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Radiative shock

! A radiative shock is a shock wave that is sufficiently fast 
that energy balance requires that it radiate energy away

! Radiation travels out in front of the shock 

! The physics is relevant to astrophysics (e.g. study of 
supernovae and solar wind phenomena) 

2



Steven Bergner - Point Lattices with a fine-grained nesting property - SFU-UBC Seminar - 17 March 2012

Radiative shock experiment

! A radiative shock is a wave in 
which both hydrodynamic and 
radiation transport physics play 
a significant role in the shock’s 
propagation and structure.
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Radiative shock

! Have additional dynamics of the experiment to worry 
about 

! The radiation interacts with the wall of the tube, 
leading to ablation of the plastic 

! Causes the generation of a second shock (the “wall 
shock”)  that interacts with the primary shock 
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Important feature of the 
computer code

! Physicists have built simulators for the system – CRASH Code

! Computer codes are deterministic

! Impacts the design and analysis strategy:

! Use a Gaussian process model (Sacks et al., 1989)
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! Have simulations from 1-D and 2-D models

! 2-D models runs come at a higher computational cost

! Would like to use all simulations, and experiments, to make predictions

A new statistical model for combining 

outputs from multi-fidelity simulators 
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! Have simulations from 1-D and 2-D models

! 2-D models runs come at a higher computational cost

! Would like to use all simulations, and experiments, to make predictions

! 1-D CRASH Simulations
o 1024 simulations

o Experiment variables: Be thickness, Laser energy, Xe fill pressure, Observation time

o Calibration parameters: Electron flux limiter, Laser energy scale factor

! 2-D CRASH Simulations
o 104 simulations

o Experiment variables: Be thickness, Laser energy, Xe fill pressure, Observation time

o Calibration parameters: Electron flux limiter, Wall opacity, Be gamma
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A new statistical model for combining 

outputs from multi-fidelity simulators 
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! Different levels of code have a shared component and a discrepancy

! Idea: Sample      of the codes with designs                 that contain each 
other to enable direct observation of 
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A new statistical model for combining 

outputs from multi-fidelity simulators 

y2(xf ) = η(xf ) + δ(xf )
y1(xf ) = η(xf )

Gaussian Process Models

X2 ⊂ X1xf
δ
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Designing nested 
point lattices

• Background on point lattices and subsampling

• Construction of lattice and nesting scheme

• Results: New lattices
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Point lattices

• Definition via basis

10

R

!! !" !# !$ % $ # " !
!!

!"

!#

!$

%

$

#

"

!

&&'&(&)$*!&%+%*,$&!$*-.

&/&(&)$&$+!$&#.&!("%



Steven Bergner - Point Lattices with a fine-grained nesting property - SFU-UBC Seminar - 17 March 2012

Point lattices

• Definition via basis{Rk : k ∈ Zn}
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Point lattices

• Definition via basis

• Discrete subgroup of     ,
e.g. periodic tiling,  has lattice basis

{Rk : k ∈ Zn}
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Point lattices

• Definition via basis

• Discrete subgroup of     ,
e.g. periodic tiling,  has lattice basis

• Shift-invariant neighbourhood leads to one 
Voronoi polytope    around any point

{Rk : k ∈ Zn}
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Subsampling via dilation

• Lattice with basis        for
is dilated by factor

RK

On sampling lattices with similarity scaling
relationships
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Abstract:

We provide a method for constructing regular sampling

lattices in arbitrary dimensions together with an integer

dilation matrix. Subsampling using this dilation matrix

leads to a similarity-transformed version of the lattice with

a chosen density reduction. These lattices are interest-

ing candidates for multidimensional wavelet constructions

with a limited number of subbands.

1. Primer on sampling lattices and related
work

A sampling lattice is a set of points {Rk : k ∈ Zn} ⊂ Rn

that is closed under addition and inversion. The non-

singular generating matrixR ∈ Rn×n contains basis vec-

tors in its columns. Lattice points are uniquely indexed

by k ∈ Zn and the neighbourhood around each sampling

point is identical. This makes them suitable sampling pat-

terns for the reconstruction in shift-invariant spaces.

Subsampling schemes for lattices are expressed in terms

of a dilation matrixK ∈ Zn×n forming a new lattice with

generating matrix RK. The reduction rate in sampling
density corresponds to

|detK| = αn = δ ∈ Z+. (1)

Dyadic subsampling discards every second sample along

each of the n dimensions resulting in a δ = 2n reduction

rate. To allow for fine-grained scale progression we are

particularly interested in low subsampling rates, such as

δ = 2 or 3.
As discussed by van de Ville et al. [8], the 2D quin-

cunx subsampling is an interesting case permitting a two-

channel relation. With the implicit assumption of only

considering subsets of the Cartesian lattice it is shown

that a similarity two-channel dilation may not extend for

n > 2.
Here, we show that by permitting more general basis vec-

tors in Rn the desired fixed-rate dilation becomes possi-

ble for any n. Our construction produces a variety of lat-
tices making it possible to include additional quality cri-

teria into the search as they may be computed from the

Voronoi cell of the lattice [9] including packing density

and expected quadratic quantization error (second order

moment). Agrell et al. [1] improve efficiency for the com-

putation by extracting Voronoi relevant neighbours. An-

other possible sampling quality criterion appears in the

R =

[
0 −0.3307
1 −0.375

]
,K =

[
2 −1
4 −1

]
, θ = 69.3◦
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Figure 1: 2D lattice with basis vectors and subsampling

as given by R and K in the diagram title. The spiral

shaped points correspond to a sequence of fractional sub-

samplingsRKs for s = 0..1 with the notable feature that
for s = 1 one obtains a subset of the original lattice sites
shown as thick dots. This repeats for any further integer

power of K, each time reducing the sample density by
|detK| = 2.

work of Lu et al. [4] in form of an analytic alias-free sam-

pling condition that is employed in a lattice search.

2. Lattice construction

We are looking for a non-singular lattice generatingmatrix

R that, when sub-sampled by a dilation matrixK with re-

duction rate δ = αn, results in a similarity-transformed

version of the same lattice, that is, it can be scaled and ro-

tated by a matrixQwithQTQ = α2I. An illustration of a
subsampling resulting in a rotation by θ = arccos 1

2
√

2
in

2D is given in Figure 1. Formally, this kind of relationship

can be expressed as

QR = RK (2)

leading to the observation that subsamplingK and scaled

rotationQ are related by a similarity transform

R−1QR = K. (3)

K ∈ Zn×n
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[
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Abstract:

We provide a method for constructing regular sampling

lattices in arbitrary dimensions together with an integer

dilation matrix. Subsampling using this dilation matrix

leads to a similarity-transformed version of the lattice with

a chosen density reduction. These lattices are interest-

ing candidates for multidimensional wavelet constructions

with a limited number of subbands.

1. Primer on sampling lattices and related
work

A sampling lattice is a set of points {Rk : k ∈ Zn} ⊂ Rn

that is closed under addition and inversion. The non-

singular generating matrixR ∈ Rn×n contains basis vec-

tors in its columns. Lattice points are uniquely indexed

by k ∈ Zn and the neighbourhood around each sampling

point is identical. This makes them suitable sampling pat-

terns for the reconstruction in shift-invariant spaces.

Subsampling schemes for lattices are expressed in terms

of a dilation matrixK ∈ Zn×n forming a new lattice with

generating matrix RK. The reduction rate in sampling
density corresponds to

|detK| = αn = δ ∈ Z+. (1)

Dyadic subsampling discards every second sample along

each of the n dimensions resulting in a δ = 2n reduction

rate. To allow for fine-grained scale progression we are

particularly interested in low subsampling rates, such as

δ = 2 or 3.
As discussed by van de Ville et al. [8], the 2D quin-

cunx subsampling is an interesting case permitting a two-

channel relation. With the implicit assumption of only

considering subsets of the Cartesian lattice it is shown

that a similarity two-channel dilation may not extend for

n > 2.
Here, we show that by permitting more general basis vec-

tors in Rn the desired fixed-rate dilation becomes possi-

ble for any n. Our construction produces a variety of lat-
tices making it possible to include additional quality cri-

teria into the search as they may be computed from the

Voronoi cell of the lattice [9] including packing density

and expected quadratic quantization error (second order

moment). Agrell et al. [1] improve efficiency for the com-

putation by extracting Voronoi relevant neighbours. An-

other possible sampling quality criterion appears in the

R =

[
0 −0.3307
1 −0.375

]
,K =

[
2 −1
4 −1

]
, θ = 69.3◦
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Figure 1: 2D lattice with basis vectors and subsampling

as given by R and K in the diagram title. The spiral

shaped points correspond to a sequence of fractional sub-

samplingsRKs for s = 0..1 with the notable feature that
for s = 1 one obtains a subset of the original lattice sites
shown as thick dots. This repeats for any further integer

power of K, each time reducing the sample density by
|detK| = 2.

work of Lu et al. [4] in form of an analytic alias-free sam-

pling condition that is employed in a lattice search.

