
Introductory Lecture on Commutative Algebra

May 24, 2009

1 Rings

We will review some commutative algebra that is needed for the lecture series Alge-
braic Geometry by James D. Lewis. We will start with the definition of a ring.

Ring R = Elements + Addition + Multiplication + Certain Properties

Properties:

1. With respect to addition R must be an abelian group. This will quarantee that
R has a zero element, every element has an additive inverse (hence we will be
able to do substraction as well) and the order of the addition is not important.

2. Multiplication must be associative, i.e. (xy)z = x(yz). So we do not need to
worry about the order we multiply.

3. Muptiplication must be distributive over addition, i.e. x(y+ z) = xy+ xz, (y+
z)x = yx+ zx. So we do not have to worry if we add first or multiply first.

Example 1 Z+ = {0, 1, 2, 3, . . .} with the usual addition and multiplication, is not a
ring since the first property fails because of not having additive inverses. By adding
additive inverse of each element to this set we get the ring Z.

We will be working with commutative rings with identity. For this our ring R must
satisfy two additional properties

(i) For all x, y ∈ R we must have xy = yx (commutativity)

(ii) There exists 1 ∈ R, identity element such that for all x ∈ R, x1 = 1x = x. The
identity element is unique.
(Let 1, 1′ be two identity elements of R, then 1 × 1′ = 1 ⇒ 1 × 1′ + (−1) =
1 + (−1) = 0⇒ 1× 1′ + 1(−1) = 0⇒ 1(1′ + (−1)) = 0⇒ 1′ = −(−1) = 1 )

Remark 2 1. If R is a ring with identity then the distributive law forces R to be
abelian group with respect to addition. (This can be shown by applying distribu-
tive condition to (1 + 1)(a+ b) for any a, b ∈ R)
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2. The zero ring, 0 , is a commutative ring with identity as taking 1 = 0. This is
the only ring with this property. If you want to exclude the zero ring then make
the assumption 1 6= 0.

Let us see more examples:

Example 3 (a) Let M(R)n×n = set of all n × n real matrices. Then M(R)n×n

with the usual matrix addition and multiplication is a non-commutative ring with
identity. (AB 6= BA, 1 = I, 0 = 0)

(b) In fact, one of the first non-commutative rings was discovered by Sir William
Rowan Hamilton in 1843, the (real) Hamilton Quaternions. This is a non-
commutative ring with identity and denoted by H = {a + bi + cj + dk|a, b, c, d ∈
R, i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j}. Addition is
the componentwise addition and multiplication is by expansion. [DF, pg:224]

(c) 2Z = {0,±2,±4,±6, . . .} with the usual addition and multiplication is a commu-
tative ring without identity

(d) Z,Q,R,C with the usual addition and multiplication is a commutative ring with
identity

(e) C[x] = {f(x) = anx
n + an−1x

n−1 + . . .+ a1x+ a0|ai ∈ C, n ∈ Z+} with the usual
polynomial addition and multiplication is a commutative ring with identity.

(f) Z[i] = {a + bi|a, b ∈ Z, i =
√
−1} (introduced by Gauss around 1800s [DF])with

the usual complex addition and multiplication is a commutative ring with identity.

From now on ring will mean commutative ring with identity.

R = set + addition + multiplication + properties

Subring = subset + same addition +same multiplication+ same and extra properties
? ? ?

?

The extra property of a subring is being closed under addition and multiplication
with the ring’s identity.(That is when we add or multiply two elements we want the
result to stay inside the subset and this subset be a ring by itself.)

Example 4 1. If S is a subring of R then S[x] is a subring of R[x], hence R[x],Q[x],Z[x]
are all subrings of C[x].

