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1 An introduction to classification and the beginnings

of K-theory

Classification is a natural and prominent theme in mathematics, and there are many ap-
proaches one can take to problem of classifying a collection or category of objects.

1. Classify by brute force; that is, make a list.

e.g. Finite simple groups.
e.g. Hyperfinite factors.

2. Classify by invariants.

e.g. Vector spaces are determined up to isomorphism by their dimension.
e.g. Infinitely generated subgroups G of Q → are determined by their associated

”supernatural number”, that is, the symbol n = pn1
1 p

n2
2 · · · (where the pis are

primes and nj ∈ N ∪ {∞}) with the property that

G = {x ∈ Q | denominator of x in lowest terms divides n}

3. Classify by functor. Evidently, this requires categories to begin with. Let C1 and C2
be two categories and F : C1 → C2 a functor. If F is to be a ”classification functor”,
then which properties should F have?

i. Isomorphism of invariants should imply isomorphism between objects in C1:

F (a) ∼= F (b) =⇒ a ∼= b.

ii. F should (at least appear) to forget something
iii. Strengthening i., we could ask that if φ : F (a) → F (b) is an isomorphism, then

there should be an isomorphism Φ : a → b such that F (Φ) = φ; that is, isomor-
phisms in the classifying category lift. Of course, we could ask the same of any
morphism.

iv. Ideally, C2 should have a concrete interpretation.

4. Classification via Borel complexity. A problem with the approach in iii. is that if C1
and C2 are Borel spaces and F is Borel, then F being a classification functor really
says that C2 is ‘more complicated’ than C1! To formalize this notion of complexity,
descriptive set theorists have developed a theory of classification for Borel equivalence
relations.
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We call a Borel space standard if it is Borel isomorphic to a Polish space. Let E be
a Borel equivalence relation on X. Declare B ⊆ X/E to be Borel if its pre-image in
X is Borel; with this Borel structure X/E may not be standard. This failure to be
standard can be measured as follows: let Y be another standard Borel space and F a
Borel relation on Y . A Borel reduction of E to F is a Borel map θ : X → Y such that
xEy ⇐⇒ θ(x)Fθ(y). We denote this by E ≤B F . With this notion, we can measure
the complexity of the isomorphism relation for various classes of operator algebras.

1.1 K-theory

1.1.1 The K0-group

The K0-group of a C∗-algebra records the structure of projections in matrices over the algebra
up to a relativized notion of dimension called Murray-von Neumann equivalence. Let A be
a C∗-algebra and suppose that p and q are projections. Say that p is Murray-von Neumann
equivalent to q (written p ∼MvN q) if there exists a partial isometry v ∈ A such that v∗v = p
and vv∗ = q. Let Proj(M∞(A)) denote the set of all projections that lie in Mn(A) for some
n ∈ N, and set

V (A) = {Proj(M∞(A))}/ ∼MvN [note : M∞(A) =
∞⋃
n=1

Mn(A)].

• We can equip V (A) with addition via

[p] + [q] = [p⊕ q].

• There is a pre-order given by [p] ≤ [q] if there exists a projection r such that p ∼MvN

r ≤ q (in the sense that q − r is a positive element).

V (A) is called the Murray-von Neumann semigroup. A dimension function on A is an
additive, order-preserving map d : V (A)→ R+ ∪ {∞}.

(Aside: dimension functions lead to Murray and von Neumann’s type classification of
factors. Let M be a von Neumann factor, and let V (M)M denote [p] ∈ V (M) where p is
a projection in M . The possible images of V (M)M under d, up to normalization, are as
follows:

Type I. {0, 1, · · · , n} or {0, 1, · · · ,∞}
Type II. [0, 1] or [0,∞]
Type III. {0,∞}.)