2. Lattice construction

We are looking for a non-singular lattice generatingmatrix

R that, when sub-sampled by a dilation matrixK with re-

duction rate δ = αn, results in a similarity-transformed

version of the same lattice, that is, it can be scaled and ro-

tated by a matrixQwithQTQ = α2I. An illustration of a
subsampling resulting in a rotation by θ = arccos 1

2
√

2
in

2D is given in Figure 1. Formally, this kind of relationship

can be expressed as

QR = RK (2)

leading to the observation that subsamplingK and scaled

rotationQ are related by a similarity transform

R−1QR = K. (3)

QR
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Similarity of Q and K
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Abstract:

We provide a method for constructing regular sampling

lattices in arbitrary dimensions together with an integer

dilation matrix. Subsampling using this dilation matrix

leads to a similarity-transformed version of the lattice with

a chosen density reduction. These lattices are interest-

ing candidates for multidimensional wavelet constructions

with a limited number of subbands.

1. Primer on sampling lattices and related
work

A sampling lattice is a set of points {Rk : k ∈ Zn} ⊂ Rn

that is closed under addition and inversion. The non-

singular generating matrixR ∈ Rn×n contains basis vec-

tors in its columns. Lattice points are uniquely indexed

by k ∈ Zn and the neighbourhood around each sampling

point is identical. This makes them suitable sampling pat-

terns for the reconstruction in shift-invariant spaces.

Subsampling schemes for lattices are expressed in terms

of a dilation matrixK ∈ Zn×n forming a new lattice with

generating matrix RK. The reduction rate in sampling
density corresponds to

|detK| = αn = δ ∈ Z+. (1)

Dyadic subsampling discards every second sample along

each of the n dimensions resulting in a δ = 2n reduction

rate. To allow for fine-grained scale progression we are

particularly interested in low subsampling rates, such as

δ = 2 or 3.
As discussed by van de Ville et al. [8], the 2D quin-

cunx subsampling is an interesting case permitting a two-

channel relation. With the implicit assumption of only

considering subsets of the Cartesian lattice it is shown

that a similarity two-channel dilation may not extend for

n > 2.
Here, we show that by permitting more general basis vec-

tors in Rn the desired fixed-rate dilation becomes possi-

ble for any n. Our construction produces a variety of lat-
tices making it possible to include additional quality cri-

teria into the search as they may be computed from the

Voronoi cell of the lattice [9] including packing density

and expected quadratic quantization error (second order

moment). Agrell et al. [1] improve efficiency for the com-

putation by extracting Voronoi relevant neighbours. An-

other possible sampling quality criterion appears in the

R =
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]
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Figure 1: 2D lattice with basis vectors and subsampling

as given by R and K in the diagram title. The spiral

shaped points correspond to a sequence of fractional sub-

samplingsRKs for s = 0..1 with the notable feature that
for s = 1 one obtains a subset of the original lattice sites
shown as thick dots. This repeats for any further integer

power of K, each time reducing the sample density by
|detK| = 2.

work of Lu et al. [4] in form of an analytic alias-free sam-

pling condition that is employed in a lattice search.

2. Lattice construction

We are looking for a non-singular lattice generatingmatrix

R that, when sub-sampled by a dilation matrixK with re-

duction rate δ = αn, results in a similarity-transformed

version of the same lattice, that is, it can be scaled and ro-

tated by a matrixQwithQTQ = α2I. An illustration of a
subsampling resulting in a rotation by θ = arccos 1

2
√

2
in

2D is given in Figure 1. Formally, this kind of relationship

can be expressed as

QR = RK (2)

leading to the observation that subsamplingK and scaled

rotationQ are related by a similarity transform

R−1QR = K. (3)
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We provide a method for constructing regular sampling

lattices in arbitrary dimensions together with an integer

dilation matrix. Subsampling using this dilation matrix

leads to a similarity-transformed version of the lattice with

a chosen density reduction. These lattices are interest-

ing candidates for multidimensional wavelet constructions

with a limited number of subbands.
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A sampling lattice is a set of points {Rk : k ∈ Zn} ⊂ Rn

that is closed under addition and inversion. The non-

singular generating matrixR ∈ Rn×n contains basis vec-

tors in its columns. Lattice points are uniquely indexed

by k ∈ Zn and the neighbourhood around each sampling

point is identical. This makes them suitable sampling pat-

terns for the reconstruction in shift-invariant spaces.

Subsampling schemes for lattices are expressed in terms

of a dilation matrixK ∈ Zn×n forming a new lattice with

generating matrix RK. The reduction rate in sampling
density corresponds to

|detK| = αn = δ ∈ Z+. (1)

Dyadic subsampling discards every second sample along

each of the n dimensions resulting in a δ = 2n reduction

rate. To allow for fine-grained scale progression we are

particularly interested in low subsampling rates, such as

δ = 2 or 3.
As discussed by van de Ville et al. [8], the 2D quin-

cunx subsampling is an interesting case permitting a two-

channel relation. With the implicit assumption of only

considering subsets of the Cartesian lattice it is shown

that a similarity two-channel dilation may not extend for

n > 2.
Here, we show that by permitting more general basis vec-

tors in Rn the desired fixed-rate dilation becomes possi-

ble for any n. Our construction produces a variety of lat-
tices making it possible to include additional quality cri-

teria into the search as they may be computed from the

Voronoi cell of the lattice [9] including packing density

and expected quadratic quantization error (second order

moment). Agrell et al. [1] improve efficiency for the com-

putation by extracting Voronoi relevant neighbours. An-

other possible sampling quality criterion appears in the
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Figure 1: 2D lattice with basis vectors and subsampling

as given by R and K in the diagram title. The spiral

shaped points correspond to a sequence of fractional sub-

samplingsRKs for s = 0..1 with the notable feature that
for s = 1 one obtains a subset of the original lattice sites
shown as thick dots. This repeats for any further integer

power of K, each time reducing the sample density by
|detK| = 2.

work of Lu et al. [4] in form of an analytic alias-free sam-

pling condition that is employed in a lattice search.

2. Lattice construction

We are looking for a non-singular lattice generatingmatrix

R that, when sub-sampled by a dilation matrixK with re-

duction rate δ = αn, results in a similarity-transformed

version of the same lattice, that is, it can be scaled and ro-

tated by a matrixQwithQTQ = α2I. An illustration of a
subsampling resulting in a rotation by θ = arccos 1

2
√

2
in

2D is given in Figure 1. Formally, this kind of relationship

can be expressed as

QR = RK (2)

leading to the observation that subsamplingK and scaled

rotationQ are related by a similarity transform

R−1QR = K. (3)

with
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withAppendix: Characteristic polynomial of a
scaled rotation matrix in Rn

The similarity relationship between K and Q in Equa-

tion 2 implies that they share the same characteristic poly-

nomial d(λ) = det(K − λI) = det(Q − λI) leading to
an agreement in eigenvalues d(λk) = 0 and determinant
d(0) ([6], p. 184). Further, since K is an integer matrix

the polynomial d(λ) ∈ Z[λ] has integer coefficients ck.

In order to find integer matrices K with the eigenvalues

of a scaled rotation matrix, it will be important to distin-

guish the two different forms of the diagonal matrix∆ in

Equation 4 and 5 for the case n = even

∆ = diag[ejθ1 e−jθ1 . . . ejθn/2 e−jθn/2 ]

and the case n = odd

∆ = diag[1 ejθ1 e−jθ1 . . . ejθ(n−1)/2 e−jθ(n−1)/2 ]

with analogue block-wise constructions for Jn.
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If ck $= 0 and ck, δ ∈ Z then δ1− 2k
n ∈ Q. This is impos-

sible for 0 < 2k < n, assuming small values of δ, such
as 2, 3 or any simple product of primes. This implies that
ck = cn−k = 0 for k = 1, 2, . . . n

2 − 1. For k = n
2 the ck

can be non-zero leading to

d(λ) = λn + Cλ
n
2 + αn (11)

with the requirement that C2 < 4αn so that the complex

eigenvalues d(λk) = 0 are evenly distributed on the com-
plex circle of radius |λk| = α.
For dimensionality n = odd the polynomial fulfills
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By the same reasoning as for the even case, ck = 0 for all
k = 1, 2, . . . n−1

2 resulting in only one possible character-

istic polynomial

d(λ) = λn − αn. (14)

To refer to the above procedure we will invoke a function

compoly(n, α, C) that returns a companion matrix (Equa-
tion 7) with a characteristic polynomial as in Equation 11

or 14.
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Abstract:

We provide a method for constructing regular sampling

lattices in arbitrary dimensions together with an integer

dilation matrix. Subsampling using this dilation matrix

leads to a similarity-transformed version of the lattice with

a chosen density reduction. These lattices are interest-

ing candidates for multidimensional wavelet constructions

with a limited number of subbands.

1. Primer on sampling lattices and related
work

A sampling lattice is a set of points {Rk : k ∈ Zn} ⊂ Rn

that is closed under addition and inversion. The non-

singular generating matrixR ∈ Rn×n contains basis vec-

tors in its columns. Lattice points are uniquely indexed

by k ∈ Zn and the neighbourhood around each sampling

point is identical. This makes them suitable sampling pat-

terns for the reconstruction in shift-invariant spaces.