2. The ring of all continuous functions from R to R is a subring of all functions
from R to R.

Now the next step is relating two rings to each other. How we will do this?
Ring homomorphism is a tool that can be used for relating two rings

ring homomorphism = a map that respects the properties of a ring
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Definition 5 Let R and S be two rings. f : R −→ S is called a ring homomorphism
if

(a) f(x+ y) = f(x) + f(y) for all x, y ∈ R

(b) f(xy) = f(x)f(y) for all x, y ∈ R

(c) f(1) = 1

Remark 6 One can show f(0) = 0 and f(−x) = −f(x) for all x ∈ R.
(f(0 + 0) = f(0) + f(0)⇒ f(0) = f(0) + f(0)⇒ f(0) = 0,
f(x+(−x)) = f(x)+f(−x)⇒ f(0) = f(x)+f(−x)⇒ 0 = f(x)+f(−x)⇒ f(−x) =
−f(x))

Example 7 1. S be a subring of R, then id : S ↪→ R is an injective ring homo-
morphism

2. Z −→ Z/2Z, n −→ n( mod 2) is a surjective ring homomorphism

3. R2 −→ C, (x, y) −→ x+ iy is a bijective ring homomorphism(= isomorphism)
with the multiplication (x, y)(z, w) = (xz − yw, xw − yz)

We can take composition of ring homomorphisms let f : A −→ B g : B −→ C be
ring homomorphims, then g ◦ f : A −→ C is also a ring homomorphism.
Proof. Take any a1, a2 ∈ A, and consider (g ◦ f)(a1 + a2) = g(f(a1 + a2)) =
g(f(a1) + f(a2)) = gf(a1) + gf(a2).
Then consider (g ◦ f)(a1a2) = g(f(a1a2)) = g(f(a1)f(a2)) = gf(a1)gf(a2).
(g ◦ f)(1) = g(f(1)) = g(1) = 1

2 Ideals

We saw
set + properties = Ring

subset + properties = Subring

Now we will see a new object subset + new properties = Ideal.

Definition 8 a ⊆ R is called ideal of R if a is an additive subgroup (i.e. for x, y ∈ a,
x+ y ∈ a, 0 ∈ a,−x ∈ a) and is such that Ra ⊆ a (i.e. ∀r ∈ R, ∀x ∈ a, rx = xr ∈ a).

So right ideal=left ideal=ideal, as our ring is commutative. Ideals will play an im-
portant role in the lectures Algebraic Geometry.

Remark 9 We can choose an element x ∈ R and then the set {rx|r ∈ R} will be an
ideal. This ideal is denoted by xR or (x) and called the ideal generated by x.
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Definition 10 Let X be a subset of a ring R. Let {ai|i ∈ I} be the family of all
ideals of R which contains X. Then ∩i∈Iai = (X) is called the ideal generated by X.
The elements of X are called the generators of the ideal (X). If X = {x1, . . . , xn},
then (X) = (x1, . . . , xn) = {

∑n
i=1 rixi|ri ∈ R} is said to be finitely generated.

Example 11 1. Z is a ring, 2Z is an ideal of Z. In fact ideals of Z are of the
form dZ where d is an integer.

2. C[x] is a ring, then (x3 + 2)C[x] and (x2 + 1, 2x3 + 5)C[x] = {(x2 + 1)f(x) +
(2x3 + 5)g(x)|f(x), g(x) ∈ C[x]} are ideals of C[x].

3. If f : R −→ S is any ring homomorphism then the ker (f) is an ideal of R, but
the im(f) need not be an ideal of S (e.g. in the case f is not surjective), it is
only a subring of S.

Remark 12 Different than subring, an ideal do not need to have the identity element
of the ring. In fact, if the ideal has the identity element than that ideal is the whole
ring. [1 ∈ a ⇒ r1 ∈ a∀r ∈ R ⇒ R ⊆ a, a ⊆ R ⇒ a = R]. We sometimes denote
R = (1), i.e. R can be viewed as an ideal that is generated by the element 1.