Let A be a unital C∗-algebra. K0(A) is the Grothendieck enveloping group of V (A):

K0(A) = {[p]− [q] | [p], [q] ∈ V (A)}/ ∼
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where [p]− [q] ∼ [e]− [f ] if and only if there exists [r] such that [r] + [p] + [f ] = [e] + [q] + [r]
in V (A). Set K0(A)+ to be the subset of K0(A) consisting of classes represented by elements
of V (A) (as opposed to formal differences of such).Then (K0(A), K0(A)+, [1A]) is a pointed,
pre-ordered Abelian group. If V (A) is cancellative then V (A) is faithfully represented in
K0(A) as K0(A)+. We have the following facts:

1. K0 is a functor: if φ : A→ B is a unital ∗-homomorphism, then K0(φ)[p] = [φ(p)].
2. K0 is homotopy invariant: if φ, ψ : A → B are homotopic ∗-homomorphisms, then
K0(φ) = K0(ψ).

3. K0 is half exact: if

0 - I - A - B - 0

is an exact sequence of C∗-algebras, then

K0(I) - K0(A) - K0(B)

is an exact sequence of Abelian groups.

Examples:

1. A = C → (Z,Z+, 1)
2. A = C[0, 1]n → (Z,Z+, 1)
3. A = Mn(C) → (Z,Z+, n)
4. A = C(S2N), N ≥ 1 → (Z⊕ Z, G, (1, 0)) where G is the perforated group

G = {(0, 0), (1, 0), · · · (N − 1, 0)} ∪ {(m,n) | m ≥ N and m ∈ Z}.

Finally, we note that if A is non-unital then we adjoin a unit to get A∼. This gives the
exact sequence

0 - A - A∼
π

- C - 0.

We define K0(A) = ker(K0(π)).

1.1.2 The K1-group

We now move on to the K1-group which, roughly, describes unitary operators in a C∗-algebra
up to homotopy. Suppose A is a unital C∗-algebra and define U(A) to be the unitary group
of A (u−1 = u∗). Let U0(A) be the connected component of the identity, 1A, in U(A).

Exercise. Check that U0(A) is normal in U(A).
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Define Gn = U(Mn(A))/U0(Mn(A). The map

u 7→
(
u 0
0 1A

)
taking Mn(A) into Mn+1(A) induces a map φ : Gn → Gn+1. Let K1(A) be the inductive
limit of these groups; that is,

K1(A) = lim−→(Gn, φn).

Let us use [u]1 to denote the K1-class of u ∈ U(Mn(A)).

K1 has the following properties:

1. K1(A) is endowed with the structure of an Abelian group via

[u]1 + [v]1 = [uv]1;

2. K1 is a functor;
3. K1 is homotopy invariant;
4. if A is non-unital, then we define K1(A) := K1(A

∼).

Exercise. Show that [uv]1 = [vu]1.

1.1.3 Six term exact sequence

K-theory has a six term exact sequence: if

0 - I - A - B - 0

is an exact sequence, then the following six term sequence of groups is also exact:

K0(I) - K0(A) - K0(B)

K1(B)

6

- K1(A) - K1(I)
?

The horizontal maps are those induced from the exact sequence, while the vertical maps are
more complicated.

1.1.4 Cross products and the Pimsner - Voiculescu sequence

Suppose A is a C∗-algebra and α ∈ Aut(A). Then we define AoαZ to be the cross product;
that is, for every representation π : A→ B(H) and u ∈ B(H) such that uπ(a)u∗ = π(α(a)),
for all a ∈ A, there exists a covariant representation of Aoα Z into C∗(π(A), u).
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Exercise. Show that if α is inner, then Aoα Z ∼= A⊗ C(S1).

Cross products give rise to the following exact sequence of K-groups:

K0(A)
id−K0(α)

- K0(A)
K0(ι) - K0(Aoα Z)

K1(Aoα Z)

6

K1(ι)
- K1(A)

id−K1(α)
- K1(A)

?

This exact sequence is called the Pimsner - Voiculescu sequence.