Subsampling schemes for lattices are expressed in terms

of a dilation matrixK ∈ Zn×n forming a new lattice with

generating matrix RK. The reduction rate in sampling
density corresponds to

|detK| = αn = δ ∈ Z+. (1)

Dyadic subsampling discards every second sample along

each of the n dimensions resulting in a δ = 2n reduction

rate. To allow for fine-grained scale progression we are

particularly interested in low subsampling rates, such as

δ = 2 or 3.
As discussed by van de Ville et al. [8], the 2D quin-

cunx subsampling is an interesting case permitting a two-

channel relation. With the implicit assumption of only

considering subsets of the Cartesian lattice it is shown

that a similarity two-channel dilation may not extend for

n > 2.
Here, we show that by permitting more general basis vec-

tors in Rn the desired fixed-rate dilation becomes possi-

ble for any n. Our construction produces a variety of lat-
tices making it possible to include additional quality cri-

teria into the search as they may be computed from the

Voronoi cell of the lattice [9] including packing density

and expected quadratic quantization error (second order

moment). Agrell et al. [1] improve efficiency for the com-

putation by extracting Voronoi relevant neighbours. An-

other possible sampling quality criterion appears in the

R =

[
0 −0.3307
1 −0.375

]
,K =

[
2 −1
4 −1

]
, θ = 69.3◦
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Figure 1: 2D lattice with basis vectors and subsampling

as given by R and K in the diagram title. The spiral

shaped points correspond to a sequence of fractional sub-

samplingsRKs for s = 0..1 with the notable feature that
for s = 1 one obtains a subset of the original lattice sites
shown as thick dots. This repeats for any further integer

power of K, each time reducing the sample density by
|detK| = 2.

work of Lu et al. [4] in form of an analytic alias-free sam-

pling condition that is employed in a lattice search.

2. Lattice construction

We are looking for a non-singular lattice generatingmatrix

R that, when sub-sampled by a dilation matrixK with re-

duction rate δ = αn, results in a similarity-transformed

version of the same lattice, that is, it can be scaled and ro-

tated by a matrixQwithQTQ = α2I. An illustration of a
subsampling resulting in a rotation by θ = arccos 1

2
√

2
in

2D is given in Figure 1. Formally, this kind of relationship

can be expressed as

QR = RK (2)

leading to the observation that subsamplingK and scaled

rotationQ are related by a similarity transform

R−1QR = K. (3)
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version of the same lattice, that is, it can be scaled and ro-

tated by a matrixQwithQTQ = α2I. An illustration of a
subsampling resulting in a rotation by θ = arccos 1

2
√

2
in

2D is given in Figure 1. Formally, this kind of relationship

can be expressed as

QR = RK (2)

leading to the observation that subsamplingK and scaled

rotationQ are related by a similarity transform

R−1QR = K. (3)

withAppendix: Characteristic polynomial of a
scaled rotation matrix in Rn

The similarity relationship between K and Q in Equa-

tion 2 implies that they share the same characteristic poly-

nomial d(λ) = det(K − λI) = det(Q − λI) leading to
an agreement in eigenvalues d(λk) = 0 and determinant
d(0) ([6], p. 184). Further, since K is an integer matrix

the polynomial d(λ) ∈ Z[λ] has integer coefficients ck.

In order to find integer matrices K with the eigenvalues

of a scaled rotation matrix, it will be important to distin-

guish the two different forms of the diagonal matrix∆ in

Equation 4 and 5 for the case n = even

∆ = diag[ejθ1 e−jθ1 . . . ejθn/2 e−jθn/2 ]

and the case n = odd

∆ = diag[1 ejθ1 e−jθ1 . . . ejθ(n−1)/2 e−jθ(n−1)/2 ]

with analogue block-wise constructions for Jn.

For dimensionality n = even the characteristic polyno-
mial ofK andQ fulfills

d(λ) =
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=
n/2∏

k=1

(α2 − 2λα cos θk + λ2)
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α
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(9)

Thus, if
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n∑
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ckλk
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ck
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λ

)k (
λ

α
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=
n∑
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cn−kαn−2kλk

⇔ ck = αn−2kcn−k = δ1− 2k
n cn−k.

(10)

If ck $= 0 and ck, δ ∈ Z then δ1− 2k
n ∈ Q. This is impos-

sible for 0 < 2k < n, assuming small values of δ, such
as 2, 3 or any simple product of primes. This implies that
ck = cn−k = 0 for k = 1, 2, . . . n

2 − 1. For k = n
2 the ck

can be non-zero leading to

d(λ) = λn + Cλ
n
2 + αn (11)

with the requirement that C2 < 4αn so that the complex

eigenvalues d(λk) = 0 are evenly distributed on the com-
plex circle of radius |λk| = α.
For dimensionality n = odd the polynomial fulfills

d(λ) = (α − λ)
(n−1)/2∏
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⇒ d(λ) = −
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Thus, if
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α
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= −
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cn−kαn−2kλk

⇔ ck = −αn−2kcn−k = −δ1− 2k
n cn−k.

(13)

By the same reasoning as for the even case, ck = 0 for all
k = 1, 2, . . . n−1

2 resulting in only one possible character-

istic polynomial

d(λ) = λn − αn. (14)

To refer to the above procedure we will invoke a function

compoly(n, α, C) that returns a companion matrix (Equa-
tion 7) with a characteristic polynomial as in Equation 11

or 14.
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k = 1, 2, . . . n−1

2 resulting in only one possible character-
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tion 7) with a characteristic polynomial as in Equation 11

or 14.

References:

[1] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger. Clos-

est point search in lattices. Information Theory, IEEE

Transactions on, 48(8):2201–2214, August 2002.

[2] J.H. Conway and N.J.A. Sloane. Sphere Packings,

Lattices and Groups. – 3rd ed. Springer, 1999.

[3] M. Griebel. Sparse grids and related approxima-

tion schemes for higher dimensional problems. In

L. Pardo, A. Pinkus, E. Suli, and M.J. Todd, ed-

itors, Foundations of Computational Mathematics

(FoCM05), Santander, pages 106–161. Cambridge

University Press, 2006.

[4] Y.M. Lu, M.N. Do, and R.S. Laugesen. A Computable

Fourier Condition Generating Alias-Free Sampling

Lattices. IEEE Transactions on Signal Processing,

57(5):(15 pages), May 2009.

[5] M. Newman. Integral Matrices. Academic Press,

1972. See http://www.dleex.com/read/
?3907 for a digital copy.

[6] L.N. Trefethen and D. Bau III. Numerical Linear Al-

gebra. SIAM, 1997.

[7] D. Van De Ville, T. Blu, and M. Unser. Isotropic

polyharmonic B-Splines: Scaling functions and

wavelets. IEEE Transactions on Image Processing,

14(11):1798–1813, November 2005.

[8] D. Van De Ville, T. Blu, and M. Unser. On the mul-

tidimensional extension of the quincunx subsampling

matrix. IEEE Signal Processing Letters, 12(2):112–

115, February 2005.

[9] E. Viterbo and E. Biglieri. Computing the Voronoi

cell of a lattice: The diamond-cutting algorithm. In-

formation Theory, IEEE Trans. on, 42(1):161–171,

1996.

Appendix: Characteristic polynomial of a
scaled rotation matrix in Rn

The similarity relationship between K and Q in Equa-

tion 2 implies that they share the same characteristic poly-

nomial d(λ) = det(K − λI) = det(Q − λI) leading to
an agreement in eigenvalues d(λk) = 0 and determinant
d(0) ([6], p. 184). Further, since K is an integer matrix

the polynomial d(λ) ∈ Z[λ] has integer coefficients ck.

In order to find integer matrices K with the eigenvalues

of a scaled rotation matrix, it will be important to distin-

guish the two different forms of the diagonal matrix∆ in
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and the case n = odd
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By the same reasoning as for the even case, ck = 0 for all
k = 1, 2, . . . n−1

2 resulting in only one possible character-

istic polynomial

d(λ) = λn − αn. (14)

To refer to the above procedure we will invoke a function

compoly(n, α, C) that returns a companion matrix (Equa-
tion 7) with a characteristic polynomial as in Equation 11

or 14.
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Using a matrix J2 =
[

1 j
1 −j

]
it is possible to diago-

nalize a 2D rotation matrix by the following similarity

transform

[
cos θ − sin θ
sin θ cos θ

]
= J−1

2

[
ejθ 0
0 e−jθ

]
J2 = J−1

2 ∆J2.

(4)

Using this observation to replace the scaled rotationmatrix

Q in Equation 3 leads to

K = R−1QR
K = αR−1J−1

n S∆S−1JnR
K = αP∆P−1

(5)

with
R = J−1

n SP−1

Q = αJ−1
n ∆Jn.

(6)

Thus, given a matrix K that has an eigen-decomposition

corresponding to that of a uniformly scaled rotation ma-

trix, we can compute the lattice generating matrix R as

in Equation 6. The elements of the diagonal matrix S in-
serted in the construction of R scale the otherwise unit

eigenvectors in the columns of P. Below, we will refer to
this construction as function formRQ(K,S) using S = I
by default.