The finitely generated ideals will be important for us. In fact for the Algebraic
Geometry lecture, you will be working with the ring C[x1, . . . , xn] and the ideals you
will deal with will be always finitely generated.(comes from the Noetherian property
of C[x1, . . . , xn]).
The ideals we will mostly work with will be prime and maximal ideals. Now let us
see the definition of those.

prime ideal ↔ Prime numbers

Recall that if p is a prime number then p 6= 1 and p|ab⇒ p|a or p|b.
We say p ⊂ R is a prime ideal if p 6= (1) and xy ∈ p⇒ x ∈ p or y ∈ p. In fact, prime
numbers is generalized to prime ideals by Dedekind in 1871.
Importance:

• We will use them to define algebraic varieties = solution set of polynomials in
a prime ideal

• They can be used to form integral domains from rings. (definition is coming)

Example 13 1. For Z, (p) is a prime ideal if and only if p is 0 or a prime number.

2. For C[x], (f(x)) is a prime ideal if and only if f(x) is an irreducible polynomial.

3. Spec(R)= all prime ideals of R; Spec(Z) = {(0), (p)|p is a prime number }, Spec(k) =
{(0)} for k a field. This spectrum of a ring will be related to algebraic varieties.
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maximal ideal ↔ Maximum of something, kind of an upper bound

m ⊂ R is called a maximal ideal if m 6= (1) and there is no ideal a such that
m ⊂ a ⊂ (1) = R.

Example 14 In Z consider (3) ⊂ (d) ⊂ (1). (3) ⊂ (d) implies 3 = dr for some
r ∈ Z. This means d|3⇒ d = 3 or d = 1. Hence (3) is a maximal ideal.

Remark 15 m is not unique, there might be many maximal ideals. In fact rings with
only one maximal ideal are special, they are called local rings.

Example 16 1. In Z, prime ideals are also maximal ideals, hence {(2), (3), (5), . . .}
are maximal ideals of Z.

2. This comes from [DF] Chapter 8, Proposition 7: Every non-zero prime ideal in
a Principal Ideal Domain is a maximal ideal.

Importance:

• Maximal ideals correspond to points in algebraic varieties.

• They can be used to form fields from rings.

Roughly
prime ideals ↔ algebraic varieties

maximal ideals ↔ points in algebraic varieties

Theorem 17 ([Atiyah-MacDonald],1.3) Every ring R 6= 0 has at least one maximal
ideal.

Proof. Let
∑

be the set of all ideals of R different from (1). We will show that every
chain in this set has an upper bound and use the Zorn’s lemma. First let us recall
what chain is:
S be a non-empty partially ordered set, i.e. we have a reflexive and transitive relation
≤ on S such that x ≤ y and y ≤ x implies x = y for all x, y ∈ S. A subset T ⊆ S is
called a chain if either x ≤ y or y ≤ x for every pair x, y ∈ T .
Next let us recall Zorn’s Lemma: If every chain T in S has an upper bound in S then
S has at least one maximal element.
So we will put a relation on

∑
by inclusion.

∑
6= ∅ as 0 ∈

∑
Then consider {ai} a

chain of ideals from
∑

. Let a = ∪ai, note that a is also an ideal and 1 /∈ a as 1 /∈ ai

so a ∈
∑

and ai ⊂ a for each i. That is a is an upper bound for the chain {ai}, As
the chain is arbitrary, Zorn’s lemma implies R has at least one maximal ideal.

Corollary 18 If a 6= 1 is an ideal of R, then there exists a maximal ideal of R that
contains a.
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Proof. Let
∑

to be the set of all ideals of R that contain a. Then apply the proof
of theorem 17 to

∑
.

Corollary 19 Every non-unit of R is contained in a maximal ideal

Proof. Let x ∈ R be a non-unit then (x) 6= 1 is an ideal of R. Now corollary 18 gives
the result.
Hence if R is a local ring, then elements that are not in its maximal ideals will be
units.
I mentioned that prime ideals can be used to form integral domains from rings and
maximal ideals can be used to form fields from rings. Now let us see how this can be
done and also recall the definition of integral domain and field. For our purpose we
will consider the quotient of a ring by an ideal.