1.1.5 Universal Coefficient Theorem

There is a bivariant K-theory for pairs of separable C∗-algebras given by abelian groups,
denoted KK(A,B). We say that a C∗-algebra A satisfies the universal coefficient theorem
(UCT) if, for all separable C∗-algebras B, the following sequence is exact:

0 - Ext(K∗(A), K∗(B)) - KK∗(A,B) - Hom(K∗(A), K∗(B)) - 0.

1.1.6 Kunneth Theorem

Let A and B be C∗-algebras and suppose A is in the ‘bootstrap class’. Then the following
sequence is exact:

0 - K∗(A)⊗K∗(B) - K∗(A⊗B) - Tor(K∗(A), K∗(B)) - 0.

2 More K-theory: Elliott’s conjecture

Let A be a unital C∗-algebra. The Elliott invariant of A consists of four pieces:

1. (K0(A), K0(A)+, [1A]);
2. K1(A);
3. TA = {τ is a pos. lin. func. on A | τ(xy) = τ(yx)∀x, y ∈ A and τ(1A) = 1}. The

elements of TA are called tracial states, and TA is a compact, metrizable Choquet
simplex for separable A;

4. A pairing ρA : K0(A)× TA→ R is defined by

ρA([p]− [q], τ) = τ(p)− τ(q).
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A C∗-algebra A is nuclear if for any finite subset F of A and ε > 0, there exist a
finite dimensional C∗-algebra D and contractive, completely positive maps φ : A → D and
ψ : D → A such that

A
id

- A

D

ψ

-

φ

-

commutes, up to ε on F (‖f − ψ ◦ φ(f)‖ < ε for all f ∈ F ).

2.1 Elliott Conjecture. Let A and B be simple, unital, nuclear, separable C∗-algebras. If
there exists an isomorphism

φ : Ell(A)→ Ell(B),

then there exists a ∗-isomorphism
Φ : A→ B

such that Ell(Φ) = φ.

Exercise. Clarify what isomorphism means for Ell(·).

Even if one proves Elliott’s conjecture for some class C, one still needs the range of
the invariant for satisfactory classification. Which instances of Ell(A) occur for simple
C∗-algebras? This question remains open, but we have an answer if (K0(A), K0(A)+) is
weakly unperforated and A is separable. (An ordered group (G,G+) is said to be weakly
unperforated if whenever n · x ∈ G+ \ {0}, then x ∈ G+.) In this case any 4-tuple in which
K0 and K1 are countable can occur.

2.0.7 UHF -algebras

A C∗-algebra A is UHF if

A = lim−→(Mni(C), φi) where φi : Mni(C)→Mni+1
(C)

is a unital ∗-homomorphism. Note that, for the map φi to be unital, it is required that ni
divides ni+1. From the ni one produces a supernatural number n = pk11 p

k2
2 · · · , the least

supernatural number such that every ni divides n. As explained in Section 1, n corresponds
to a subgroup of Q, say G. At the level of K-theory, φi must act as follows:

(K0(Mni(C)), K0(Mni(C))+, [1Mni (C)]) ∼= (Z,Z+, ni)

(K0(Mni+1
(C)), K0(Mni+1

(C))+, [1Mni+1 (C)]) ∼= (Z,Z+, ni+1)

K0(φi) = ×ni+1

ni

?
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Fact. K0 is a continuous functor, i.e., it commutes with inductive limits.

For us, this means

K0(A = lim−→Mni(C)) = lim−→(K0(Mni(C))).

This shows that
(K0(A), K0(A)+, [1A]) ∼= (G,G ∩Q+, 1).

2.2 Theorem (Glimm). If A and B are UHF , then A ∼= B if and only if

(K0(A), [1A]) ∼= (K0(B), [1B])

.

