + (le/2-1/4
D(eP) Q(eP)

Choose p and q arbitrarily close to 1/2, then for any 3 > 0,
IVT |21 (r) < Ca(l+€e7) = Cp(1 + A7)

This proves the lemma.

(40)

(42)

(43)
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Proof of Theorem: function ( = w + p - x increases by A across the cell in 1. It follows:

H'(p) = R / V¢ de/[T] > R / ¢l da /||

> R/ECg;ldw/\m = R\. (44)
By Poincaré inequality and maximum principle, the  function in the cell T satisfies the upper
bound:
¢ < CIAH [V, (45)
implying:
(<CN+H*/R|<CH"/R, (46)

for a positive universal constant C'.
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The type of inequality (45) also applies to /" and gives:
T < C[A+||VT|1] < C3A", (47)

for all A > 1. Inequality (47) improves Lemma 1 of (Novikov-Ryzhik 2007) where the upper
pbound is O(AA/4). It follows from (47) and (46) that

S < C(AP + H*/R). (48)

By (31)-(34):
T H* = R||IV(T + S)]|1,
and so:

ITIH” = R|VT[l:| < R[[VS[ly <2R[|VS]. (49)



Gradient estimate of .S': Multiplying S to (36), integrating over T and applying (48) gives:
IVS|3 = R / SIV(T + 5)| dx
T

< RC(A” + H*/R) / V(| da
T
= C(A° + H*/R)H*.
It follows from (49) that:

T| H”

IA

2R||VS|l2 + R|VT|x

IA

2R\/C(AP + H*/R)H* + RC(1 + A”).

(50)

(51)
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Suppose H* > RAP. Then (51) implies

IT| H* < R\/2CH*H*/R+ RC(1 + AP)
If \/ﬁ = m is sufficiently small (independently of A),
H* < RC(1+ AP).
Therefore, for any (3 > 0, there is a constant C' such that
H* < RC(1+ AP),

holds for all A > 1. Consequently,

¢t = H/lp| = H*/|p| < iC (1 n (§)6>

holds for 0 > k.[l

(52)

(53)

(54)
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Summary of noncoercive HJs and homogenization:

e In non-coercive HJs due to unbounded random processes: homogenization may
break down (shear flows) or persist (gradient flows). A necessary and sufficient condition
for homogenization is found for random unbounded Hamiltonian in classical mechanics,

namely potential being bounded from above.

e There is drastically different front speed asymptotics in cell flows of viscous and
inviscid G-equations from KPP or ignition reaction or quadratic HJs. The

nonlinearity from L? to L' makes the key difference.

e A tutorial presentation of reaction-diffusion, Burgers, HJ fronts in multiscale and
random media is in my newly published Springer book at amazon.com for students
and researchers at an affordable price $35.
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