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Outline of talk

I.    SRB measures -- from Axiom A to general diffeomorphisms

II.   Conditions for existence and statistical properties of SRB measures

III.  A class of  “strange attractors” and some concrete examples

IV.  Extending the scope of previous work, to infinite dim, random etc.



SRB measures for Axiom A attractors   (1970s)

         Proofs involves 
       Markov partitions &
   connection to stat mech

Assume uniformly hyperbolic or Axiom A attractor 

      = cpct Riem manifold,       = map     or            = flowM f ft
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A very important discovery of Sinai, Ruelle and Bowen is that
     these attractors have a special invariant prob meas
     with the following properties:

µ
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Moreover, (1)        (2)        (3)() ()

Part I.   SRB measures:  from Axiom A to general D.S. 



Next drop Axiom A assumption.

How general is the idea of SRB measures ?

      = cpct Riem manifold,       = arbitrary diffeomorphsim or flowM f

Recall:  properties of SRB measures in Axiom A setting:
(1) time avg = space avg,    (2) characteristic         geometry,    (3) entropy formulaWu

Theorem [Ledrappier-Strelcyn, L, L-Young 1980s] 
Let           be given where      is an arbitrary invariant Borel prob. (f, µ) µ

Then  (2)         (3);   more precisely:()
has pos Lyap exp a.e.  and       has densities on         (f, µ) µ Wu
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We defined SRB measures for general           by (2).(f, µ)

Note:  Entropy formula proved for volume-preserving diffeos  (Pesin, 1970) 

         Entropy inequality (    ) proved for all             (Ruelle, 1970s)                     (f, µ)



For finite dim dynamical systems, an often adopted point of view is 
   

     observable events  =  positive Leb measure sets

For Hamiltonian systems,  
       Liouville measure = the important invariant measure
Same for volume preserving dynamical systems

What is the meaning of all this?

But what about “dissipative” systems, e.g., one with an attractor ?

Suppose     

Assume  f  is volume decreasing.

Then                      , and all inv meas are supported on
            i.e., no inv meas has a density wrt Leb

f : U ! U, f(Ū) ⇢ U, and ⇤ = \1
n=0f

n(U)

Leb(⇤) = 0 ⇤

This does not necessary imply no inv meas can be physically relevant 
= reflecting the properties of Lebesgue



if

integrating out along        ,  properties on        passed to basin

Here is how it works: 

    has densities on         together withµ Wu
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Crucial to this argument is the absolute continuity of the        foliation    W s

proved in nonuniform setting  [Pugh-Shub 1990] 

Wu

(f, µ)

To summarize :   

one way to define SRB meas for general          is 
   pos Lyap exp + conditional densities on          i.e. property (2)      

•

• conditional densities on         implies physical relevance 
i.e.  property (1)

Wu

under assumptions of ergodicity and no 0 Lyap exp



And how is the entropy formula related to all this ?

entropy comes from expansion
but not all expansion goes into making entropy

Ruelle’s entropy inequality
conservative case: no wasted expansion 

Pesin’s entropy formula

But whether entropy = sum of pos Lyap exp, 
             what does that have to do with backward-time dynamics? 

Entropy formula holds iff system is conservative in forward time
                                                = an interpretation of SRB measure 

Meaning of gap in Ruelle’s Inequality:  

Theorem [Ledrappier-Young, 1980s]           as above;  assume ergodic for simplicity. (f, µ)
Then

hµ(f) =
X

i

�+
i �i

where                           is the dimension of          
    “in the direction of       ”

�i 2 [0, dimEi] µ

Ei

Interpretation: dim(µ|Wu) =
X

�i is a measure of disspativeness



A natural condition that guarantees existence 

A difference between results for Axiom A and general diffeos is that
                           no existence is claimed

Part II.  SRB meas: conditions for existence & stat properties

Start with a reference box, 
     or a stack of        -leaves, 
     or a stack of surfaces roughly || to
     or just one such surface

Wu

Wu

Keep track of “good” returns to ref set
   “good” = stretched all the way across
                 with unif bounded distortion
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Let      = return time 
           = Leb meas in     