2.0.8 AF -algebras

AF stands for ‘approximately finite dimensional’ algebras. These were introduced by Bratelli
in 1972. A C∗-algebra A is an AF -algebra if

A = lim−→(Fi, φi) where φi : Fi → Fi+1

and Fi is a finite dimensional C∗-algebra. Bratteli diagrams classify AF -algebras and if we
restrict our attention to Fi = Mm1 ⊕Mm2 ⊕ · · · ⊕Mmk and Fi+1 = Mn1 ⊕Mn2 ⊕ · · · ⊕Mnl

then the map φi : Fi → Fi+1 has the form of a matrix Bi where the bij entry denotes the
number of copies of Mmi are mapped into Mnj .

2.3 Theorem (Elliott, 1976). AF -algebras are determined, up to isomorphism, by their
scaled, ordered Murray - von Neumann semigroup (V (A),ΣV (A)).

It was later observed that ordered, scaled K0 suffices.

2.0.9 AT-algebras

A C∗-algebra A is an AT-algebra if

A = lim−→(C(T)⊗ Fi, φi) where φi : C(T)⊗ Fi → C(T)⊗ Fi+1

and Fi is a finite dimensional C∗-algebra.

2.4 Theorem (Elliott, 1989). AT-algebras are determined, up to isomorphism, by

K0(A), K0(A)+,ΣK0(A), K1(A))

provided that A has real rank zero (lots of projections).
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A is an AI-algebra if

A = lim−→(C(I)⊗ Fi, φi) where φi : C(I)⊗ Fi → C(I)⊗ Fi+1

and Fi is a finite dimensional algebra. In 1991, Thomsen showed that traces and the asso-
ciated pairing with K0 matters for simple AI-algebras; that is, the invariant of the theorem
above is not sufficient for a general classification.

2.0.10 Other confirmations of the conjecture

1. Simple AI-algebras, Elliott showed that Ell(·) classifies.
2. AT-algebras with real rank zero, Elliott showed that Ell(·) classifies.
3. The irrational rotation algebra Aθ = C(T) oαθ Z, where αθ is rotation by 2πθ for θ

irrational. The K-theory is given by

(K0(Aθ), K0(Aθ)
+, [1Aθ ])

∼= (Z+ θZ,Z+ θZ ∩ R+, 1),

2.5 Theorem (Elliott-Evans, Putnam). Aθ is a simple AT-algebra.

4. Purely infinite algebras: A projection p ∈ Proj(A) is infinite if p ∼MvN q � p. A simple
C∗-algebra is said to be purely infinite if every non-zero hereditary sub-C∗-algebra of
the given algebra contains an infinite projection.

2.6 Theorem (Kirchberg-Phillips). Let A and B be simple, unital, separable, nu-
clear, purely infinite C∗-algebras which satisfy the UCT . Then A ∼= B if and only if
(K0(A), [1A], K1(A)) ∼= (K0(B), [1B], K1(B)).

5. AH-algebras are inductive limits of C∗-algebras of the form

Hi = {⊕ni=1piMni(C(Xi))pi | Xi compact , pi a projection}.

2.7 Theorem (Elliott, Gong-Li, Gong). Unital, simple AH-algebras for which the
dimensions of the Xi above are uniformly bounded satisfy Elliott’s conjecture.

6. Tracially AF -algebras [Lin, 2000]. Note that Nate Brown will cover these in subsequent
lectures.

2.0.11 A counterexample

2.8 Theorem (Rørdam, 2002). There exists a simple, nuclear, separable C∗-algebra with a
finite and an infinite projection.

Exercise. Convince yourself, in light of the Kirchberg - Phillips Theorem, that the above
theorem gives a counterexample to Elliott’s conjecture.
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3 Elliott’s Intertwining Argument

Most confirmations of Elliott’s conjecture involve, at some point and in some form, Elliott’s
Intertwining Argument, a technique for proving isomorphism of inductive limits. Let A =
lim−→(Ai, φi) and B = lim−→(Bi, ψi) be inductive limit C∗-algebras (we may assume that the

φi and ψi are injective; equivalently, the Ais and Bis are nested). Assume that we have ∗-
homomorphisms γi and ηi together with the following (not necessarily commutative) diagram:

A1

φ1 - A2

φ2 - A3

φ3 - · · ·

B1

γ1

?