2.1 Constructing suitable dilation matricesK

The eigenvalues of K,∆ and Q impose restrictions on

their shared characteristic polynomial d(λ) = det(K −
λI) =

∑n
k=0 ckλk as discussed in the appendix. For

the case n = even with the only non-zero integer coef-
ficients c0 = δ, c2

n/2 < 4δ, cn = 1 this leaves a finite
number of different options for cn/2. The case n = odd
permits a single possible polynomial with non-zero coef-

ficients c0 = −δ, cn = 1. For these monic polynomials
it is possible to directly construct a candidate K via the

companion matrix ([6], p. 192)

K =





0 −c0

1 0 −c1

1 0
...

. . .
. . . −cn−2

1 −cn−1




. (7)

This allows to construct a lattice fulfilling the self-similar

subsampling condition for any dimensionality n, one for
every possible characteristic polynomial.

With this starting point it is possible to construct additional

suitable dilation matrices via a similarity transform with a

unimodular matrix T

KT = TKT−1 = PT ∆P−1
T . (8)

Using a unimodular rather than any non-singularT guar-

antees thatT−1 is also unimodular following from the fact

that T−1 can be constructed from the adjugate (the trans-

posed co-factor matrix) of T. Thus, KT remains an inte-

ger matrix by this transform. Possible generators for this

unimodular group are discussed in ([5], pp. 23). Our im-

plementation, referred to as function genUnimodular(n),

uses a construction of T = LU from several random in-

teger lower and upper triangular matrices having ones on

their diagonal.

It is not guaranteed that all possibleK for a given charac-

teristic polynomial can be generated through a similarity

transform with someT. However, formRQ(KT ) provides

numerous non-equivalent RT lattice generators. Among

them it is possible to apply further criteria to select the

“best” lattice.

An alternative to transformingK is the eigenvector scal-

ing by diagonal matrix S in Equation 6. Using non-unit
scaling allows to produce further lattices for any givenK
resulting in an n-dimensional continuous search space.

2.2 Construction Algorithm

The steps for constructing lattices with the desired

subsampling matrices are summarized in algorithm 1.

The function compoly(n, α, C) is defined in the

Algorithm 1 genLattices(n, δ)

1: Llist← {}
2: Ks← genKompans(n, δ)
3: Ts← genUnimodular(n)∪{I}
4: for all K ∈ Ks do
5: for all T ∈ Ts do
6: KT = TKT−1

7: (RT ,QT ) ← formRQ(KT )

8: Llist← Llist∪{(KT ,RT ,QT )}
9: end for

10: end for

11: return Llist

Algorithm 2 genKompans(n, δ)

1: Ks = {}
2: if n is even then
3: for all C ∈ Z : C2 < 4δ do
4: Ks← Ks ∪ compoly(n, δ

1
n , C)

5: end for

6: else {n is odd}
7: Ks← {compoly(n, δ

1
n )}

8: end if

9: return Ks

appendix. A possible implementation for the func-

tion genUnimodular(n) is described in Section 2.1 and
formRQ(K) is defined below Equation 6.
It should be noted that the list of lattices returned by

genLattices may contain several equivalent copies of the

same lattice. A Gram matrix implicitly represents angles

between basis vectors asA = RTR. Two latticesR1 and

R2, scaled to have the same determinant, are equivalent if

their Gram matrices are related via A1 = TTA2T with

a unimodular matrix T ∈ Zn×n and |detT| = 1. Deter-
mining this unimodular matrix is known to be a difficult

problem, as it for instance also occurs when relating the

adjacency matrices of two supposedly isomorphic graphs.

Hence, our current method employs a simpler necessary

test for equivalence by comparing the first few elements

Appendix: Characteristic polynomial of a
scaled rotation matrix in Rn
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Abstract:

We provide a method for constructing regular sampling

lattices in arbitrary dimensions together with an integer

dilation matrix. Subsampling using this dilation matrix

leads to a similarity-transformed version of the lattice with

a chosen density reduction. These lattices are interest-

ing candidates for multidimensional wavelet constructions

with a limited number of subbands.

1. Primer on sampling lattices and related
work

A sampling lattice is a set of points {Rk : k ∈ Zn} ⊂ Rn

that is closed under addition and inversion. The non-

singular generating matrixR ∈ Rn×n contains basis vec-

tors in its columns. Lattice points are uniquely indexed

by k ∈ Zn and the neighbourhood around each sampling

point is identical. This makes them suitable sampling pat-

terns for the reconstruction in shift-invariant spaces.

Subsampling schemes for lattices are expressed in terms

of a dilation matrixK ∈ Zn×n forming a new lattice with

generating matrix RK. The reduction rate in sampling
density corresponds to

|detK| = αn = δ ∈ Z+. (1)

Dyadic subsampling discards every second sample along

each of the n dimensions resulting in a δ = 2n reduction

rate. To allow for fine-grained scale progression we are

particularly interested in low subsampling rates, such as

δ = 2 or 3.
As discussed by van de Ville et al. [8], the 2D quin-

cunx subsampling is an interesting case permitting a two-

channel relation. With the implicit assumption of only

considering subsets of the Cartesian lattice it is shown

that a similarity two-channel dilation may not extend for

n > 2.
Here, we show that by permitting more general basis vec-

tors in Rn the desired fixed-rate dilation becomes possi-

ble for any n. Our construction produces a variety of lat-
tices making it possible to include additional quality cri-

teria into the search as they may be computed from the

Voronoi cell of the lattice [9] including packing density

and expected quadratic quantization error (second order

moment). Agrell et al. [1] improve efficiency for the com-

putation by extracting Voronoi relevant neighbours. An-

other possible sampling quality criterion appears in the

R =

[
0 −0.3307
1 −0.375

]
,K =

[
2 −1
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]
, θ = 69.3◦
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Figure 1: 2D lattice with basis vectors and subsampling

as given by R and K in the diagram title. The spiral

shaped points correspond to a sequence of fractional sub-

samplingsRKs for s = 0..1 with the notable feature that
for s = 1 one obtains a subset of the original lattice sites
shown as thick dots. This repeats for any further integer

power of K, each time reducing the sample density by
|detK| = 2.

work of Lu et al. [4] in form of an analytic alias-free sam-

pling condition that is employed in a lattice search.

2. Lattice construction

We are looking for a non-singular lattice generatingmatrix

R that, when sub-sampled by a dilation matrixK with re-

duction rate δ = αn, results in a similarity-transformed

version of the same lattice, that is, it can be scaled and ro-

tated by a matrixQwithQTQ = α2I. An illustration of a
subsampling resulting in a rotation by θ = arccos 1

2
√

2
in

2D is given in Figure 1. Formally, this kind of relationship

can be expressed as

QR = RK (2)

leading to the observation that subsamplingK and scaled

rotationQ are related by a similarity transform

R−1QR = K. (3)
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(1) GrUVi-Lab, Simon Fraser University, Burnaby, Canada.

(2) BIG, Ecole Polytechnique Fédérale de Lausanne, Switzerland.

(3) The Chinese University of Hong Kong, Hong Kong, China.

sbergner@cs.sfu.ca, thierry.blu@m4x.org, Dimitri.VanDeVille@epfl.ch, torsten@cs.sfu.ca

Abstract:

We provide a method for constructing regular sampling

lattices in arbitrary dimensions together with an integer

dilation matrix. Subsampling using this dilation matrix

leads to a similarity-transformed version of the lattice with

a chosen density reduction. These lattices are interest-

ing candidates for multidimensional wavelet constructions

with a limited number of subbands.

1. Primer on sampling lattices and related
work

A sampling lattice is a set of points {Rk : k ∈ Zn} ⊂ Rn

that is closed under addition and inversion. The non-

singular generating matrixR ∈ Rn×n contains basis vec-

tors in its columns. Lattice points are uniquely indexed

by k ∈ Zn and the neighbourhood around each sampling

point is identical. This makes them suitable sampling pat-

terns for the reconstruction in shift-invariant spaces.

Subsampling schemes for lattices are expressed in terms

of a dilation matrixK ∈ Zn×n forming a new lattice with

generating matrix RK. The reduction rate in sampling
density corresponds to

|detK| = αn = δ ∈ Z+. (1)

Dyadic subsampling discards every second sample along

each of the n dimensions resulting in a δ = 2n reduction

rate. To allow for fine-grained scale progression we are

particularly interested in low subsampling rates, such as

δ = 2 or 3.
As discussed by van de Ville et al. [8], the 2D quin-

cunx subsampling is an interesting case permitting a two-

channel relation. With the implicit assumption of only

considering subsets of the Cartesian lattice it is shown

that a similarity two-channel dilation may not extend for

n > 2.
Here, we show that by permitting more general basis vec-

tors in Rn the desired fixed-rate dilation becomes possi-

ble for any n. Our construction produces a variety of lat-
tices making it possible to include additional quality cri-

teria into the search as they may be computed from the

Voronoi cell of the lattice [9] including packing density

and expected quadratic quantization error (second order

moment). Agrell et al. [1] improve efficiency for the com-

putation by extracting Voronoi relevant neighbours. An-

other possible sampling quality criterion appears in the

R =

[
0 −0.3307
1 −0.375

]
,K =

[
2 −1
4 −1

]
, θ = 69.3◦

!1.5 !1 !0.5 0 0.5 1 1.5
!1.5

!1

!0.5

0

0.5

1

1.5

Figure 1: 2D lattice with basis vectors and subsampling

as given by R and K in the diagram title. The spiral

shaped points correspond to a sequence of fractional sub-

samplingsRKs for s = 0..1 with the notable feature that
for s = 1 one obtains a subset of the original lattice sites
shown as thick dots. This repeats for any further integer

power of K, each time reducing the sample density by
|detK| = 2.

work of Lu et al. [4] in form of an analytic alias-free sam-

pling condition that is employed in a lattice search.