R
Eu

Prop [Young 80s]   If                      ,  the SRB meas exists.  
Z

Rdm < 1

Most SRB meas (outside of Axiom A) were constructed  this way.
First time I used it:  piecewise unif hyperbolic maps of            [Young, 1980s]R2

m



In the same spirit that (finite) Markov partitions facilitated the study
            of statistical properties of Axiom A systems,
I proposed (1990s) that

(1) stats of systems that admit countable Markov extensions
           can be expressed in terms of their renewal times, and

(2) this may provide a unified view of a class of nonuniformly hyperbolic   
           systems that have  “controlled hyperbolicity”  

By (1), I mean  s.t.               has a countable
        Markov partition

(F,�)
fgiven     , seek  

In practice, fix a reference set        with 
        hyperbolic (product) structure.
                Build skyscraper until
                      “ good return “

⇤0

“dynamical renewal”∆

∆
∆
∆ 0

1

2

0,i



e.g.

Theorem  [Young, 90s]  
Suppose     admits a Markov extension with return time    ,  m=Leb,f RZ

Rdm < 1 f µ(a)  If                   , then       has an SRB meas                                     

(b)  If                                        then           has exp decay of correl
(c)  If                                              then decay
(d)  If                                              then  CLT  holds.

m{R > n} < C✓n, ✓ < 1, (f, µ)

m{R > n} = O(n�↵),↵ > 1, ⇠ n�↵+1

m{R > n} = O(n�↵),↵ > 2,

Construction of Markov extension was carried out for several known examples

Idea is to  swap messy dynamics for a nice space w/ Markov structures

  

Theorem  [Young, 1990s]  Exponential decay of time correlations

                            for collision map of 2D periodic Lorentz gas 

Remarks  1. Important progress in hyperbolic theory is the understanding         
     that deterministic chaotic systems produce stats very similar to 
     those from (random) stochastic processes

2.  Above are conditions for natural inv meas & their statistical properties.
     To check these conditions, need some degree of hyperbolicity for the dyn sys



kvnk

Major challenge even when there is a lot of expansion
Reason :  where there is expansion, there is also contraction ....

= tangent vector at x,   v0 v
n

= Dfn

x

(v0)

sometimes grows, sometimes shrinks
cancellation can be delicate

Part III.  Proving positivity of Lyap exp in systems w/out inv cones

A breakthrough, and an important paradigm:    
Theorems    

fa(x) = 1� ax

2
, a 2 [0, 2]

1.  [Jakobson 1981]  There is a positive meas set of      for which a

has an invariant density and a pos Lyap exp. fa

2. [Lyubich; Graczyk-Swiatek 1990s]  Parameter space  
[0, 2] = A [ B mod Leb 0

s.t.      is open and dense and                        has sinksA a 2 A =) fa

has positive meas and                       has acim & pos expB a 2 B =) fa

Intermingling of opposite dynamical types makes it impossible 
      to determine pos Lyap exp from finite precision or finite # iterates
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Theorem  [Wang-Young 2000s]   [technical details omitted] 
Setting :                      where                           (m-dim disk) 
                         = parameter,          = “determinant”   (dissipation)
Assume 
        1.  singular limit defined, i.e.  
        2.                                              has  “enough expansion”
        3.  nondegeneracy + transversality conditions

Then for all suff small             ,               = pos meas set of 
   s.t.  (a)            has an ergodic SRB measure
         (b)                    Leb-a.e. in M    

Fa," : M  M = S1 ⇥Dm

a

Fa," ! Fa,0 as " ! 0

"

fa = Fa,0|(S1 ⇥ {0}) : S1  

" > 0 9 �(")

Fa,"

�
max

> 0

Next breakthrough:   The Henon maps    [Benedicks-Carleson 1990]

[BC] devised (i) an inductive algorithm to identify a “critical set”, and
     (ii) a scheme to keep track of derivative growth for points that do not   
     approach the “critical set” faster than exponentially

T : R2 ! R2
, Ta,b(x, y) = (1� ax

2 + y, bx)

