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Outline 

• Introduction: dynamic systems models 

• Example: modeling data by using ecological 
dynamics 

• Parameter Estimation 
– Numerical optimization  

– Markov Chain Monte Carlo (MCMC) 

• A bit about my research 
– joint with Dave Campbell (SFU), Ben Calderhead 

and Mark Girolami (UCL) 



Dynamic Systems Models 

• Models that describe the behaviour  of complex systems 
by relating variables to their derivatives with respect to 
space/time variables 
 

• Systems of ordinary differential equations (ODE) or 
partial differential equation (PDE) 
– high-dimensional, nonlinear, coupled  

– deterministic or stochastic 

– unknown parameters: some have physical interpretations 
 

• Models that are too complex to study directly can be 
analyzed statistically by using computer experiments 

 



Example with population data 
• Suppose we observe two populations in a forest 

 
 
 
 
 
 

 
 
• Observe a periodic pattern with some shift 
• We may try fitting a periodic function to the data 
• But we should try to fit a function that reflects known 

mechanism by which lynx and hares interact 
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Population dynamics 

The Lotka-Volterra system with 2 states and 4 parameters 
 

h 𝑡  = number of hares,     𝑙(𝑡) = number of lynx 

 
 

 
 
 

 
 
Rates of change of the populations depend on the 
number of predators and prey present at time 𝑡 
 
 

Lynx feed on hare and compete with 
one another for food 

Hares are eaten by lynx and are not 
limited by food supply 

Populations start out at these values 

𝑑ℎ(𝑡)

𝑑𝑡
 = 𝛼ℎ 𝑡  − 𝛽ℎ 𝑡 𝑙 𝑡  

𝑑𝑙(𝑡)

𝑑𝑡
 = 𝛿𝑙 𝑡 ℎ 𝑡 − 𝛾𝑙 𝑡  

𝑙 0 = 𝑙0, ℎ 0 = ℎ0 



Population dynamics 
• This system has no closed form solution, so we use 

numerical methods instead: 

 

 

 

 

 

 

 

• Let’s look at the solution corresponding to the 
initial conditions ℎ 0 = 1 and 𝑙 0 = 1  
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Each ellipse is a solution 
to the system under the 
parameters 

𝛼 = 2,  𝛽 = 1, 
𝛾 = 1,  𝛿 = 1. 

and different initial 
conditions 
 



Population dynamics 
• This system has no closed form solution, so we use 

numerical methods instead: 

 

 

 

 

 

 

 

• Let’s look at the solution corresponding to the 
initial conditions ℎ 0 = 1 and 𝑙 0 = 1  
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 𝑑ℎ(𝑡)

𝑑𝑡
 = 𝛼ℎ 𝑡  − 𝛽ℎ 𝑡 𝑙 𝑡  

𝑑𝑙(𝑡)

𝑑𝑡
 = 𝛿𝑙 𝑡 ℎ 𝑡 − 𝛾𝑙 𝑡  



Population dynamics 

hare  h(t) lynx  l(t) 
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solution under parameters 𝛼, 𝛽, 𝛾, 𝛿, 𝑙0, ℎ0 = 2,1,1,1,1,1  

 

 

 

 

 

 

 

 
So we get a family of functions that depend on the 
system parameters, which we can fit to our data! 



Parameter estimation from ODEs 
• Suppose we have a complex ODE model relating states to 

their derivatives with respect to time 

• We observe the state variables and not their derivatives 

• Solution 𝑥 𝑡; 𝜽, 𝒙𝟎  is a nonlinear function of time 

• We solve the system by using a numerical ODE solver 

𝒙 𝑡; 𝜽, 𝒙𝟎 ≈ 𝑆 𝑡 ; 𝜽, 𝒙𝟎  

• Model the data as a noisy version of the solver function 

𝒚 𝑡 = 𝑆 𝑡 ; 𝜽, 𝒙𝟎 + 𝜖 

 



Parameter estimation from ODEs 
• This is a nonlinear regression problem 

• Choose parameters 𝜽 so that 𝑆(𝒕; 𝜽, 𝒙𝟎) is “close” to the data 𝒚 

 

 

 

 

 

 

 

 
We can visualize this problem by thinking of only three 

observations of one state  

obs 1 obs 2 
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“expectation surface” 
𝑆(𝒕, 𝜽, 𝒙𝟎) 

data point  
𝐲 =  (𝑦 𝑡1 , 𝑦 𝑡2 , 𝑦 𝑡3 ) 



Parameter estimation from ODEs 

• Likelihood is one way to measure distance 

𝐿 𝑦(𝑡) 𝜃, 𝑥0) = N  𝑦(𝑡)  𝑆 𝑡; 𝜃, 𝑥0 , 𝜎2) 
 

• No closed form solution => no closed form L 
– Luckily:  optimization and MCMC only require 

evaluating likelihood at a number of points 
 

• Nonlinear Least Squares optimization methods  

– Require sensitivity equations (estimated numerically) 

– Numerical optimization works well for very simple 
systems, unlike the one on the next slide… 

 



Squid Neurons 

• Model for the spike potential in the giant axon 
of squid neurons. 
 

V(t) = voltage,   R(t) = recovery  

 

 

 

 

 
 

𝑑𝑉(𝑡)

𝑑𝑡
 = 𝛾 [𝑉 𝑡 − 𝑅 𝑡 3 + 𝑅 𝑡 ] 

𝑑𝑅(𝑡)

𝑑𝑡
 =

1 

𝛾
[𝑉 𝑡 − 𝛼 + 𝛽𝑅(𝑡)] 

𝑉 𝑡 = 𝑣0, 𝑅 0 = 𝑟0 

Rate of change of 
recovery depends on 
voltage at time t 

Voltage changes over 
time across cell 
membrane 

Initial conditions 



Squid Neurons: likelihood function 
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• Numerical optimizers may only find local optima 
• Instead, we can estimate any functional of the 

posterior by using MCMC methods 
 
 

Ramsay, J. O., Hooker, G., Campbell, D. and Cao, J. (2007), Parameter estimation for differential equations: a 
generalized smoothing approach. Journal of the Royal Statistical Society: Series, 69: 741–796.  

Squid Neurons: likelihood function 



Estimation via MCMC 
• complex posterior topology and high dimensions 

delay convergence 

• guaranteed to get a good sample from the posterior 
distribution if you wait long enough 

• to guarantee eventual graduation: 
– use fancy MCMC methods 

• parallel tempering, smooth functional tempering, adaptive 
MCMC, etc. 
 

– or redefine the problem:  
• estimate the DE solution nonparametrically  
• model the solution function as a stochastic process 

 
 



A bit about my research 
 

 

 

Classical parameter estimation techniques ignore the error associated with solving 
ODEs numerically.   By  modeling  the solution as a stochastic process we obtain an 
approximation to the ODE solution with associated estimation uncertainty.   

We have developed a sequential ODE solver 
that quantifies the error in the estimation of 
ODE solutions in a probabilistic way.   
Solution uncertainty can now be 
incorporated into the inference process for 
ODE models.    

Our work has very useful 
implications for parameter 
estimation.   



questions? 

email:  ochkrebt@sfu.ca 
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