2. Lattice construction

We are looking for a non-singular lattice generatingmatrix

R that, when sub-sampled by a dilation matrixK with re-

duction rate δ = αn, results in a similarity-transformed

version of the same lattice, that is, it can be scaled and ro-

tated by a matrixQwithQTQ = α2I. An illustration of a
subsampling resulting in a rotation by θ = arccos 1

2
√

2
in

2D is given in Figure 1. Formally, this kind of relationship

can be expressed as

QR = RK (2)

leading to the observation that subsamplingK and scaled

rotationQ are related by a similarity transform

R−1QR = K. (3)

On sampling lattices with similarity scaling
relationships

Steven Bergner (1), Dimitri Van De Ville(2), Thierry Blu(3), and Torsten Möller(1)
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withAppendix: Characteristic polynomial of a
scaled rotation matrix in Rn

The similarity relationship between K and Q in Equa-

tion 2 implies that they share the same characteristic poly-

nomial d(λ) = det(K − λI) = det(Q − λI) leading to
an agreement in eigenvalues d(λk) = 0 and determinant
d(0) ([6], p. 184). Further, since K is an integer matrix

the polynomial d(λ) ∈ Z[λ] has integer coefficients ck.

In order to find integer matrices K with the eigenvalues

of a scaled rotation matrix, it will be important to distin-

guish the two different forms of the diagonal matrix∆ in

Equation 4 and 5 for the case n = even

∆ = diag[ejθ1 e−jθ1 . . . ejθn/2 e−jθn/2 ]

and the case n = odd

∆ = diag[1 ejθ1 e−jθ1 . . . ejθ(n−1)/2 e−jθ(n−1)/2 ]

with analogue block-wise constructions for Jn.

For dimensionality n = even the characteristic polyno-
mial ofK andQ fulfills

d(λ) =
n/2∏

k=1

(αejθk − λ)(αe−jθk − λ)

=
n/2∏

k=1

(α2 − 2λα cos θk + λ2)

=
n/2∏

k=1

[
(
α4

λ2
− 2

α3

λ
cos θk + α2)

λ2

α2

]

= d

(
α2

λ

) (
λ

α

)n

(9)

Thus, if

d(λ) =
n∑

k=0

ckλk

=
n∑

k=0

ck

(
α2

λ

)k (
λ

α

)n

=
n∑

k=0

cn−kαn−2kλk

⇔ ck = αn−2kcn−k = δ1− 2k
n cn−k.

(10)

If ck $= 0 and ck, δ ∈ Z then δ1− 2k
n ∈ Q. This is impos-

sible for 0 < 2k < n, assuming small values of δ, such
as 2, 3 or any simple product of primes. This implies that
ck = cn−k = 0 for k = 1, 2, . . . n

2 − 1. For k = n
2 the ck

can be non-zero leading to

d(λ) = λn + Cλ
n
2 + αn (11)

with the requirement that C2 < 4αn so that the complex

eigenvalues d(λk) = 0 are evenly distributed on the com-
plex circle of radius |λk| = α.
For dimensionality n = odd the polynomial fulfills

d(λ) = (α − λ)
(n−1)/2∏

k=1

(αejθk − λ)(αe−jθk − λ)

⇒ d(λ) = −
(

λ

α

)n

d

(
α2

λ

) (12)

Thus, if

d(λ) =
n∑

k=0

ckλk

= −
n∑

k=0

ck

(
α2

λ

)k (
λ

α

)n

= −
n∑

k=0

cn−kαn−2kλk

⇔ ck = −αn−2kcn−k = −δ1− 2k
n cn−k.

(13)

By the same reasoning as for the even case, ck = 0 for all
k = 1, 2, . . . n−1

2 resulting in only one possible character-

istic polynomial

d(λ) = λn − αn. (14)

To refer to the above procedure we will invoke a function

compoly(n, α, C) that returns a companion matrix (Equa-
tion 7) with a characteristic polynomial as in Equation 11

or 14.
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Using a matrix J2 =
[

1 j
1 −j

]
it is possible to diago-

nalize a 2D rotation matrix by the following similarity

transform

[
cos θ − sin θ
sin θ cos θ

]
= J−1

2

[
ejθ 0
0 e−jθ

]
J2 = J−1

2 ∆J2.

(4)

Using this observation to replace the scaled rotationmatrix

Q in Equation 3 leads to

K = R−1QR
K = αR−1J−1

n S∆S−1JnR
K = αP∆P−1

(5)

with
R = J−1

n SP−1

Q = αJ−1
n ∆Jn.

(6)

Thus, given a matrix K that has an eigen-decomposition

corresponding to that of a uniformly scaled rotation ma-

trix, we can compute the lattice generating matrix R as

in Equation 6. The elements of the diagonal matrix S in-
serted in the construction of R scale the otherwise unit

eigenvectors in the columns of P. Below, we will refer to
this construction as function formRQ(K,S) using S = I
by default.

2.1 Constructing suitable dilation matricesK

The eigenvalues of K,∆ and Q impose restrictions on

their shared characteristic polynomial d(λ) = det(K −
λI) =

∑n
k=0 ckλk as discussed in the appendix. For

the case n = even with the only non-zero integer coef-
ficients c0 = δ, c2

n/2 < 4δ, cn = 1 this leaves a finite
number of different options for cn/2. The case n = odd
permits a single possible polynomial with non-zero coef-

ficients c0 = −δ, cn = 1. For these monic polynomials
it is possible to directly construct a candidate K via the

companion matrix ([6], p. 192)

K =





0 −c0

1 0 −c1

1 0
...

. . .
. . . −cn−2

1 −cn−1




. (7)

This allows to construct a lattice fulfilling the self-similar

subsampling condition for any dimensionality n, one for
every possible characteristic polynomial.

With this starting point it is possible to construct additional

suitable dilation matrices via a similarity transform with a

unimodular matrix T

KT = TKT−1 = PT ∆P−1
T . (8)

Using a unimodular rather than any non-singularT guar-

antees thatT−1 is also unimodular following from the fact

that T−1 can be constructed from the adjugate (the trans-

posed co-factor matrix) of T. Thus, KT remains an inte-

ger matrix by this transform. Possible generators for this

unimodular group are discussed in ([5], pp. 23). Our im-

plementation, referred to as function genUnimodular(n),

uses a construction of T = LU from several random in-

teger lower and upper triangular matrices having ones on

their diagonal.

It is not guaranteed that all possibleK for a given charac-

teristic polynomial can be generated through a similarity

transform with someT. However, formRQ(KT ) provides

numerous non-equivalent RT lattice generators. Among

them it is possible to apply further criteria to select the

“best” lattice.

An alternative to transformingK is the eigenvector scal-

ing by diagonal matrix S in Equation 6. Using non-unit
scaling allows to produce further lattices for any givenK
resulting in an n-dimensional continuous search space.

2.2 Construction Algorithm

The steps for constructing lattices with the desired

subsampling matrices are summarized in algorithm 1.

The function compoly(n, α, C) is defined in the

Algorithm 1 genLattices(n, δ)

1: Llist← {}
2: Ks← genKompans(n, δ)
3: Ts← genUnimodular(n)∪{I}
4: for all K ∈ Ks do
5: for all T ∈ Ts do
6: KT = TKT−1

7: (RT ,QT ) ← formRQ(KT )

8: Llist← Llist∪{(KT ,RT ,QT )}
9: end for

10: end for

11: return Llist

Algorithm 2 genKompans(n, δ)

1: Ks = {}
2: if n is even then
3: for all C ∈ Z : C2 < 4δ do
4: Ks← Ks ∪ compoly(n, δ

1
n , C)

5: end for

6: else {n is odd}
7: Ks← {compoly(n, δ

1
n )}

8: end if

9: return Ks

appendix. A possible implementation for the func-

tion genUnimodular(n) is described in Section 2.1 and
formRQ(K) is defined below Equation 6.
It should be noted that the list of lattices returned by

genLattices may contain several equivalent copies of the

same lattice. A Gram matrix implicitly represents angles

between basis vectors asA = RTR. Two latticesR1 and

R2, scaled to have the same determinant, are equivalent if

their Gram matrices are related via A1 = TTA2T with

a unimodular matrix T ∈ Zn×n and |detT| = 1. Deter-
mining this unimodular matrix is known to be a difficult

problem, as it for instance also occurs when relating the

adjacency matrices of two supposedly isomorphic graphs.