Definition 20 Let R be a ring and a ⊂ R be an ideal. The quotient group R/a
becomes a ring with the induced multiplication of R, xy = x y. This new ring is
called the quotient ring. The elements of R/a are called the cosets of a and the map
φ : R −→ R/a, x −→ x+ a is a surjective ring homomorphism.

Example 21 1. Z is a ring. We have nZ = {0,±n,±2n, . . . , } and ideal of Z
then Z/nZ = {0, 1, 2, . . . , n− 1} is the quotient formed by taking the quotient
of Z by nZ.

Now what we did is from a ring we formed another ring called quotient ring. There
are some special elements in a ring and these will help to form new type of rings.

Definition 22 1. A zero-divisor in a ring R is an element x which divides 0, i.e.
there exists a y ∈ R such that xy = 0.

2. A ring with no zero divisors 6= 0 is called an integral domain.

3. An integral domain is called a principal integral domain if every ideal is principal
that is generated by one element.

4. An element x ∈ R is called nilpotent if xn = 0 for some n > 0.

5. An element x ∈ R is called a unit if there exists y ∈ R such that xy = 1. The
units of R form a multiplicative abelian group.

6. A field is a ring in which 1 6= 0 and every element is a unit.

Example 23 1. In Z/6Z, 2, 3 are zero-divisors as 2 × 3 = 0, 5 is a unit as
5× 5 = 1.

2. In Z/4Z 2 is a nilpotent element as 22 = 0.

3. A nilpotent element is a zero divisor,but not conversely.

4. Z/pZ is a field for p a prime number.
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5. For f : R −→ S ring homomorphism ker (f) is a prime ideal of R for S an
integral domain.

Proposition 24 ([Atiyah-MacDonald],1.1) There is a one-to-one order preserving
correspondence between the ideals b of R that contain a, and the ideals b of R/a,
given by b = φ−1(b).

Proposition 25 ([Atiyah-MacDonald],1.2) let R 6= 0 be a ring. TFAE:

(a) R is a field

(b) the only ideals in R are (0) and (1)

(c) every homomorphism of R into a non-zero ring S is injective

Importance:

• In a principal integral domain every non-zero prime ideal is maximal.

• p is prime ideal ⇔ R/p is an integral domain

• m is maximal ideal ⇔ R/m is a field.

• 0 ideal is prime ⇔ R is an integral domain

3 Modules

The property that formed the ideals is that they are subset of the ring and when
we multiply an element of an ideal with an element of a ring, the result stays inside
the ideal. Now we will introduce new objects that has the multiplication property
as ideals but they do not need to be a subset of the ring. They can be thought as
generalization of ideals.

Definition 26 Let R be a ring , M is called a R-module if M is an abelian group
with an R-linear action on it. That is there is a map µ : R×M −→M , µ(r, x) = rx
satisfying the following properties:

(a) r(x+ y) = rx+ ry for all r ∈ R, x, y ∈M

(b) (r + s)x = rx+ sx for all r, s ∈ R, x ∈M

(c) (rs)x = r(sx) for all r, s ∈ R, x ∈M

(d) 1x = x for all x ∈M

Example 27 1. Any ideal of R is a R-module

2. If R is a field then R-module= R vector space
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3. Z-module= abelian group

Relation between two modules is given by a module homomorphism

Definition 28 Let M,N be R-modules, then a map f : M −→ N is called a R-
module homomorphism if for all r ∈ R, x, y ∈M the following holds

(a) f(x+ y) = f(x) + f(y)

(b) f(rx) = rf(x)

Example 29 1. If f : M −→ N, g : N −→ K are R-module homomorphisms,
then g ◦ f : M −→ K is a R-module homomorphism

2. HomR(M,N) = {f |f : M −→ NR− module homomorphism} is an R−module.

3. HomR(R,M) ∼= M
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