ψ1

-

η 1

-

B2

γ2

?

ψ2

-

η 2

-

B3

γ3

?

ψ3

-

η 3

-

· · ·

Suppose that we have sequences of nested finite sets (Fi) and (Gi) such that

• Fi ⊆ Ai and Gi ⊆ Bi, and

• ∪iFi is dense in A and ∪iGi is dense in B.

Assume that the triangle formed by A1, A2, and B1 at least commutes up to ε1 > 0 of
F1. Next assume that the triangle formed by B1, B2, and A2 commutes up to ε2 > 0 on
G1 ∪ γ1(F1). Continuing in this manner defines a sequence of almost commuting triangles
up to tolerances {εi}∞i=1. Now if

∑
εi <∞, then for j < i,

lim
i→∞

γi+1 ◦ (φi ◦ · · · ◦ φj)

defines a map on Fj; the sequence of these maps is Cauchy on ∪jFj.
Exercise. Check that this sequence defines a map on ∪Fi which extends to a ∗-homomorphism
from A to B.

The usual application of this argument is the question of isomorphism.

3.0.12 Intertwining of UHF -algebras

We now examine Glimm’s Theorem for UHF algebras to illustrate Elliott’s Intertwining Ar-
gument. Recall that a UHF -algebra A is an inductive limit of matrix algebras lim−→(Mni , φi).
We re-state and sketch the proof of Theorem 2.2.

3.1 Theorem (Glimm). If A and B are UHF , then A ∼= B if and only if

(K0(A), [1A]) ∼= (K0(B), [1B])

.
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Sketch of proof. At the level of K-theory we can (after perhaps compressing our inductive
sequences) intertwine the inductive sequences to give the following commuting diagram:

K0(Mn1) - K0(Mn2) - K0(Mn3) - · · · · · · - K0(A)

K0(Mm1)
?

-

-

K0(Mm2)
?

-

-

K0(Mm3)
?

- · · · · · · - K0(B)

∼=

?

More explicitly:

(Z,Z+, n1) - (Z,Z+, n2) - (Z,Z+, n3) - · · · · · · - K0(A)

(Z,Z+,m1)

×m1

n1

?
-

×
n2

m
1

-

(Z,Z+,m2)

×m2

n2

?
-

×
n3

m
2

-

(Z,Z+,m3)

×m3

n3

?
- · · · · · · - K0(B)

∼=

?

It is straightforward to lift the above diagram to the level of C∗-algebras and ∗-homomorphisms
in a not necessarily commuting way:

Mn1

φ1 - Mn2

φ2 - Mn3

φ3- · · · · · · - A

Mm1

γ1

? ψ1 -

η 1

-

Mm2

γ2

? ψ2 -

η 2

-

Mm3

γ3

? ψ3- · · · · · · - B

Exercise. Show that if φ, ψ : Mk → Ml are unital ∗-homomorphisms, then there exists a
unitary in Ml, say u, such that φ = uψu∗.

With the exercise in hand, the γi and ηi can be conjugated by unitaries which will make
the diagram above commute. Then Elliott’s Intertwining Argument gives isomorphism.

4 Infinite dimensional phenomena in simple C∗-algebras

Question. Does there exist a simple C∗-algebra whose ordered K-theory group is not weakly
unperforated?