Hence, our current method employs a simpler necessary

test for equivalence by comparing the first few elements

Appendix: Characteristic polynomial of a
scaled rotation matrix in Rn

The similarity relationship between K and Q in Equa-

tion 2 implies that they share the same characteristic poly-

nomial d(λ) = det(K − λI) = det(Q − λI) leading to
an agreement in eigenvalues d(λk) = 0 and determinant
d(0) ([6], p. 184). Further, since K is an integer matrix

the polynomial d(λ) ∈ Z[λ] has integer coefficients ck.

In order to find integer matrices K with the eigenvalues

of a scaled rotation matrix, it will be important to distin-

guish the two different forms of the diagonal matrix∆ in

Equation 4 and 5 for the case n = even

∆ = diag[ejθ1 e−jθ1 . . . ejθn/2 e−jθn/2 ]

and the case n = odd

∆ = diag[1 ejθ1 e−jθ1 . . . ejθ(n−1)/2 e−jθ(n−1)/2 ]

with analogue block-wise constructions for Jn.

For dimensionality n = even the characteristic polyno-
mial ofK andQ fulfills

d(λ) =
n/2∏

k=1

(αejθk − λ)(αe−jθk − λ)

=
n/2∏

k=1

(α2 − 2λα cos θk + λ2)

=
n/2∏

k=1

[
(
α4

λ2
− 2

α3

λ
cos θk + α2)

λ2

α2

]

= d

(
α2

λ

) (
λ

α

)n

(9)

Thus, if

d(λ) =
n∑

k=0

ckλk

=
n∑

k=0

ck

(
α2

λ

)k (
λ

α

)n

=
n∑

k=0

cn−kαn−2kλk

⇔ ck = αn−2kcn−k = δ1− 2k
n cn−k.

(10)

If ck $= 0 and ck, δ ∈ Z then δ1− 2k
n ∈ Q. This is impos-

sible for 0 < 2k < n, assuming small values of δ, such
as 2, 3 or any simple product of primes. This implies that
ck = cn−k = 0 for k = 1, 2, . . . n

2 − 1. For k = n
2 the ck

can be non-zero leading to

d(λ) = λn + Cλ
n
2 + αn (11)

with the requirement that C2 < 4αn so that the complex

eigenvalues d(λk) = 0 are evenly distributed on the com-
plex circle of radius |λk| = α.
For dimensionality n = odd the polynomial fulfills

d(λ) = (α − λ)
(n−1)/2∏

k=1

(αejθk − λ)(αe−jθk − λ)

⇒ d(λ) = −
(

λ

α

)n

d

(
α2

λ

) (12)

Thus, if

d(λ) =
n∑

k=0

ckλk

= −
n∑

k=0

ck

(
α2

λ

)k (
λ

α

)n

= −
n∑

k=0

cn−kαn−2kλk

⇔ ck = −αn−2kcn−k = −δ1− 2k
n cn−k.

(13)

By the same reasoning as for the even case, ck = 0 for all
k = 1, 2, . . . n−1

2 resulting in only one possible character-

istic polynomial

d(λ) = λn − αn. (14)

To refer to the above procedure we will invoke a function

compoly(n, α, C) that returns a companion matrix (Equa-
tion 7) with a characteristic polynomial as in Equation 11

or 14.
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and thus agree in eigenvalues and determinant.
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Diagonalizing rotation Q
[

cos θ − sin θ
sin θ cos θ

]
=

1
2

[
1 1
j −j

] [
ejθ 0
0 e−jθ

] [
1 j
1 −j

]

Using a matrix J2 =
[

1 j
1 −j

]
it is possible to diago-

nalize a 2D rotation matrix by the following similarity

transform

[
cos θ − sin θ
sin θ cos θ

]
= J−1

2

[
ejθ 0
0 e−jθ

]
J2 = J−1

2 ∆J2.

(4)

Using this observation to replace the scaled rotationmatrix

Q in Equation 3 leads to

K = R−1QR
K = αR−1J−1

n S∆S−1JnR
K = αP∆P−1

(5)

with
R = J−1

n SP−1

Q = αJ−1
n ∆Jn.

(6)

Thus, given a matrix K that has an eigen-decomposition

corresponding to that of a uniformly scaled rotation ma-

trix, we can compute the lattice generating matrix R as

in Equation 6. The elements of the diagonal matrix S in-
serted in the construction of R scale the otherwise unit

eigenvectors in the columns of P. Below, we will refer to
this construction as function formRQ(K,S) using S = I
by default.

2.1 Constructing suitable dilation matricesK

The eigenvalues of K,∆ and Q impose restrictions on

their shared characteristic polynomial d(λ) = det(K −
λI) =

∑n
k=0 ckλk as discussed in the appendix. For

the case n = even with the only non-zero integer coef-
ficients c0 = δ, c2

n/2 < 4δ, cn = 1 this leaves a finite
number of different options for cn/2. The case n = odd
permits a single possible polynomial with non-zero coef-

ficients c0 = −δ, cn = 1. For these monic polynomials
it is possible to directly construct a candidate K via the

companion matrix ([6], p. 192)

K =





0 −c0

1 0 −c1

1 0
...

. . .
. . . −cn−2

1 −cn−1




. (7)

This allows to construct a lattice fulfilling the self-similar

subsampling condition for any dimensionality n, one for
every possible characteristic polynomial.

With this starting point it is possible to construct additional

suitable dilation matrices via a similarity transform with a

unimodular matrix T

KT = TKT−1 = PT ∆P−1
T . (8)

Using a unimodular rather than any non-singularT guar-

antees thatT−1 is also unimodular following from the fact

that T−1 can be constructed from the adjugate (the trans-

posed co-factor matrix) of T. Thus, KT remains an inte-

ger matrix by this transform. Possible generators for this

unimodular group are discussed in ([5], pp. 23). Our im-

plementation, referred to as function genUnimodular(n),

uses a construction of T = LU from several random in-

teger lower and upper triangular matrices having ones on

their diagonal.

It is not guaranteed that all possibleK for a given charac-

teristic polynomial can be generated through a similarity

transform with someT. However, formRQ(KT ) provides

numerous non-equivalent RT lattice generators. Among

them it is possible to apply further criteria to select the

“best” lattice.

An alternative to transformingK is the eigenvector scal-

ing by diagonal matrix S in Equation 6. Using non-unit
scaling allows to produce further lattices for any givenK
resulting in an n-dimensional continuous search space.

2.2 Construction Algorithm

The steps for constructing lattices with the desired

subsampling matrices are summarized in algorithm 1.

The function compoly(n, α, C) is defined in the

Algorithm 1 genLattices(n, δ)

1: Llist← {}
2: Ks← genKompans(n, δ)
3: Ts← genUnimodular(n)∪{I}
4: for all K ∈ Ks do
5: for all T ∈ Ts do
6: KT = TKT−1

7: (RT ,QT ) ← formRQ(KT )

8: Llist← Llist∪{(KT ,RT ,QT )}
9: end for

10: end for

11: return Llist

Algorithm 2 genKompans(n, δ)

1: Ks = {}
2: if n is even then
3: for all C ∈ Z : C2 < 4δ do
4: Ks← Ks ∪ compoly(n, δ

1
n , C)

5: end for

6: else {n is odd}
7: Ks← {compoly(n, δ

1
n )}

8: end if

9: return Ks

appendix. A possible implementation for the func-

tion genUnimodular(n) is described in Section 2.1 and
formRQ(K) is defined below Equation 6.
It should be noted that the list of lattices returned by

genLattices may contain several equivalent copies of the

same lattice. A Gram matrix implicitly represents angles

between basis vectors asA = RTR. Two latticesR1 and

R2, scaled to have the same determinant, are equivalent if

their Gram matrices are related via A1 = TTA2T with

a unimodular matrix T ∈ Zn×n and |detT| = 1. Deter-
mining this unimodular matrix is known to be a difficult

problem, as it for instance also occurs when relating the

adjacency matrices of two supposedly isomorphic graphs.

Hence, our current method employs a simpler necessary

test for equivalence by comparing the first few elements
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[

cos θ − sin θ
sin θ cos θ

]
=

1
2

[
1 1
j −j

] [
ejθ 0
0 e−jθ

] [
1 j
1 −j

]

Using a matrix J2 =
[

1 j
1 −j

]
it is possible to diago-

nalize a 2D rotation matrix by the following similarity

transform

[
cos θ − sin θ
sin θ cos θ

]
= J−1

2

[
ejθ 0
0 e−jθ

]
J2 = J−1

2 ∆J2.

(4)

Using this observation to replace the scaled rotationmatrix

Q in Equation 3 leads to

K = R−1QR
K = αR−1J−1

n S∆S−1JnR
K = αP∆P−1

(5)

with
R = J−1

n SP−1

Q = αJ−1
n ∆Jn.

(6)

Thus, given a matrix K that has an eigen-decomposition

corresponding to that of a uniformly scaled rotation ma-

trix, we can compute the lattice generating matrix R as

in Equation 6. The elements of the diagonal matrix S in-
serted in the construction of R scale the otherwise unit

eigenvectors in the columns of P. Below, we will refer to
this construction as function formRQ(K,S) using S = I
by default.