Borrowing [BC]’s techniques: 



proof in [BC] is computational, using formula of Henon maps;
     [WY]’s formulation + proof are geometric,  independent of [BC] 

We called the resulting attractors “rank-one attractors”
                               = 1-D instability,  strong codim 1 contraction

• “fattening up expanding circle maps e.g.                 gives solenoid maps;    z 7! z2

slight “fattening up” of 1D maps  (w/ singularities) gives rank-one maps 

rank-one attractors (generalization of Henon attractors) are currently  
    the only class of nonuniformly hyperbolic attractors amenable to analysis

•

•

Motivation:  rank-one attractors likely occur naturally, shortly after
      a system’s loss of stability

•

[WY] gives checkable conditions so results can be applied 
       without going thru 100+ page proof each time

•

passage to singular limit = lower dim’l object makes problem tractable•



Simplest version:  linear shear flow
d✓

dt
= 1 + �y

dy

dt
= ��y +A sin(2⇡✓)

1X

n=0

�(t� nT )

kicks delivered with period T

✓ 2 S1 , y 2 R , � = shear , � = damping , T � 1

Unforced equation:                  = attractive limit cycle  {y = 0}

Application of rank-one attractor ideas

Shear-induced chaos in periodically kicked oscillators 

key :   

assuming e��T ⌧ 1

�

�
·A =

shear

damping

· deformation

Increasing shear



ẏ = ��y + kick

Proof obtained by checking conditions in [WY];  general limit cycles OK. 

FT = time-T map of driven system

✓̇ = 1 + �y  = kick periodT
�

�
·A =

shear

damping

· deformation

Theorem  [Wang-Young 2000s] 
(a)  small         :  invariant closed curve

(b)  as         increases :  invariant curve breaks,  horseshoes develop

(c)  large         :  “dichomtomy”

           
                                 
                                         

ergodic SRB meas horseshoes
   + sinks

�

�
A

�

�
A

�

�
A

�
max

> 0
�
max

< 0
pos meas set parameters

open set of parameters

(cf KAM)

Other applications of this body of ideas
- homoclinic bifurcations [Mora-Viana 1990s] 
- periodically forced Hopf bifurcations  [Wang-Young 2000s]
- forced relaxation oscillators  [Guckenheimer-Weschelberger-Young 2000s]
- Shilnikov homoclinic loops [Ott and Wang 2010s]  
- forced Hopf bif in parabolic PDEs, appl to chemical networks [Lu-Wang-Young 2010s]



Part IV.  Extending the scope of existing theory

A.  Infinite dimensional systems
Dynamical setting for certain classes of PDEs

 Consider                                                
 
     where                function space,           linear operator,          nonlinear term                 

du

dt
+Au = f(u)

 To define a          dynamical system,  need                    s.t. 

(1)                                  exists and is unique in       for all           ,

          so semiflow                         is well defined

(2)                    is continuous for          
This imposes restriction on 
the choice of 

Remark.  Dissipative PDEs (e.g. reaction diffusion eqtns) have attractors 
      w/ a very finite dimensional character  -- natural place to start

e.g. Multiplicative Ergodic Theorem proved only for Hilbert/Banach space operators
        that are quasi-compact          [Mane, Ruelle, Thieullen, Lian-Lu ....]

(3)                   for each  



W s

In infinite dimensions:  what plays the role of Leb measure ?
More concretely,  what is a ``typical” solution for a PDE ?

Sample results

Interpretation   

Theorem   Under global invariant cones conditions:
(a) Existence of center manifold                   W c

(b) Existence of stable       foliation       [known]W s

(c)  Absolute continuity of      -foliation in the case               W s dim(W c) < 1
[Lian-Young-Zeng 2010s]i.e.  if                disks transversal to       , ⌃1,⌃2 = W s

and                       is holonomy along       -leaves, ✓ : ⌃1 ! ⌃2 W s

then Leb(✓(A))  c Leb(A) for all Borel A ⇢ ⌃1 .