Jesper Villadsen answered this question affirmatively in 1996. To understand what he
did and why it matters for classification, we need the classical view of K-theory. Recall
the following from the talks of Heath Emerson: in C(X) projections are given by complex
topological vector bundles and Murray-von Neumann equivalence of projections corresponds
to isomorphism of vector bundles.
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We wish to ‘see’ perforation in (K0(C(X)), K0(C(X))+). Our tool is the Chern class, a
map c : V ect(H)→ H2∗(X;Z) with properties

1. c(ω) = 1 + c1(ω) + c2(ω) + · · ·+ cdim(ω)(ω) where ci(ω) ∈ H2i(X;Z)
2. c(θ) = 1 when θ is trivial
3. c(γ + ω) = c(γ)c(ω)
4. c(γ) = c(ω) whenever γ ∼= ω.

4.1 Lemma (Villadsen). Suppose ω is a vector bundle over X and that cdim(ω)(ω) 6= 0. If
l < dim(ω), then

[ω]− [θl] /∈ K0(C(X))+.

Proof. If [ω]− [θl] is positive, then there exists r ≥ 0 and γ a vector bundle over X such that

ω ⊕ θl ∼= γ ⊕ θl+r
=⇒ c(ω ⊕ θl) = c(γ ⊕ θl+r)
=⇒ c(ω)c(θl) = c(γ)c(θl+r)

=⇒ c(ω) = c(γ)

which is a contradiction, since cdim(ω)(ω) 6= 0 and cdim(ω)(γ) = 0.

Fact. If ω and γ are vector bundles over X, dim(X) < d <∞ and dim(ω) ≥ dim(γ) + d/2,
then γ is isomorphic to a sub-bundle of ω and

[ω]− [γ] ∈ K0(C(X))+.

Thus, if [ω]− [θl] is not positive and 0 < l < dim(ω), then

n([ω]− [θl]) = [ω ⊕ · · · ⊕ ω]− [θnl]

is positive for some n and therefore K0(C(X))+ is not weakly unperforated.

Now we have a tool for finding perforation. But we want a simple algebra. Start with
M2(C(S2 × S2)) (because there exists a line bundle H∗ over S2 such that c(H∗) = 1). Let
πi : S2 × S2 → S2 be coordinate projections. Define H∗ × H∗ = π∗1(H∗) ⊕ π∗2(H∗). By
naturality of c(·) and the ring structure of H2∗(S2×S2), we can show that c2(H

∗×H∗) 6= 0,
whence [H∗ ×H∗] = [θ1] /∈ K0(C(S2 × S2))+. Now define φ : M2(C(S2)×2)→M4(C(S2)×4)
as follows: let η1, η2 : (S2 × S2)×2 → S2 × S2 be coordinate projections. Then

φ(f) =

(
f ◦ η1 0

0 f ◦ η2

)
.

One calculates:

K0(φ)[H∗ ×H∗] = [H∗ ×H∗ ×H∗ ×H∗]
K0(φ)[θl] = [θ2l]
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[H∗ ×H∗]− [θ1] 7→ [H∗ ×H∗ ×H∗ ×H∗]− [θ2].

Perforation is preserved! By iterating and perturbing slighlty a sequence of such maps,
one gets a simple limit with perforated K0-group. This algebra is AH, but does not have
bounded dimension growth.

Idea of things to come. It was thought when Villadsen’s proof arrived that there might
be a counterexample to Elliott’s conjecture in it. The problem was that the K-theory
of Villadsen’s algebra was incomputable. One wants the same sort of phenomenon with
computable K-theory. To this end, we replace projections with positive elements... this
leads us to the Cuntz semigroup.

5 The Cuntz semigroup

5.1 Definition (Cuntz). Let A be a C∗-algebra and a, b in (A⊗K)+. We say a . b if there
exists a sequence {vi}i∈N in A⊗K such that vibv

∗
i → a in norm. We say a ∼ b if a . b and

b . a. Let
W (A) = {(A⊗K)+}/ ∼ .

Let < a > denote the class of a in W (A). W (A) can be made into an ordered semigroup,
the Cuntz semigroup, by equipping it with the binary operation

< a > + < b >=< a⊕ b > .

and the order
< a >≤< b >⇔ a - b.