2.1 Constructing suitable dilation matricesK

The eigenvalues of K,∆ and Q impose restrictions on

their shared characteristic polynomial d(λ) = det(K −
λI) =

∑n
k=0 ckλk as discussed in the appendix. For

the case n = even with the only non-zero integer coef-
ficients c0 = δ, c2

n/2 < 4δ, cn = 1 this leaves a finite
number of different options for cn/2. The case n = odd
permits a single possible polynomial with non-zero coef-

ficients c0 = −δ, cn = 1. For these monic polynomials
it is possible to directly construct a candidate K via the

companion matrix ([6], p. 192)

K =





0 −c0

1 0 −c1

1 0
...

. . .
. . . −cn−2

1 −cn−1




. (7)

This allows to construct a lattice fulfilling the self-similar

subsampling condition for any dimensionality n, one for
every possible characteristic polynomial.

With this starting point it is possible to construct additional

suitable dilation matrices via a similarity transform with a

unimodular matrix T

KT = TKT−1 = PT ∆P−1
T . (8)

Using a unimodular rather than any non-singularT guar-

antees thatT−1 is also unimodular following from the fact

that T−1 can be constructed from the adjugate (the trans-

posed co-factor matrix) of T. Thus, KT remains an inte-

ger matrix by this transform. Possible generators for this

unimodular group are discussed in ([5], pp. 23). Our im-

plementation, referred to as function genUnimodular(n),

uses a construction of T = LU from several random in-

teger lower and upper triangular matrices having ones on

their diagonal.

It is not guaranteed that all possibleK for a given charac-

teristic polynomial can be generated through a similarity

transform with someT. However, formRQ(KT ) provides

numerous non-equivalent RT lattice generators. Among

them it is possible to apply further criteria to select the

“best” lattice.

An alternative to transformingK is the eigenvector scal-

ing by diagonal matrix S in Equation 6. Using non-unit
scaling allows to produce further lattices for any givenK
resulting in an n-dimensional continuous search space.

2.2 Construction Algorithm

The steps for constructing lattices with the desired

subsampling matrices are summarized in algorithm 1.

The function compoly(n, α, C) is defined in the

Algorithm 1 genLattices(n, δ)

1: Llist← {}
2: Ks← genKompans(n, δ)
3: Ts← genUnimodular(n)∪{I}
4: for all K ∈ Ks do
5: for all T ∈ Ts do
6: KT = TKT−1

7: (RT ,QT ) ← formRQ(KT )

8: Llist← Llist∪{(KT ,RT ,QT )}
9: end for

10: end for

11: return Llist

Algorithm 2 genKompans(n, δ)

1: Ks = {}
2: if n is even then
3: for all C ∈ Z : C2 < 4δ do
4: Ks← Ks ∪ compoly(n, δ

1
n , C)

5: end for

6: else {n is odd}
7: Ks← {compoly(n, δ

1
n )}

8: end if

9: return Ks

appendix. A possible implementation for the func-

tion genUnimodular(n) is described in Section 2.1 and
formRQ(K) is defined below Equation 6.
It should be noted that the list of lattices returned by

genLattices may contain several equivalent copies of the

same lattice. A Gram matrix implicitly represents angles

between basis vectors asA = RTR. Two latticesR1 and

R2, scaled to have the same determinant, are equivalent if

their Gram matrices are related via A1 = TTA2T with

a unimodular matrix T ∈ Zn×n and |detT| = 1. Deter-
mining this unimodular matrix is known to be a difficult

problem, as it for instance also occurs when relating the

adjacency matrices of two supposedly isomorphic graphs.

Hence, our current method employs a simpler necessary

test for equivalence by comparing the first few elements

Analogue block-wise construction of Jn
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1
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1 1
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ejθ 0
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]

Using a matrix J2 =
[

1 j
1 −j

]
it is possible to diago-

nalize a 2D rotation matrix by the following similarity

transform

[
cos θ − sin θ
sin θ cos θ

]
= J−1

2

[
ejθ 0
0 e−jθ

]
J2 = J−1

2 ∆J2.

(4)

Using this observation to replace the scaled rotationmatrix

Q in Equation 3 leads to

K = R−1QR
K = αR−1J−1

n S∆S−1JnR
K = αP∆P−1

(5)

with
R = J−1

n SP−1

Q = αJ−1
n ∆Jn.

(6)

Thus, given a matrix K that has an eigen-decomposition

corresponding to that of a uniformly scaled rotation ma-

trix, we can compute the lattice generating matrix R as

in Equation 6. The elements of the diagonal matrix S in-
serted in the construction of R scale the otherwise unit

eigenvectors in the columns of P. Below, we will refer to
this construction as function formRQ(K,S) using S = I
by default.

2.1 Constructing suitable dilation matricesK

The eigenvalues of K,∆ and Q impose restrictions on

their shared characteristic polynomial d(λ) = det(K −
λI) =

∑n
k=0 ckλk as discussed in the appendix. For

the case n = even with the only non-zero integer coef-
ficients c0 = δ, c2

n/2 < 4δ, cn = 1 this leaves a finite
number of different options for cn/2. The case n = odd
permits a single possible polynomial with non-zero coef-

ficients c0 = −δ, cn = 1. For these monic polynomials
it is possible to directly construct a candidate K via the

companion matrix ([6], p. 192)

K =





0 −c0

1 0 −c1

1 0
...

. . .
. . . −cn−2

1 −cn−1




. (7)

This allows to construct a lattice fulfilling the self-similar

subsampling condition for any dimensionality n, one for
every possible characteristic polynomial.

With this starting point it is possible to construct additional

suitable dilation matrices via a similarity transform with a

unimodular matrix T

KT = TKT−1 = PT ∆P−1
T . (8)

Using a unimodular rather than any non-singularT guar-

antees thatT−1 is also unimodular following from the fact

that T−1 can be constructed from the adjugate (the trans-

posed co-factor matrix) of T. Thus, KT remains an inte-

ger matrix by this transform. Possible generators for this

unimodular group are discussed in ([5], pp. 23). Our im-

plementation, referred to as function genUnimodular(n),

uses a construction of T = LU from several random in-

teger lower and upper triangular matrices having ones on

their diagonal.

It is not guaranteed that all possibleK for a given charac-

teristic polynomial can be generated through a similarity

transform with someT. However, formRQ(KT ) provides

numerous non-equivalent RT lattice generators. Among

them it is possible to apply further criteria to select the

“best” lattice.

An alternative to transformingK is the eigenvector scal-

ing by diagonal matrix S in Equation 6. Using non-unit
scaling allows to produce further lattices for any givenK
resulting in an n-dimensional continuous search space.

2.2 Construction Algorithm

The steps for constructing lattices with the desired

subsampling matrices are summarized in algorithm 1.

The function compoly(n, α, C) is defined in the

Algorithm 1 genLattices(n, δ)

1: Llist← {}
2: Ks← genKompans(n, δ)
3: Ts← genUnimodular(n)∪{I}
4: for all K ∈ Ks do
5: for all T ∈ Ts do
6: KT = TKT−1

7: (RT ,QT ) ← formRQ(KT )

8: Llist← Llist∪{(KT ,RT ,QT )}
9: end for

10: end for

11: return Llist

Algorithm 2 genKompans(n, δ)

1: Ks = {}
2: if n is even then
3: for all C ∈ Z : C2 < 4δ do
4: Ks← Ks ∪ compoly(n, δ

1
n , C)

5: end for

6: else {n is odd}
7: Ks← {compoly(n, δ

1
n )}

8: end if

9: return Ks

appendix. A possible implementation for the func-

tion genUnimodular(n) is described in Section 2.1 and
formRQ(K) is defined below Equation 6.
It should be noted that the list of lattices returned by

genLattices may contain several equivalent copies of the

same lattice. A Gram matrix implicitly represents angles

between basis vectors asA = RTR. Two latticesR1 and

R2, scaled to have the same determinant, are equivalent if

their Gram matrices are related via A1 = TTA2T with

a unimodular matrix T ∈ Zn×n and |detT| = 1. Deter-
mining this unimodular matrix is known to be a difficult

problem, as it for instance also occurs when relating the

adjacency matrices of two supposedly isomorphic graphs.

Hence, our current method employs a simpler necessary

test for equivalence by comparing the first few elements

Different eigenvalue structure for even and 
odd dimensionality

Appendix: Characteristic polynomial of a
scaled rotation matrix in Rn

The similarity relationship between K and Q in Equa-

tion 2 implies that they share the same characteristic poly-

nomial d(λ) = det(K − λI) = det(Q − λI) leading to
an agreement in eigenvalues d(λk) = 0 and determinant
d(0) ([6], p. 184). Further, since K is an integer matrix

the polynomial d(λ) ∈ Z[λ] has integer coefficients ck.

In order to find integer matrices K with the eigenvalues

of a scaled rotation matrix, it will be important to distin-

guish the two different forms of the diagonal matrix∆ in

Equation 4 and 5 for the case n = even

∆ = diag[ejθ1 e−jθ1 . . . ejθn/2 e−jθn/2 ]

and the case n = odd

∆ = diag[1 ejθ1 e−jθ1 . . . ejθ(n−1)/2 e−jθ(n−1)/2 ]

with analogue block-wise constructions for Jn.