Constantin-Fois-Nicolaenko 80s, 
    Chow, Sell, Mallet-Paret, Lu …

Notion of “almost everywhere” in Banach space
W cinherited from Leb measure class on       

e.g.  a.e. in the sense of k-parameters of initial conditions 

General idea:  use of finite dim’l probes in infinite dim sp 



More general setting           Banach or Hilbert space
                                              cts semiflow ,     

Assume  (1)                      is 
(2)                     injective        [backward uniqueness]  
(3)  existence of compact                                         [attractor]

Theorem   Assume no 0 Lyap exponents. 
(a) [Li-Shu, Blumenthal-Young 2010s]        is an SRB measure if and only if                  

W s(b) [Blumenthal-Young 2010s]  Absolute continuity of 

i.e.  statistics of SRB  visible 

B.  Random dynamical systems   (RDS)
· · · f!3 � f!2 � f!1 , i.i.d. with law ⌫

where      is a Borel probability on               = space of self-maps ofCr(M)⌫

Motivation : small random perturbations of deterministic maps,   SDEs



Two notions of invariant measures
Stationary measure

µ(A) =

Z
P (A|x)dµ(x)

Equivalently,                                         in the random maps representation µ =

Z
(f!)⇤µ P(d!)

Interpretation :         describes what we see at time 0 given thatµ!

the transformations                        have occurred.f!n , n  0,

! = (!n)
1
n=�1

conditioned on the pastµ

µ! = lim
n!1

(f!�1 � · · · � f!�n+1 � f!�n)⇤µ

Sample measures =

Theorem.  Given RDS with stationary      ,    µ  = largest Lyap exp�
max

(a) [Le Jan, 1980s]  If                    then         is supported on a finite set�
max

< 0, µ!

of points for                     called  random sinks .  ⌫Z � a.e.!

(b) [Ledrappier-Young, 1980s]  If     has a density and                  , then µ �
max

> 0

entropy formula holds and        are random SRB measures for µ! ⌫Z � a.e.!

(c) [L-Y 1980s]  Additional Hormander condition on derivative process
     partial dimensions satisfy �i = 1 for i < i0, �i = 0 for i > i0



Application:  reliability of biological and engineered systems  

Say the dyn sys is reliable wrt a class of signals 
if the dependence  of           on  x0 tends to 0 with as t increases.

(large)
dynam sysfluctuating input

I!(t) R(t)

response

= is internal state of system at time of presentation x0

R(t)

If                   and a.e.       is,  e.g.  supported on a single point, then �
max

< 0 µ!

xt = state of system at time t is largely indep of       :   reliablex0

If                   then        is supported on stacks of lower dim’l surfaces, �
max

> 0 µ!

depends on        no matter how long we wait:  xt x0 unreliable

Example:  coupled oscillators
    at t = 50, 500, 2000



C.  Open dynamical systems   
= systems in contact with external world  (rel to nonequilibrium stat mech)

A simple situation is leaky systems, i.e., systems with holes
Questions include escape rate     ,  surviving distributions etc ⇢

Sample result : 

THEOREM [Demers-Wright-Young 2000s]  Billiard tables with holes  
(1)  escape rate       is well defined

(2)  limiting surviving distribution        well defined & conditionally invariant  
         

(3) characterized by SRB geometry and entropy formula
 

(4)  tends to SRB measure as hole size goes to 0

⇢

µ1

f⇤(µ1)|M\H = e�⇢µ1

Result extendable to systems admitting Markov extension 

Another application of RDS :  climate       e.g. Ghil group  
stationary meas: theoretical avg     vs    sample meas: now given history  

h�
X

�+
i mi = �⇢



In biological systems, I’ve encountered the following challenges :

D.  Farther afield   

(1) Inverse problems :  Given basic structure + outputs of system, 
deduce dynamics and (nonequilibrium) steady states

(2) Continuous adaptation to (changing) stimulus,
        &   partial convergence to time-dependent steady states

Concluding remarks

•

•

Importance of idea measured by impact and how it shapes
     future development ,  SRB ideas truly lasting

Dynamical systems has evolved since the 1970s,  will remain
     fun , vibrant ,  and relevant   as long as it continues to evolve .....


