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Outline

Introduction: dynamic systems models
Example: modeling data by using ecological
dynamics

Parameter Estimation

— Numerical optimization

— Markov Chain Monte Carlo (MCMC)

A bit about my research

— joint with Dave Campbell (SFU), Ben Calderhead
and Mark Girolami (UCL)



Dynamic Systems Models

 Models that describe the behaviour of complex systems
by relating variables to their derivatives with respect to
space/time variables

e Systems of ordinary differential equations (ODE) or
partial differential equation (PDE)

— high-dimensional, nonlinear, coupled
— deterministic or stochastic
— unknown parameters: some have physical interpretations

* Models that are too complex to study directly can be
analyzed statistically by using computer experiments



Example with population data

* Suppose we observe two populations in a forest
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Observe a periodic pattern with some shift
We may try fitting a periodic function to the data
But we should try to fit a function that reflects known

mechanism by which lynx and hares interact
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Population dynamics

The Lotka-Volterra system with 2 states and 4 parameters

h(t) = number of hares,  [(t) = number of lynx

dh(t) E Hares are eaten by lynx and are not
dt - Olh(t) - 'Bh(t)l(t) limited by food supply

dl(t) ___lynxfeedonh d |
RN _ ynx reea on nare an COmDEte Wlth
dt - &(t)h(t) ]/l(t) one another for food

[(0) =, h(0) = hy <€ Populations start out at these values

Rates of change of the populations depend on the
number of predators and prey present at time t



lynx 1(t)

Population dynamics

* This system has no closed form solution, so we use
numerical methods instead:

Each ellipse is a solution
to the system under the
parameters

a =2, g =1,

y =1, o = 1.
and different initial
conditions

hare h(t)

* Let’s look at the solution corresponding to the
initial conditions h(0) = 1 and [(0) =1



lynx 1(t)

Population dynamics

* This system has no closed form solution, so we use
numerical methods instead:

dh(t)
= ah(t) — Bh(t)I(t)
di(t)
= SL(t)h(E) —yI(t)

hare h(t)



time

Population dynamics
solution under parameters (a, 8,v, 6, ly, hy) = (2,1,1,1,1,1)
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So we get a family of functions that depend on the
system parameters, which we can fit to our data!



Parameter estimation from ODEs

Suppose we have a complex ODE model relating states to
their derivatives with respect to time

We observe the state variables and not their derivatives

Solution x(t; 8, x¢) is a nonlinear function of time

We solve the system by using a numerical ODE solver
x(t;0,xy) = S(t;0,x¢)

Model the data as a noisy version of the solver function

y(t) =S(t;0,xy) + €



Parameter estimation from ODEs

* This is a nonlinear regression problem
* Choose parameters 0 so that S(t; 0, xg) is “close” to the data y
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data point
y = (v(t),y(t2), y(¢3))

“expectation surface”

— obs3

obs 2 N = obs 1

We can visualize this problem by thinking of only three
observations of one state



Parameter estimation from ODEs

* Likelihood is one way to measure distance
L (y(t)16,x0) = N(y(®) | S(t;0,x0),02)

* No closed form solution => no closed form L

— Luckily: optimization and MCMC only require
evaluating likelihood at a number of points

* Nonlinear Least Squares optimization methods
— Require sensitivity equations (estimated numerically)

— Numerical optimization works well for very simple
systems, unlike the one on the next slide...



Squid Neurons

* Model for the spike potential in the giant axon
of squid neurons.

V(t) = voltage, R(t) =recovery

dV(t Voltage changes over
d( ) =y [V(t) — R(t)3 + R(t)] «— time across cell
t membrane
dR (t) 1 Rate of change of
dt - ? V() —a+BR(O] < recovery depends on

voltage at time t
V(t) = v,, R(0) =1, < Initial conditions




Squid Neurons: likelihood function
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David Campbell, Russell J. Steele: Smooth functional tempering for nonlinear differential equation models. Statistics and
Computing 22(1): 429-443 (2012)



Squid Neurons: likelihood function
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Squid Neurons: likelihood function

i [
- : P ]
_8 2000 F ! =
= 4000} : .
Q I
= 6000} " N
- 1
Q0 -8000 | I )
(@) ! | |
- 0 10 15

parameter v

David Campbell, Russell J. Steele: Smooth functional tempering for nonlinear differential equation models. Statistics and
Computing 22(1): 429-443 (2012)



Squid Neurons: likelihood function
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Squid Neurons: likelihood function
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generalized smoothing approach. Journal of the Royal Statistical Society: Series, 69: 741-796.

 Numerical optimizers may only find local optima

* |nstead, we can estimate any functional of the
posterior by using MCMC methods



Estimation via MCMC

 complex posterior topology and high dimensions
delay convergence

* guaranteed to get a good sample from the posterior
distribution if you wait long enough

* to guarantee eventual graduation:
— use fancy MCMC methods

e parallel tempering, smooth functional tempering, adaptive
MCMC, etc.

— or redefine the problem:
* estimate the DE solution nonparametrically
* model the solution function as a stochastic process



A bit about my research

Classical parameter estimation techniques ignore the error associated with solving
ODEs numerically. By modeling the solution as a stochastic process we obtain an
approximation to the ODE solution with associated estimation uncertainty.

We have developed a sequential ODE solver
that quantifies the error in the estimation of
ODE solutions in a probabilistic way.
Solution uncertainty can now be
incorporated into the inference process for
ODE models.

—
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Our work has very useful
implications for parameter
estimation.
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