For dimensionality n = even the characteristic polyno-
mial ofK andQ fulfills

d(λ) =
n/2∏

k=1

(αejθk − λ)(αe−jθk − λ)

=
n/2∏

k=1

(α2 − 2λα cos θk + λ2)

=
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k=1

[
(
α4

λ2
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α3

λ
cos θk + α2)

λ2

α2

]

= d

(
α2

λ

) (
λ

α

)n

(9)

Thus, if

d(λ) =
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k=0

ckλk

=
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ck

(
α2

λ

)k (
λ

α

)n

=
n∑

k=0

cn−kαn−2kλk

⇔ ck = αn−2kcn−k = δ1− 2k
n cn−k.

(10)

If ck $= 0 and ck, δ ∈ Z then δ1− 2k
n ∈ Q. This is impos-

sible for 0 < 2k < n, assuming small values of δ, such
as 2, 3 or any simple product of primes. This implies that
ck = cn−k = 0 for k = 1, 2, . . . n

2 − 1. For k = n
2 the ck

can be non-zero leading to

d(λ) = λn + Cλ
n
2 + αn (11)

with the requirement that C2 < 4αn so that the complex

eigenvalues d(λk) = 0 are evenly distributed on the com-
plex circle of radius |λk| = α.
For dimensionality n = odd the polynomial fulfills

d(λ) = (α − λ)
(n−1)/2∏

k=1

(αejθk − λ)(αe−jθk − λ)

⇒ d(λ) = −
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α

)n

d
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) (12)
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α2

λ
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α
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= −
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cn−kαn−2kλk

⇔ ck = −αn−2kcn−k = −δ1− 2k
n cn−k.

(13)

By the same reasoning as for the even case, ck = 0 for all
k = 1, 2, . . . n−1

2 resulting in only one possible character-

istic polynomial

d(λ) = λn − αn. (14)

To refer to the above procedure we will invoke a function

compoly(n, α, C) that returns a companion matrix (Equa-
tion 7) with a characteristic polynomial as in Equation 11

or 14.
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quincunx, θ = 45◦ θ = arccos
√
2
2 ≈ 69.3◦ θ = 135◦

G =

[ √
2 0

0
√

2

]
, K =

[
−1 −1
1 −1

]
G =

[
0 0.61

−0.93 −0.23

]
, K =

[
−1 −1
2 0

]
G =

[
0 0.58

−1.22 0.41

]
, K =

[
1 −1
3 −1

]
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Figure 3.3: Three non-equivalent 2D lattices obtained for a design with dilation matrices having
|detK| = 2. The lattice in the first column is the known quincunx sampling with a rotation of
θ = 45◦. The other two are new schemes with different rotation angles. The thick dots show the
sample positions that are retained after subsampling by K. The second row shows the same lattice
at twice the density, with more iteration levels of similarity transformed Voronoi cells.
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other three are new schemes with different rotation angles.
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Figure 2: Three non-equivalent 2D lattices obtained for a design with dilation matrices having |detK| = 2. The lattice
on the left is the well known quincunx sampling with a θ = 45◦ rotation. The other two are new schemes with different
rotation angles. The black markers show the sample positions that are retained after subsampling byK.
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Figure 3: Three non-equivalent 2D lattices obtained for a design with dilation matrices having |detK| = 3. The lattice
on the left is the well known hexagonal lattice with a θ = 30◦ rotation. The other three are new schemes with different
rotation angles.

of the set q(A) = {kTAk : k ∈ Zn} using the Gram ma-
trices of the respective lattices. If the sorted lists q(A1)
and q(A2) disagree in any element, R1 and R2 are not

equivalent ([5], p. 60). It is possible to restrict the set of

indices k ∈ Zn to the Voronoi relevant neighbours [1].

Further, since these neighbours determine the hyperplanes

bounding the Voronoi polytope of the lattice, they can also

be used for a sufficient test for equivalence.

3. Constructions for different dimensions
and subsampling ratios

For the 2D case we have created lattices permitting a re-

duction rate 2 in Figure 2 and rate 3 in Figure 3. In both
cases, familiar examples arise in the quincunx and the hex

lattice for the respective ratios.

A search of 3D lattices enjoying the self-similar subsam-

pling property with rate 2 dilations resulted in 53 non-
equivalent cases. These lattices were compared in terms of

their dimensionless second order moments, corresponding

to the expected squared vector quantization error ([2], p.

451). When performing the continuous optimization men-

tioned at the end of Section 2.1, all of these cases con-

verged to the same optimum lattice shown in Figure 4.

The dimensionless second order moment for the Voronoi

Cell of this lattice is G = 0.081904. For comparison, the
Cartesian cube has Gcc = 0.0833 and the truncated octa-
hedron of the BCC lattice has Gbcc = 0.0785.

4. Discussion and potential applications

The current formation of candidate matrices K based on

similarity transforms of one valid example is not guaran-
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Figure 4: The best 3D lattice obtained for a design with

dilation matrices having |detK| = 2. The letters f and v

in the title line indicate faces and vertices, respectively.

teed to produce all possible solutions. For 2D and 3D we

also employed an exhaustive search over a range of integer

matrices with values in [−3, 3] resulting in the same num-
ber of non-equivalent 2D cases as the construction viaKT .

However, for dimensionality n > 3 the exhaustive search
had to be replaced by a random sampling of integer matri-

ces ultimately rendering the method infeasible for n > 5.
In that light the current construction via scaled eigenvec-

tors of the companion matrix is a significant improvement

as it allows to produce a large number of non-equivalent

lattices for any dimensionality.

Our subsampling schemes may have applications for mul-

tidimensional wavelet transforms [7]. Another direction

for possible investigation is the construction of sparse

grids that are employed in the context of high-dimensional

integration and approximation adapting to smoothness

conditions of the underlying function space [3].
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1 1
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]
detK = 3
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results
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converged to one optimum
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Figure 2: Three non-equivalent 2D lattices obtained for a design with dilation matrices having |detK| = 2. The lattice
on the left is the well known quincunx sampling with a θ = 45◦ rotation. The other two are new schemes with different
rotation angles. The black markers show the sample positions that are retained after subsampling byK.
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Figure 3: Three non-equivalent 2D lattices obtained for a design with dilation matrices having |detK| = 3. The lattice
on the left is the well known hexagonal lattice with a θ = 30◦ rotation. The other three are new schemes with different
rotation angles.

of the set q(A) = {kTAk : k ∈ Zn} using the Gram ma-
trices of the respective lattices. If the sorted lists q(A1)
and q(A2) disagree in any element, R1 and R2 are not

equivalent ([5], p. 60). It is possible to restrict the set of

indices k ∈ Zn to the Voronoi relevant neighbours [1].

Further, since these neighbours determine the hyperplanes

bounding the Voronoi polytope of the lattice, they can also

be used for a sufficient test for equivalence.

3. Constructions for different dimensions
and subsampling ratios

For the 2D case we have created lattices permitting a re-

duction rate 2 in Figure 2 and rate 3 in Figure 3. In both
cases, familiar examples arise in the quincunx and the hex

lattice for the respective ratios.

A search of 3D lattices enjoying the self-similar subsam-

pling property with rate 2 dilations resulted in 53 non-
equivalent cases. These lattices were compared in terms of

their dimensionless second order moments, corresponding

to the expected squared vector quantization error ([2], p.

451). When performing the continuous optimization men-

tioned at the end of Section 2.1, all of these cases con-

verged to the same optimum lattice shown in Figure 4.

The dimensionless second order moment for the Voronoi

Cell of this lattice is G = 0.081904. For comparison, the
Cartesian cube has Gcc = 0.0833 and the truncated octa-
hedron of the BCC lattice has Gbcc = 0.0785.

4. Discussion and potential applications

The current formation of candidate matrices K based on

similarity transforms of one valid example is not guaran-
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Figure 4: The best 3D lattice obtained for a design with

dilation matrices having |detK| = 2. The letters f and v

in the title line indicate faces and vertices, respectively.

teed to produce all possible solutions. For 2D and 3D we

also employed an exhaustive search over a range of integer

matrices with values in [−3, 3] resulting in the same num-
ber of non-equivalent 2D cases as the construction viaKT .

However, for dimensionality n > 3 the exhaustive search
had to be replaced by a random sampling of integer matri-

ces ultimately rendering the method infeasible for n > 5.
In that light the current construction via scaled eigenvec-

tors of the companion matrix is a significant improvement

as it allows to produce a large number of non-equivalent

lattices for any dimensionality.

Our subsampling schemes may have applications for mul-

tidimensional wavelet transforms [7]. Another direction

for possible investigation is the construction of sparse

grids that are employed in the context of high-dimensional

integration and approximation adapting to smoothness

conditions of the underlying function space [3].

14 faces, 24 vertices, 6 zones
G(P) = 0.081904
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Applications

• Optimize additional properties, e.g.
runsize or uniform projections

• Uniform sampling of irregularly shaped regions

• n-D multi-resolution reconstruction pyramid
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Questions?

• Thank you for your attention!
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