Examples:

1. A = C, W (A) = N ∪ {∞}
2. A = C([0, 1]), W (A) = {f : [0, 1]→ N ∪∞ | f is lower semi-cts, f ≥ 0}
3. A = C(X), W (A) can be a disaster

• Let us show this for X = [0, 1]3. Notice that we have S2 ⊂ [0, 1]3 and S2 has
the projection H∗ which is the dual to the Hopf bundle. Now we can extend H∗

to the open superset U of S2 which we continue to denote by H∗. Multiply H∗

by a continuous function f : [0, 1]3 → [0, 1] such that f |S2 = 1, f |Uc = 0. Then
f · H∗ is positive in M2(C([0, 1]3)). Of course, we could do the same trick for
any projection p over S2, to get a positive element f · p. Now we observe that
f · p ∼ f · q if and only if p ∼MvN q.
The idea of this type of argument is that W (C(X)) ‘contains’ the K-theory of
the closed subsets of X.

5.2 Definition (Rørdam). W (A) is called almost unperforated (AUP) if x ≤ y whenever
(n+ 1)x ≤ ny for x, y ∈ W (A).



14

Now observe that Villadsen’s Lemma 4.1 can also be a tool for witnessing a failure of
almost unperforation. To wit, apply Villadsen’s argument for [H∗×H∗]− [θ1] to < f ·H∗×
f ·H∗ > and < f · θ1 > to see the failure of almost unperforation in M4(C([0, 1]3 × [0, 1]3)).

5.3 Theorem. There exists a simple, unital AH-algebra A and a UHF algebra B such that
Ell(A) = Ell(A⊗B) such that A � A⊗B.

Sketch of proof. Take Villadsen’s construction for the inductive limit of (M2n(C(S2)2n), φn)
and replace S2 with [0, 1]3. Let A be the inductive limit, then W (A) fails to be almost
unperforated for the same reason that the K-theory of Villadsen’s example failed to be
weakly unperforated. On the other hand, A ⊗ B is almost unperforated by a result of
Rørdam, and some standard results about the Elliott Invariant and tensor products takes
care of the rest.

5.0.13 States on the Cuntz semigroup

5.4 Definition. An additive, order preserving map d : W (A)→ R+ is a state on W (A).

Example: If τ is a tracial state on a unital C∗-algebra A, then dτ (< a >) = lim−→τ(a1/n) is a

state on W (A). (This should be thought of as giving rank with respect to τ .)

5.5 Definition. A unital C∗-algebra A has strict comparison if x . y in W (A) whenever
dτ (x) ≤ dτ (y) for all τ ∈ T (A).

5.6 Theorem (Rørdam). If A is simple then W (A) is almost unperforated if and only if A
has strict comparison.

5.7 Definition. W (A) is almost divisible if, for all x in W (A) and for all n in N, there exists
y in W (A) such that ny ≤ x ≤ (N + 1)y.

5.8 Theorem. Let A be a simple, unital, tracial C∗-algebra. Suppose that A has strict
comparison and W (A) is almost divisible. Then,

W (A) = V (A)
⊔

SAFF>0(TA)

where V (A) is the Murray - von Neumann semigroup and SAFF>0(TA) is the suprema of
sequences of continuous, affine, strictly positive functions on TA.

Note that we can define a map ι : W (A)→ SAFF>0(TA) via

ι(x)(τ) = dτ (x).

Question. Is it always true for a simple, unital C∗-algebra A that the image of ι : W (A)→
SAFF>0(TA) is onto?

Remarks. • Suppose Z is the Jiang - Su algebra, and A ∼= A⊗Z, then the question has
a positive answer.
• If A has strict comparison and extreme boundary of the tracial state space is both

compact and finite dimensional, then the question has positive answer.

Exercise. Prove that the question has positive answer if A has strict comparison and unique
trace.


